1
|
Woolpert KM, Cronin‐Fenton DP, Damkier P, Kjærsgaard A, Hamilton‐Dutoit S, Ejlertsen B, MacLehose RF, Christiansen P, Silliman RA, Lash TL, Ahern TP, Collin LJ. Drug Interactions With Tamoxifen and Treatment Effectiveness in Premenopausal Breast Cancer Patients: A Bayesian Joint Modeling Approach. Pharmacoepidemiol Drug Saf 2025; 34:e70157. [PMID: 40364655 PMCID: PMC12076038 DOI: 10.1002/pds.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/24/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE Tamoxifen is guideline treatment for premenopausal women with estrogen receptor-positive (ER+) breast cancer. Therapeutic efficacy relies partly on tamoxifen biotransformation by CYP2D6, CYP2C19, and CYP3A4 enzymes. We conducted a cohort study to evaluate whether concomitant prescription of drugs that inhibit these enzymes impacted breast cancer recurrence. METHODS We enrolled 4493 premenopausal women with stage I-III ER+ breast cancer (2002-2011) treated with tamoxifen. We defined time-varying CYP-inhibiting drug exposures as the proportion of overlapping days during the tamoxifen treatment period. We estimated associations of concomitant medication use with recurrence using: (1) Bayesian joint modeling (hazard ratio [HR] and 95% credible intervals [95% CrI]), (2) traditional Cox regression (HR and 95% confidence intervals [95% CI]). RESULTS During tamoxifen therapy, 13% of the cohort used strong CYP2D6 inhibitors, 31% weak CYP2D6 inhibitors, 37% CYP2C19 inhibitors, and 12% CYP3A4/5 inhibitors. Bayesian joint models showed that women with ≥ 50% overlap between tamoxifen and CYP2D6 inhibitors had increased recurrence risk compared with 0% overlap (HR: 1.24, 95% CrI: 0.96, 1.58). No recurrence association was seen for CYP2C19 inhibitors (≥ 50% vs. 0%, HR = 1.0, 95% CrI: 0.69, 1.40), but traditional Cox models yielded positive associations for CYP2C19 overlap (≥ 50% vs. 0%, HR = 1.45, 95% CI: 1.07, 1.96). With Bayesian joint models, we observed no association between ≥ 50% versus 0% overlap with CYP3A4/5 inhibitors (HR: 0.84, 95% CrI: 0.32, 1.93). CONCLUSIONS With Bayesian joint modeling, we saw a slight increase in recurrence among CYP2D6-inhibitor users, but no increase among CYP2C19- or CYP3A4-inhibitor users. Results from Cox regression models were less plausible.
Collapse
Affiliation(s)
- Kirsten M. Woolpert
- Department of Clinical EpidemiologyAarhus University and Aarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Deirdre P. Cronin‐Fenton
- Department of Clinical EpidemiologyAarhus University and Aarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Per Damkier
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Anders Kjærsgaard
- Department of Clinical EpidemiologyAarhus University and Aarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | | | - Bent Ejlertsen
- Danish Breast Cancer Group, Department of OncologyRigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Richard F. MacLehose
- Division of Epidemiology & Community HealthUniversity of Minnesota School of Public HealthMinneapolisMinnesotaUSA
| | - Peer Christiansen
- Danish Breast Cancer Group, Department of OncologyRigshospitaletCopenhagenDenmark
- Department of Plastic and Breast SurgeryAarhus University HospitalAarhusDenmark
| | - Rebecca A. Silliman
- Section of Geriatrics, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Timothy L. Lash
- Department of Clinical EpidemiologyAarhus University and Aarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
- Winship Cancer Institute, Emory UniversityAtlantaGeorgiaUSA
| | - Thomas P. Ahern
- Department of SurgeryThe Robert Larner, M.D., College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Lindsay J. Collin
- Department of Clinical EpidemiologyAarhus University and Aarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
- Winship Cancer Institute, Emory UniversityAtlantaGeorgiaUSA
