1
|
Petrich J, Alvarez CE, Gómez Cano L, Dewberry R, Grotewold E, Casati P, Falcone Ferreyra ML. Functional characterization of a maize UDP-glucosyltransferase involved in the biosynthesis of flavonoid 7-O-glucosides and di-O-glucosides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109583. [PMID: 39923422 DOI: 10.1016/j.plaphy.2025.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Flavonoids are glycosylated in the final steps of their synthesis by UDP-dependent glycosyltransferase enzymes. We present the functional characterization of the first maize flavonoid O-glucosyltransferase enzyme from family 85, which exhibits properties not previously described. ZmUGT85W2 catalyzes the O-glucosylation of flavonols, flavones and flavanones, to form primarily 7-O-glucosides, but also flavonol O-glucoside positional isomers, flavones and flavonol di-O-glucosides. ZmUGT85W2 exhibited a differential kinetic behavior depending on the flavonoid acceptor, showing hyperbolic dependence for flavonols and sigmoidal response for flavanones and flavones. Structural and molecular docking analyses predicted conserved residues interacting with the sugar donor, with close contact with the 7-hydroxyl of the flavonoid acceptors, consistent with enzymatic activity results. In addition, ZmUGT85W2 is induced by UV-B radiation, and its expression is controlled by the B and PL1 transcription factors. Consistently, higher levels of flavone and flavonol O-glycosides are accumulated in leaves of plants exposed to solar UV-B compared to control plants, suggesting that ZmUGT85W2 is involved in the biosynthesis of these metabolites in maize leaves, contributing to UV-B tolerance. The activity of ZmUGT85W2, along with its elevated expression in silks and pericarps expressing the R2R3-MYB transcription factor P1, highlights its critical role in the accumulation of flavonoid O-glucosides in these tissues. Together, our findings reveal a key step in maize flavonoid O-glycosides biosynthesis, with the observed positive cooperative behaviors suggesting that ZmUGT85W2 plays a crucial role in finely regulating metabolic flux towards these compounds in planta.
Collapse
Affiliation(s)
- Julieta Petrich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | - Clarisa Ester Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | - Lina Gómez Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ronnie Dewberry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | | |
Collapse
|
2
|
Simpson JP, Kim CY, Kaur A, Weng JK, Dilkes B, Chapple C. Genome-wide association identifies a BAHD acyltransferase activity that assembles an ester of glucuronosylglycerol and phenylacetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2169-2187. [PMID: 38558472 DOI: 10.1111/tpj.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.
Collapse
Affiliation(s)
- Jeffrey P Simpson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology & Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02120, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, 02120, USA
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
3
|
Sergeant K, Goertz S, Halime S, Tietgen H, Heidt H, Minestrini M, Jacquard C, Zimmer S, Renaut J. Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean ( Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules 2024; 29:1065. [PMID: 38474577 DOI: 10.3390/molecules29051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
While numerous Fabaceae seeds are a good nutritional source of high-quality protein, the use of some species is hampered by toxic effects caused by exposure to metabolites that accumulate in the seeds. One such species is the faba or broad bean (Vicia faba L.), which accumulates vicine and convicine. These two glycoalkaloids cause favism, the breakdown of red blood cells in persons with a glucose-6-phosphate dehydrogenase deficiency. Because this is the most common enzyme deficiency worldwide, faba bean breeding efforts have focused on developing cultivars with low levels of these alkaloids. Consequently, quantification methods have been developed; however, they quantify vicine and convicine only and not the derivatives of these compounds that potentially generate the same bio-active molecules. Based on the recognition of previously unknown (con)vicine-containing compounds, we screened the fragmentation spectra of LC-MS/MS data from five faba bean cultivars using the characteristic fragments generated by (con)vicine. This resulted in the recognition of more than a hundred derivatives, of which 89 were tentatively identified. (Con)vicine was mainly derivatized through the addition of sugars, hydroxycinnamic acids, and dicarboxylic acids, with a group of compounds composed of two (con)vicine residues linked by dicarboxyl fatty acids. In general, the abundance profiles of the different derivatives in the five cultivars mimicked that of vicine and convicine, but some showed a derivative-specific profile. The description of the (con)vicine diversity will impact the interpretation of future studies on the biosynthesis of (con)vicine, and the content in potentially bio-active alkaloids in faba beans may be higher than that represented by the quantification of vicine and convicine alone.
