1
|
Uzar W, Kaminska B, Rybka H, Skalniak L, Magiera-Mularz K, Kitel R. An updated patent review on PD-1/PD-L1 antagonists (2022-present). Expert Opin Ther Pat 2024; 34:627-650. [PMID: 38903044 DOI: 10.1080/13543776.2024.2368237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION PD-L1, via its interactions with PD-1, constitutes a key immune checkpoint that allows cancer cells to escape immune surveillance. Targeting PD-1/PD-L1 with monoclonal antibodies (mAbs) led to spectacular success in clinical oncology. However, the inherent limitations of mAbs and increasing findings about immune-related adverse events (iRAEs) prompted intense research in the field of small-molecule inhibitors of PD-L1. AREAS COVERED This review covers inhibitors of PD-L1 reported in patents published in the online databases of the World Intellectual Property Organization and European Patent Office in the 2022-2023 period. This review provides a landscape of available inhibitors, including their chemical structures, activity, and stage of development. EXPERT OPINION Small-molecule inhibitors impairing PD-L1/PD-1 interaction represent an attractive alternative to mAbs. In recent years, the field of small-molecule and macrocyclic inhibitors targeting PD-L1 has grown rapidly. The majority (if not all) of small-molecule inhibitors developed recently, similarly to their predecessors, act through a dimerization mechanism of PD-L1, followed by its internalization into the cytosol. In contrast, macrocyclic peptides act purely through a competition mechanism known as protein-protein interaction inhibitors. The ongoing clinical trials should ultimately reveal which strategy has real clinical potential and may complement or even replace mAbs-based therapies.
Collapse
Affiliation(s)
- Wiktor Uzar
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Beata Kaminska
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Hubert Rybka
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | - Radoslaw Kitel
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
Donati G, Viviano M, D'Amore VM, Cipriano A, Diakogiannaki I, Amato J, Tomassi S, Brancaccio D, Russomanno P, Di Leva FS, Arosio D, Seneci P, Taliani S, Magiera-Mularz K, Musielak B, Skalniak L, Holak TA, Castellano S, La Pietra V, Marinelli L. A combined approach of structure-based virtual screening and NMR to interrupt the PD-1/PD-L1 axis: Biphenyl-benzimidazole containing compounds as novel PD-L1 inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300583. [PMID: 38110703 DOI: 10.1002/ardp.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | | | | | | | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|