- Department of Population Health SciencesHuntsman Cancer Institute, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Yoon G, Suh J, Jo BS, Lee DW, Kim D, Choi M, Jeong EK, Lee HC, Shin HM, Kim YB, Seok S, Park YS, Chung CP, Lee JY, Park YJ. Rat Sarcoma (RAS)-Protein-Targeting Synthetic Cell-Penetrating Peptide as an Anticancer Biomaterial. Biomater Res 2025; 29:0175. [PMID: 40236954 PMCID: PMC11997307 DOI: 10.34133/bmr.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Various bioactive materials, including peptides, have become potential candidates for slowing cancer growth and metastasis. Among bioactive peptides, a synthetic cell-penetrating peptide referred to as rat sarcoma (RAS)-binding peptide (RBP) was suggested as a potential entity that targets RAS with high affinity in MDA-MB-231 cancer cells. This RAS binding further inhibits the RAS-rapidly accelerated fibrosarcoma (RAF) protein-protein interaction. The current study revealed that RBP effectively suppresses proliferation and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation by disrupting the RAS-RAF interaction. This intervention not only inhibits cell migration and invasion but also has substantial potential for preventing metastasis. The RAS-RAF-ERK1/2 pathway is a key target for anticancer drug development because of frequent ERK and mitogen-activated protein kinase activation in human cancers. MDA-MB-231, a triple-negative breast cancer cell line, harbors a G13D Kirsten rat sarcoma viral oncogene homolog mutation, making it resistant to many drugs. In addition to its in vitro antitumor activity, RBP was identified as a potent antagonist that substantially arrests tumor growth and invasiveness in in vivo chicken egg and mouse xenograft tumor models. Notably, histopathological analyses revealed increased immune cell infiltration and decreased Ki-67 expression, confirming the ability of RBP to inhibit tumor cell proliferation. Taken together, these findings highlight RBP as a therapeutic anticancer biomaterial capable of impeding the progression and metastasis of RAS-mutated cancers.
Collapse
Affiliation(s)
- Gookjin Yoon
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Jinsook Suh
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Beom Soo Jo
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Dong Woo Lee
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Deogil Kim
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Moonsil Choi
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Eui Kyun Jeong
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Hoo Cheol Lee
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Hye Min Shin
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yu-Bin Kim
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Sanghui Seok
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences,
Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chong Pyung Chung
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
- School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Jue-Yeon Lee
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| |
Collapse
|
3
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Wang B, Chinnathambi A, Govindasamy C, Basappa S, Nagaraja O, Madegowda M, Beeraka NM, Nikolenko VN, Wang M, Wang G, Rangappa KS, Basappa B. Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation. IUBMB Life 2024; 76:1309-1324. [PMID: 39275910 DOI: 10.1002/iub.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/16/2024]
Abstract
Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Medchal, India
| | | | | | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, India
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| |
Collapse
|
4
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024; 12:11708-11720. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
5
|
Wang L, Han T. Pharmacologic Induction of ERα SUMOylation Disrupts Its Chromatin Binding. ACS Chem Biol 2024; 19:2383-2392. [PMID: 39432240 PMCID: PMC11574758 DOI: 10.1021/acschembio.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Estrogen receptor α (ERα)-positive breast cancer patients are typically treated with ERα inhibitors, including selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs). However, the distinct pharmacological properties of various ERα inhibitors remain incompletely understood. In this study, we employed formaldehyde cross-linking followed by ERα immunoprecipitation and mass spectrometry to reveal that fulvestrant, the first FDA-approved SERD, induces the interaction between ERα and SUMO E3 ligases PIAS1 and PIAS2. Biochemical and genomic assays confirmed that fulvestrant induces SUMOylation of ERα, which inhibits ERα's binding to chromatin DNA. In addition, raloxifene (a SERM) and elacestrant (the first FDA-approved oral SERD) were identified as compounds that similarly induce ERα SUMOylation and inhibit its chromatin interaction. Our findings reveal a mechanism by which select ERα inhibitors disrupt ERα function through SUMOylation, offering insights for the development of next-generation ERα-targeted therapies.