Collapse
Affiliation(s)
- Kjell Sergeant
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Simon Goertz
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Salma Halime
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Hanna Tietgen
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Hanna Heidt
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Martina Minestrini
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du 11 Sud 4-5/L7.07.03, B-1348 Louvain-la-Neuve, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Stephanie Zimmer
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| |
Collapse
|
4
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
5
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Brouckaert M, Peng M, Höfer R, El Houari I, Darrah C, Storme V, Saeys Y, Vanholme R, Goeminne G, Timokhin VI, Ralph J, Morreel K, Boerjan W. QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits. MOLECULAR PLANT 2023; 16:1212-1227. [PMID: 37349988 PMCID: PMC7614782 DOI: 10.1016/j.molp.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
Collapse
Affiliation(s)
- Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Meng Peng
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - René Höfer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chiarina Darrah
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Véronique Storme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yvan Saeys
- Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; VIB Metabolomics Core, 9052 Ghent, Belgium
| | - Vitaliy I Timokhin
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
7
|
Fougère L, Zubrzycki S, Elfakir C, Destandau E. Characterization of Corn Silk Extract Using HPLC/HRMS/MS Analyses and Bioinformatic Data Processing. PLANTS (BASEL, SWITZERLAND) 2023; 12:721. [PMID: 36840069 PMCID: PMC9968068 DOI: 10.3390/plants12040721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
In addition to having different biological activities of interest, corn silks play a role in the defense of plants. While benzoxamines and flavonoids have already been identified as molecules of plant defense and growth mechanisms, knowledge on the phytochemical composition of corn silk is lacking. Such knowledge would make it possible to better select the most effective varieties to improve resistance or bioactive properties. In this article, an approach was implemented to map a corn silk extract in two complementary ways. The first one involved working with UHPLC/HRMS data and Kendrick and van Krevelen plots to highlight a homologous series of compounds, such as lipids from 17 to 23 carbons, monoglycosylated flavonoids from 21 to 24 carbons, diglycosylated flavonoids of 26 to 28 carbons and organic acids of 14 to 19 carbons. The second way was to analyze the sample in UHPLC/HRMS2 and to plot mass spectral similarity networks with the GNPS platform and Cytoscape software to refine identification. By combining the information obtained, we were able to propose an identification for 104 detected molecules, including 7 nitrogenous, 28 lipidic and 67 phenolic compounds, leading to the first detailed phytochemical analysis of corn silk extract.
Collapse
|
8
|
Dong X, Mayes HB, Morreel K, Katahira R, Li Y, Ralph J, Black BA, Beckham GT. Energy-Resolved Mass Spectrometry as a Tool for Identification of Lignin Depolymerization Products. CHEMSUSCHEM 2023; 16:e202201441. [PMID: 36197743 DOI: 10.1002/cssc.202201441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Lignin is the largest source of bio-based aromatic compounds in nature, and its valorization is essential to the sustainability of lignocellulosic biorefining. Characterizing lignin-derived compounds remains challenging due to the heterogeneity of this biopolymer. Tandem mass spectrometry is a promising tool for lignin structural analytics, as fragmentation patterns of model compounds can be extrapolated to identify characteristic moieties in complex samples. This work extended previous resonance excitation-type collision-induced dissociation (CID) methods that identified lignin oligomers containing β-O-4, β-5, and β-β bonds, to also identify characteristics of 5-5, β-1, and 4-O-5 dimers, enabled by quadrupole time-of-flight (QTOF) CID with energy-resolved mass spectrometry (ERMS). Overall, QTOF-ERMS offers in-depth structural information and could ultimately contribute to tools for high-throughput lignin dimer identification.
Collapse
Affiliation(s)
- Xueming Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kris Morreel
- RIC Group, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yanding Li
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53706, USA
| | - Brenna A Black
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
9
|
Zhang X, Zheng F, Zhao C, Li Z, Li C, Xia Y, Zheng S, Wang X, Sun X, Zhao X, Lin X, Lu X, Xu G. Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics. Anal Chem 2022; 94:16604-16613. [DOI: 10.1021/acs.analchem.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- Dalian University of Technology, Dalian116024, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaohui Lin
- Dalian University of Technology, Dalian116024, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| |
Collapse
|
10
|
Wu J, Zhu W, Shan X, Liu J, Zhao L, Zhao Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. MOLECULAR PLANT 2022; 15:1517-1532. [PMID: 35996753 DOI: 10.1016/j.molp.2022.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.