Collapse
Affiliation(s)
- Lizhen Wang
- PTN
Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- National
Institute of Biological Sciences, Beijing 102206, China
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
6
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Kumar S, Ziegler Y, Plotner BN, Flatt KM, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS. Resistance to FOXM1 inhibitors in breast cancer is accompanied by impeding ferroptosis and apoptotic cell death. Breast Cancer Res Treat 2024; 208:307-320. [PMID: 38980505 PMCID: PMC11455716 DOI: 10.1007/s10549-024-07420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Cancer treatments often become ineffective because of acquired drug resistance. To characterize changes in breast cancer cells accompanying development of resistance to inhibitors of the oncogenic transcription factor, FOXM1, we investigated the suppression of cell death pathways, especially ferroptosis, in FOXM1 inhibitor-resistant cells. We also explored whether ferroptosis activators can synergize with FOXM1 inhibitors and can overcome FOXM1 inhibitor resistance. METHODS In estrogen receptor-positive and triple-negative breast cancer cells treated with FOXM1 inhibitor NB73 and ferroptosis activators dihydroartemisinin and JKE1674, alone and in combination, we measured suppression of cell viability, motility, and colony formation, and monitored changes in gene and protein pathway expressions and mitochondrial integrity. RESULTS Growth suppression of breast cancer cells by FOXM1 inhibitors is accompanied by increased cell death and alterations in mitochondrial morphology and metabolic activity. Low doses of FOXM1 inhibitor strongly synergize with ferroptosis inducers to reduce cell viability, migration, colony formation, and expression of proliferation-related genes, and increase intracellular Fe+2 and lipid peroxidation, markers of ferroptosis. Acquired resistance to FOXM1 inhibition is associated with increased expression of cancer stem-cell markers and proteins that repress ferroptosis, enabling cell survival and drug resistance. Notably, resistant cells are still sensitive to growth suppression by low doses of ferroptosis activators, effectively overcoming the acquired resistance. CONCLUSION Delineating changes in viability and cell death pathways that can overcome drug resistance should be helpful in determining approaches that might best prevent or reverse resistance to therapeutic targeting of FOXM1 and ultimately improve patient clinical outcomes.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Blake N Plotner
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kristen M Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Gao Y, Yu Y, Zhang M, Yu W, Kang L. Mechanisms of endocrine resistance in hormone receptor-positive breast cancer. Front Oncol 2024; 14:1448687. [PMID: 39544302 PMCID: PMC11560879 DOI: 10.3389/fonc.2024.1448687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Hormone receptor-positive breast cancer may recur or metastasize years or decades after its diagnosis. Furthermore, hormone receptor expression may persist in relapsed or metastatic cancer cells. Endocrine therapy is one of the most efficacious treatments for hormone receptor-positive breast cancers. Nevertheless, a considerable proportion of patients develop resistance to endocrine therapy. Previous studies have identified numerous mechanisms underlying drug resistance, such as epigenetic abnormalities in the estrogen receptor (ER) genome, activation of ER-independent ligands, and alterations in signaling pathways including PI3K/AKT/mTOR, Notch, NF-κB, FGFR, and IRE1-XBP1. This article reviews the mechanisms of endocrine resistance in hormone receptor-positive advanced breast cancer, drawing from previous studies, and discusses the latest research advancements and prospects.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Zhang K, Zhao D, Li Z, Wang Y, Liu J, Du T, Zhou L, Chen Y, Yu Q, Chen Q, Cai R, Zhao Z, Shan J, Hu B, Zhang H, Feng G, Zhu X, Tang J, Deng R. Inactivated cGAS-STING Signaling Facilitates Endocrine Resistance by Forming a Positive Feedback Loop with AKT Kinase in ER+HER2- Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403592. [PMID: 39023171 PMCID: PMC11425221 DOI: 10.1002/advs.202403592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.
Collapse
Affiliation(s)
- Kai‐Ming Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - De‐Chang Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Yu Li
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yan Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian‐Nan Liu
- Department of OncologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShangdong264000China
| | - Tian Du
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ling Zhou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yu‐Hong Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qi‐Chao Yu
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Shan Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rui‐Zhao Cai
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Xuan Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Lu Shan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bing‐Xin Hu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Liang Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gong‐Kan Feng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jun Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rong Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
10
|
Volkova Y, Scherbakov A, Dzichenka Y, Komkov A, Bogdanov F, Salnikova D, Dmitrenok A, Sachanka A, Sorokin D, Zavarzin I. Design and synthesis of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) as potent estrogen receptor alpha inhibitors: targeted treatment of hormone-dependent breast cancer cells. RSC Med Chem 2024; 15:2380-2399. [PMID: 39026643 PMCID: PMC11253874 DOI: 10.1039/d4md00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 μM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 μM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Gause Institute of New Antibiotics 11 Bol'shaya Pirogovskaya ulitsa 119021 Moscow Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Fedor Bogdanov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Faculty of Medicine, Moscow State University 27-1 Lomonosovsky prosp 119192 Moscow Russia
| | - Diana Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Antos Sachanka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Danila Sorokin
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| |
Collapse
|
11
|
Xin L, Wang C, Cheng Y, Wang H, Guo X, Deng X, Deng X, Xie B, Hu H, Min C, Dong C, Zhou HB. Discovery of Novel ERα and Aromatase Dual-Targeting PROTAC Degraders to Overcome Endocrine-Resistant Breast Cancer. J Med Chem 2024; 67:8913-8931. [PMID: 38809993 DOI: 10.1021/acs.jmedchem.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the proliferation, differentiation, and migration of breast cancer (BC) cells, and aromatase (ARO) is a crucial enzyme in estrogen synthesis. Hence, it is necessary to inhibit estrogen production or the activity of ERα for the treatment of estrogen receptor-positive (ER+) BC. Herein, we present a new category of dual-targeting PROTAC degraders designed to specifically target ERα and ARO. Among them, compound 18c bifunctionally degrades and inhibits ERα/ARO, thus effectively suppressing the proliferation of MCF-7 cells while showing negligible cytotoxicity to normal cells. In vivo, 18c promotes the degradation of ERα and ARO and inhibits the growth of MCF-7 xenograft tumors. Finally, compound 18c demonstrates promising antiproliferative and ERα degradation activity against the ERαMUT cells. These findings suggest that 18c, being the inaugural dual-targeting degrader for ERα and ARO, warrants further advancement for the management of BC and the surmounting of endocrine resistance.
Collapse
Affiliation(s)
- Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Cheng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongli Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyi Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangping Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Baohua Xie
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chang Min
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Keigley QJ, Fowler AM, O'Brien SR, Dehdashti F. Molecular Imaging of Steroid Receptors in Breast Cancer. Cancer J 2024; 30:142-152. [PMID: 38753748 PMCID: PMC11101139 DOI: 10.1097/ppo.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.
Collapse
Affiliation(s)
- Quinton J Keigley
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Sophia R O'Brien
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
13
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Quintero-Ruiz N, Oliveira WDL, Esteca MV, Granato DC, Simabuco FM. Uncovering the bookshelves of CRISPR-based libraries: Advances and applications in cancer studies. Crit Rev Oncol Hematol 2024; 196:104287. [PMID: 38342473 DOI: 10.1016/j.critrevonc.2024.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024] Open
Abstract
The advent of CRISPR/Cas9 technology has revolutionized the genome editing field. CRISPR-based libraries have become powerful tools for high-throughput functional genomics and genetic screening. CRISPR-based libraries can represent a powerful approach to uncovering genes related to chemoresistance and therapy efficacy and to studying cancer cells' fitness. In this review, we conducted an extensive literature search and summarized multiple studies that utilized these libraries in both in vitro and in vivo research, emphasizing their key findings. We provide an overview of the design, construction, and applications of CRISPR-based libraries in different cancer-focused studies and discuss the different types of CRISPR-based libraries. We finally point out the challenges associated with library design, including guide RNA selection, off-target effects, and library complexity. This review provides an overview of the work conducted with CRISPR libraries in the search for new targets that could potentially assist in cancer therapy by contributing to functional approaches.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP 13484-350, Brazil
| | - Wesley de Lima Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP 13484-350, Brazil; Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Marcos Vinicius Esteca
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP 13484-350, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP 13484-350, Brazil; Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
15
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, Cai M, Chen Y. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat 2024; 73:101042. [PMID: 38219532 DOI: 10.1016/j.drup.2023.101042] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Juzheng Peng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sicheng Wang
- School of Medicine, Sun Yat-sen University, China
| | - Sicheng Peng
- School of Medicine, Sun Yat-sen University, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junye Wang
- School of Medicine, Sun Yat-sen University, China
| | - Kai Ouyang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianjun Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
16
|
Min J, Liu X, Peng R, Chen CC, Wang W, Guo RT. New generation estrogen receptor-targeted agents in breast cancer: present situation and future prospectives. ACTA MATERIA MEDICA 2024; 3:57-71. [PMID: 39373009 PMCID: PMC11450757 DOI: 10.15212/amm-2024-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Endocrine therapy which blocking the signaling of estrogen receptor, has long been effective for decades as a primary treatment choice for breast cancer patients expressing ER. However, the issue of drug resistance poses a significant clinical challenge. It's critically important to create new therapeutic agents that can suppress ERα activity, particularly in cases of ESR1 mutations. This review highlights recent efforts in drug development of next generation ER-targeted agents, including oral selective ER degraders (SERDs), proteolysis targeting chimera (PROTAC) ER degraders, other innovative molecules such as complete estrogen receptor antagonists (CERANs) and selective estrogen receptor covalent antagonists (SERCAs). The drug design, efficacy and clinical trials for each compound were detailed.