Collapse
Affiliation(s)
- Jie Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyue Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingling Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Piasecka A, Sawikowska A, Jedrzejczak-Rey N, Piślewska-Bednarek M, Bednarek P. Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon. Molecules 2022; 27:molecules27185956. [PMID: 36144695 PMCID: PMC9506550 DOI: 10.3390/molecules27185956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Brachypodium distachyon, because of its fully sequenced genome, is frequently used as a model grass species. However, its metabolome, which constitutes an indispensable element of complex biological systems, remains poorly characterized. In this study, we conducted comprehensive, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic examination of roots, leaves and spikes of Brachypodium Bd21 and Bd3-1 lines. Our pathway enrichment analysis emphasised the accumulation of specialized metabolites representing the flavonoid biosynthetic pathway in parallel with processes related to nucleotide, sugar and amino acid metabolism. Similarities in metabolite profiles between both lines were relatively high in roots and leaves while spikes showed higher metabolic variance within both accessions. In roots, differences between Bd21 and Bd3-1 lines were manifested primarily in diterpenoid metabolism, while differences within spikes and leaves concerned nucleotide metabolism and nitrogen management. Additionally, sulphate-containing metabolites differentiated Bd21 and Bd3-1 lines in spikes. Structural analysis based on MS fragmentation spectra enabled identification of 93 specialized metabolites. Among them phenylpropanoids and flavonoids derivatives were mainly determined. As compared with closely related barley and wheat species, metabolic profile of Brachypodium is characterized with presence of threonate derivatives of hydroxycinnamic acids.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Correspondence: (A.P.); (P.B.); Tel.: +48-61-852-85-03 (A.P. & P.B.); Fax: +48-61-852-05-32 (A.P. & P.B.)
| | - Aneta Sawikowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Nicolas Jedrzejczak-Rey
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Correspondence: (A.P.); (P.B.); Tel.: +48-61-852-85-03 (A.P. & P.B.); Fax: +48-61-852-05-32 (A.P. & P.B.)
| |
Collapse
|
12
|
Allen H, Zeef L, Morreel K, Goeminne G, Kumar M, Gomez LD, Dean AP, Eckmann A, Casiraghi C, McQueen-Mason SJ, Boerjan W, Turner SR. Flexible and digestible wood caused by viral-induced alteration of cell wall composition. Curr Biol 2022; 32:3398-3406.e6. [PMID: 35732179 PMCID: PMC9616729 DOI: 10.1016/j.cub.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Woody plant material represents a vast renewable resource that has the potential to produce biofuels and other bio-based products with favorable net CO2 emissions.1,2 Its potential has been demonstrated in a recent study that generated novel structural materials from flexible moldable wood.3 Apple rubbery wood (ARW) disease is the result of a viral infection that causes woody stems to exhibit increased flexibility.4 Although ARW disease is associated with the presence of an RNA virus5 known as apple rubbery wood virus (ARWV), how the unique symptoms develop is unknown. We demonstrate that the symptoms of ARWV infections arise from reduced lignification within the secondary cell wall of xylem fibers and result in increased wood digestibility. In contrast, the mid-lamellae region and xylem ray cells are largely unaffected by the infection. Gene expression and proteomic data from symptomatic xylem clearly show the downregulation of phenylalanine ammonia lyase (PAL), the enzyme catalyzing the first committed step in the phenylpropanoid pathway leading to lignin biosynthesis. A large increase in soluble phenolics in symptomatic xylem, including the lignin precursor phenylalanine, is also consistent with PAL downregulation. ARWV infection results in the accumulation of many host-derived virus-activated small interfering RNAs (vasiRNAs). PAL-derived vasiRNAs are among the most abundant vasiRNAs in symptomatic xylem and are likely the cause of reduced PAL activity. Apparently, the mechanism used by the virus to alter lignin exhibits similarities to the RNAi strategy used to alter lignin in genetically modified trees to generate comparable improvements in wood properties.6, 7, 8 Video abstract
Apple rubbery wood (ARW) symptoms are caused by decreased lignin in woody tissue RNA-seq, proteomics, and metabolomics suggest phenylalanine levels decrease Virus-activated small interfering RNAs (vasiRNAs) are generated in response to ARWV infection VasiRNAs cause siRNA-based downregulation of phenylalanine ammonia
Collapse
Affiliation(s)
- Holly Allen
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leo Zeef
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Metabolomics Core Gent, VIB, 9052 Zwijnaarde, Belgium
| | - Manoj Kumar
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew P Dean
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Eckmann
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
13
|
Feijao C, Morreel K, Anders N, Tryfona T, Busse-Wicher M, Kotake T, Boerjan W, Dupree P. Hydroxycinnamic acid-modified xylan side chains and their cross-linking products in rice cell walls are reduced in the Xylosyl arabinosyl substitution of xylan 1 mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1152-1167. [PMID: 34862679 DOI: 10.1111/tpj.15620] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.