Collapse
Affiliation(s)
- Jian Min
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Liu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Rouming Peng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Rey-Ting Guo
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
17
|
Palumbo R, Quaquarini E, Saltalamacchia G, Malovini A, Lapidari P, Tagliaferri B, Mollica L, Teragni CM, Barletta C, Locati LD, Sottotetti F. Efficacy and activity of treatments after progression from palbociclib plus endocrine therapy in patients with HR +/HER2 - metastatic breast cancer: a prospective, monocentric study. Drugs Context 2024; 13:2023-7-5. [PMID: 38332945 PMCID: PMC10852029 DOI: 10.7573/dic.2023-7-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Background Breast cancer is the most frequent tumour worldwide, and the HR+/HER2- subtype is the most common. For this tumour type, endocrine therapy (ET) is the mainstay of treatment. The association of ET and CDK4/6 inhibitors (CDK4/6i) represents the gold standard for first-line or second-line therapies. However, the optimal therapeutic strategy after CDK4/6i progression is still a matter of debate, with several randomized clinical trials still ongoing. Patients and methods This is an observational, prospective, real-world study including women with HR+/HER2- metastatic breast cancer progressing to palbociclib plus ET. Patients received either ET or chemotherapy (CT). The primary objective was the evaluation of efficacy of the different therapeutic strategies after palbociclib in terms of median progression-free survival 2. Secondary objectives were the activity of therapeutic strategies measured with the clinical benefit rate, evaluation of the parameters used for the treatment choice, and progression-free survival 1 related to palbociclib plus ET treatment. Results Overall, 48 patients (median age 53, range 33-78 years) were included. The median progression-free survival 2 was of 5 months in the overall cohort (95% CI 4-48 months) with a statistically significant difference between the two therapeutic strategies adopted (ET versus CT, 10 months versus 5 months, respectively). Regarding secondary objectives, the clinical benefit rate was 55.2% in the CT cohort and 50% in ET. Moreover, women treated with CT had a greater number of visceral metastases and a shorter median progression-free survival 1 than patients who received ET. Conclusions ET and CT represent two possible therapeutic alternatives for patients progressing on CDK4/6i plus ET. The choice is based on clinical parameters, with a potential preference for ET.
Collapse
Affiliation(s)
| | | | - Giuseppe Saltalamacchia
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | - Pietro Lapidari
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Ludovica Mollica
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Chiara Barletta
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Laura Deborah Locati
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | |
Collapse
|
18
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
19
|
Mansour O, Kazem A, El Wakil A. Assessment of breast cytoarchitecture and its associated axillary lymph node status under normal and pathological conditions in Egyptian women. Tissue Cell 2023; 85:102244. [PMID: 37856936 DOI: 10.1016/j.tice.2023.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Herein, we compare the features of neoplastic cancer cells in invasive ductal carcinoma (IDC) grade II and III patients to their corresponding normal cells both in breast and axillary lymph node (ALN) tissues. METHODS A retrospective cohort of 70 female breast cancer patients enrolled between 2018 and 2020 at Medical Research Institute, Alexandria University, Egypt, was analyzed for clinicopathological features presentation. Fresh tiny pieces of breast tissue and its associated ALN tissues were then processed to investigate the morphological appearance by scanning electron microscopy. Moreover, the histological architecture of tissue sections stained with hematoxylin and eosin was studied by light microscope, while the characterization of the ultrastructure features of breast and ALN tissues was analyzed by transmission electron microscopy. RESULTS Clinicopathological presentation of patients revealed that the Egyptian female breast cancer population adhered to the global trends of breast cancer disease with elevated incidence rate among postmenopausal women (61.3%), high frequency of IDC (95.7%), and increased ALN metastasis (65.7%). The percentage of estrogen receptor alpha (ERα) and human epidermal growth factor receptor 2 (HER2) expression, as key indicators for carcinogenesis and disease progression was 87.1% and 55.8%, respectively. The present study points to the observed discrepancies among the investigated variables in the diagnostic separation between IDC grade II and grade III. Ductal epithelial cells organization, nuclei size and irregularity, chromatin amount and uniformity, mitochondrial abundance and dysfunction were differentially manifested in IDC grades. Moreover, aberrations in the cellular organelles like lysosomes, endoplasmic reticulum, and lipid droplets vary according to the grade of IDC and the aggressiveness of the invasive breast cancer. CONCLUSIONS To sum up, this study emphasizes the importance of accurate specimen evaluation for treatment choice and decision.
Collapse
Affiliation(s)
- Omnia Mansour
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt
| | - Amani Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt.
| |
Collapse
|
20
|
Xie B, Yin Z, Hu Z, Lv J, Du C, Deng X, Huang Y, Li Q, Huang J, Liang K, Zhou HB, Dong C. Discovery of a Novel Class of PROTACs as Potent and Selective Estrogen Receptor α Degraders to Overcome Endocrine-Resistant Breast Cancer In Vitro and In Vivo. J Med Chem 2023; 66:6631-6651. [PMID: 37161783 DOI: 10.1021/acs.jmedchem.2c02032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The estrogen receptor (ER) is a well-established target for endocrine therapies of ER-positive breast cancer (ER+ BC), but endocrine resistance limits the efficacy of clinical drugs. Using proteolysis targeting chimera (PROTAC) technology to degrade ERα may be an effective alternative to endocrine therapies. Herein, we disclose a novel series of potent and selective ERα PROTACs based on an oxabicycloheptane sulfonamide (OBHSA) scaffold, with no associated ERβ degradation. These PROTACs showed significant antiproliferation and ERα degradation activities against a broad spectrum of ER+ BC cells including tamoxifen-resistant and ERα mutant cell lines. Genomics analysis confirmed that these PROTACs inhibited the nascent RNA synthesis of ERα target genes and impaired genome-wide ERα binding. Compound ZD12 exhibited excellent antitumor potency and ERα degradation activity in both tamoxifen-sensitive and -resistant BC mice models, which are superior to fulvestrant. This study demonstrates the potential of these PROTACs as novel drug candidates for endocrine-resistant BC treatment.
Collapse
Affiliation(s)
- Baohua Xie
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiye Hu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junhui Lv
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chuanqian Du
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangping Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Huang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Xin L, Min J, Hu H, Li Y, Du C, Xie B, Cheng Y, Deng X, Deng X, Shen K, Huang J, Chen CC, Guo RT, Dong C, Zhou HB. Structure-guided identification of novel dual-targeting estrogen receptor α degraders with aromatase inhibitory activity for the treatment of endocrine-resistant breast cancer. Eur J Med Chem 2023; 253:115328. [PMID: 37037140 DOI: 10.1016/j.ejmech.2023.115328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Drug resistance is a major challenge in conventional endocrine therapy for estrogen receptor (ER) positive breast cancer (BC). BC is a multifactorial disease, in which simultaneous aromatase (ARO) inhibition and ERα degradation may effectively inhibit the signal transduction of both proteins, thus potentially overcoming drug resistance caused by overexpression or mutation of target proteins. In this study, guided by the X-ray structure of a hit compound 30a in complex with ER-Y537S, a structure-based optimization was performed to get a series of multiacting inhibitors targeting both ERα and ARO, and finally a novel class of potent selective estrogen receptor degraders (SERDs) based on a three-dimensional oxabicycloheptene sulfonamide (OBHSA) scaffold equipped with aromatase inhibitor (AI) activity were identified. Of these dual-targeting SERD-AI hybrids, compound 31q incorporating a 1H-1,2,4-triazole moiety showed excellent ERα degradation activity, ARO inhibitory activity and remarkable antiproliferative activity against BC resistant cells. Furthermore, 31q manifested efficient tumor suppression in MCF-7 tumor xenograft models. Taken together, our study reported for the first time the highly efficient dual-targeting SERD-AI hybrid compounds, which may lay the foundation of translational research for improved treatment of endocrine-resistant BC.