Collapse
Affiliation(s)
- Carolina Feijao
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nadine Anders
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Toshihisa Kotake
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Saitama University, 255 Shimo-Okubo, Saitama, 338-8570, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
14
|
Yang C, Shen S, Zhou S, Li Y, Mao Y, Zhou J, Shi Y, An L, Zhou Q, Peng W, Lyu Y, Liu X, Chen W, Wang S, Qu L, Liu X, Fernie AR, Luo J. Rice metabolic regulatory network spanning the entire life cycle. MOLECULAR PLANT 2022; 15:258-275. [PMID: 34715392 DOI: 10.1016/j.molp.2021.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/18/2023]
Abstract
As one of the most important crops in the world, rice (Oryza sativa) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the changes in metabolite abundance across the entire life cycle have not yet been determined. In this study, combining both targeted and nontargeted metabolite profiling methods, a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle. The contents of metabolites in different tissues of rice were significantly different, with various metabolites accumulating in the plumule and radicle during seed germination. Combining these data with transcriptome data obtained from the same time period, we constructed the Rice Metabolic Regulation Network. The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across development. Using this dataset, we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity. This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agronomic traits.
Collapse
Affiliation(s)
- Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyuan Mao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Longxu An
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenju Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Lyu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xuemei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouchuang Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
15
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
16
|
de Vries L, Brouckaert M, Chanoca A, Kim H, Regner MR, Timokhin VI, Sun Y, De Meester B, Van Doorsselaere J, Goeminne G, Chiang VL, Wang JP, Ralph J, Morreel K, Vanholme R, Boerjan W. CRISPR-Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P. alba. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2221-2234. [PMID: 34160888 PMCID: PMC8541784 DOI: 10.1111/pbi.13651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 05/06/2023]
Abstract
Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P. alba). Reporter lines showed that the expression conferred by both CSE1 and CSE2 promoters is similar. CRISPR-Cas9-generated cse1 and cse2 single mutants had a wild-type lignin level. Nevertheless, CSE1 and CSE2 are not completely redundant, as both single mutants accumulated caffeoyl shikimate. In contrast, the cse1 cse2 double mutants had a 35% reduction in lignin and associated growth penalty. The reduced-lignin content translated into a fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Phenolic profiling of the double mutants revealed large metabolic shifts, including an accumulation of p-coumaroyl, 5-hydroxyferuloyl, feruloyl and sinapoyl shikimate, in addition to caffeoyl shikimate. This indicates that the CSEs have a broad substrate specificity, which was confirmed by in vitro enzyme kinetics. Taken together, our results suggest an alternative path within the phenylpropanoid pathway at the level of the hydroxycinnamoyl-shikimates, and show that CSE is a promising target to improve plants for the biorefinery.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Marlies Brouckaert
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alexandra Chanoca
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hoon Kim
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Matthew R. Regner
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vitaliy I. Timokhin
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Barbara De Meester
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | | | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- VIB Metabolomics CoreGhentBelgium
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
- Department of Forest BiomaterialsNorth Carolina State UniversityRaleighNCUSA
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - John Ralph
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kris Morreel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|