Collapse
Affiliation(s)
- Lilan Xin
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hebing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuanyuan Li
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chuanqian Du
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Baohua Xie
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yan Cheng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaofei Deng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangping Deng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kang Shen
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Chune Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hai-Bing Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
22
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
23
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, Tu J, Nephew KP, Long X. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol 2023; 210:115464. [PMID: 36849062 DOI: 10.1016/j.bcp.2023.115464] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University, Bloomington, IN, USA.
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Parent EE, Fowler AM. Nuclear Receptor Imaging In Vivo-Clinical and Research Advances. J Endocr Soc 2022; 7:bvac197. [PMID: 36655003 PMCID: PMC9838808 DOI: 10.1210/jendso/bvac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptors are transcription factors that function in normal physiology and play important roles in diseases such as cancer, inflammation, and diabetes. Noninvasive imaging of nuclear receptors can be achieved using radiolabeled ligands and positron emission tomography (PET). This quantitative imaging approach can be viewed as an in vivo equivalent of the classic radioligand binding assay. A main clinical application of nuclear receptor imaging in oncology is to identify metastatic sites expressing nuclear receptors that are targets for approved drug therapies and are capable of binding ligands to improve treatment decision-making. Research applications of nuclear receptor imaging include novel synthetic ligand and drug development by quantifying target drug engagement with the receptor for optimal therapeutic drug dosing and for fundamental research into nuclear receptor function in cells and animal models. This mini-review provides an overview of PET imaging of nuclear receptors with a focus on radioligands for estrogen receptor, progesterone receptor, and androgen receptor and their use in breast and prostate cancer.
Collapse
Affiliation(s)
- Ephraim E Parent
- Mayo Clinic Florida, Department of Radiology, Jacksonville, Florida 32224, USA
| | - Amy M Fowler
- Correspondence: Amy M. Fowler, MD, PhD, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252, USA.
| |
Collapse
|
25
|
Liang X, Liu X, Song Z, Zhu J, Zhang J. Hsa_circ_0097922 promotes tamoxifen resistance and cell malignant behaviour of breast cancer cells by regulating ACTN4 expression via miR-876-3p. Clin Exp Pharmacol Physiol 2022; 49:1257-1269. [PMID: 35856314 DOI: 10.1111/1440-1681.13702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023]
Abstract
An increasing number of findings have verified the critical roles of circular RNAs (circRNAs) in human cancers, and chemotherapy resistance is a poor prognostic factor for breast cancer (BC). This study is designed to explore the function of hsa_circ_0097922 in the tamoxifen resistance of breast cancer. Hsa_circ_0097922, microRNA-876-3p (miR-876-3p), and alpha-actinin 4 (ACTN4) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell survival, proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry, wound healing and Transwell assays. Protein levels of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), cleaved caspase 3, matrix metalloproteinase 9 (MMP9), and ACTN4 were determined using western blot assay. Using bioinformatics software, the binding between miR-876-3p and hsa_circ_0097922 or ACTN4 was predicted, followed by confirmation by RNA immunoprecipitation (RIP) and RNA pull-down assays. A xenograft tumour model in vivo analysed the biological role of hsa_circ_0097922 on BC tumour growth and drug resistance. Hsa_circ_0097922 and ACTN4 were increased, and miR-876-3p was decreased in tamoxifen resistance BC cells. Moreover, hsa_circ_0097922 knockdown can block BC cell malignant behaviour and tamoxifen resistance in vitro. Mechanically, hsa_circ_0097922 acted as a sponge of miR-876-3p to regulate ACTN4 expression. Hsa_circ_0097922 silencing increased the drug sensitivity of BC in vivo. Hsa_circ_0097922 might regulate BC cell malignant behaviour and tamoxifen resistance partly by regulating the miR-876-3p/ACTN4 axis, hinting at a promising therapeutic target for the BC treatment.
Collapse
Affiliation(s)
- Xiuju Liang
- Department of Oncology, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Xiao Liu
- Department of Oncology, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Zhonghua Song
- Department of General Practice, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong, China
| | - Jian Zhu
- Department of Thyroid Breast Surgery, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Jinqing Zhang
- Department of General Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong, China
| |
Collapse
|
26
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Bartoloni S, Leone S, Pescatori S, Cipolletti M, Acconcia F. The antiviral drug telaprevir induces cell death by reducing
FOXA1
expression in estrogen receptor α (
ERα
)‐positive breast cancer cells. Mol Oncol 2022; 16:3568-3584. [PMID: 36056637 PMCID: PMC9533686 DOI: 10.1002/1878-0261.13303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Previously, we found that telaprevir (Tel), the inhibitor of hepatitis C virus NS3/4A serine protease, reduces estrogen receptor α (ERα) content at the transcriptional level without binding to the receptor, prevents ERα transcriptional activity, and inhibits basal and 17β‐estradiol (E2)‐dependent cell proliferation in different breast cancer (BC) cell lines. Here, we further characterize the Tel action mechanisms on ERα levels and function, identify a possible molecular target of Tel in BC cells, and evaluate Tel as an antiproliferative agent for BC treatment. Tel‐dependent reduction in ERα levels and function depends on a Tel‐dependent decrease in FOXA1 levels and activity. The effect of Tel is transduced by the IGF1‐R/AKT/FOXA1 pathway, with the antiviral compound interacting with IGF1‐R. Tel prevents the proliferation of several BC cell lines, while it does not affect the proliferation of normal nontransformed cell lines, and its antiproliferative effect is correlated with the ratio of FOXA1/IGF1‐R expression. In conclusion, Tel interferes with the IGF1‐R/AKT/FOXA1 pathway and induces cell death in ERα‐expressing BC cells. Thus, we propose that this antiviral could be repurposed for the treatment of ERα‐expressing BC.
Collapse
Affiliation(s)
- Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology University Roma TRE, Viale Guglielmo Marconi, 446 I‐00146 Rome Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology University Roma TRE, Viale Guglielmo Marconi, 446 I‐00146 Rome Italy
| | - Sara Pescatori
- Department of Sciences, Section Biomedical Sciences and Technology University Roma TRE, Viale Guglielmo Marconi, 446 I‐00146 Rome Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences and Technology University Roma TRE, Viale Guglielmo Marconi, 446 I‐00146 Rome Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology University Roma TRE, Viale Guglielmo Marconi, 446 I‐00146 Rome Italy
| |
Collapse
|
28
|
PET Imaging of Estrogen Receptors for Gynecological Tumors. Clin Nucl Med 2022; 47:e481-e488. [PMID: 35675139 DOI: 10.1097/rlu.0000000000004258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In the past few decades, PET with 18F-FDG has been used for the diagnosis of gynecological malignancies and is considered to be superior to conventional imaging methods in diagnostic accuracy for detecting metastatic lesions and local recurrence and in evaluating the treatment response. On the other hand, several gynecological tumors, such as endometrial cancer and leiomyoma, and breast cancer are estrogen-dependent, in which estrogen is essential for their development and progression. 18F-FES is an 18F-labeled compound of estradiol, the most bioactive type of estrogen, and 18F-FES PET has been well-established for diagnosis, staging, and posttherapeutic follow-up in patients with estrogen receptor-positive breast cancer. Compared with in vitro assessment of tumor biopsy material, PET imaging has the advantages of being able to measure in vivo tumor behavior, characterize the entire tumor burden, and capture the heterogeneity of the tumor phenotype. In this article, we review the phenotyping of estrogen-related gynecological tumors other than breast cancer using 18F-FES PET and demonstrate the additional value of 18F-FES PET to 18F-FDG PET in their diagnosis and prognostication. Moreover, promising PET tracers other than 18F-FES and 18F-FDG for the evaluation of estrogen-related gynecological tumors are introduced.
Collapse
|
29
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
30
|
Deng X, Xie B, Li Q, Xiao Y, Hu Z, Deng X, Fang P, Dong C, Zhou HB, Huang J. Discovery of Novel Bicyclic Phenylselenyl-Containing Hybrids: An Orally Bioavailable, Potential, and Multiacting Class of Estrogen Receptor Modulators against Endocrine-Resistant Breast Cancer. J Med Chem 2022; 65:7993-8010. [PMID: 35611405 DOI: 10.1021/acs.jmedchem.2c00525] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is a multifactorial disease and is prone to drug resistance during treatment. In this study, we described a new class of multifunctional estrogen receptor (ER) modulators ground on a prerogative indirect antagonism skeleton (OBHS, oxabicycloheptene sulfonate) of ER containing a phenylselenyl group. Compound 34b showed significant antiproliferative activities against tamoxifen-sensitive (MCF-7) and -resistant (LCC2) cells. Moreover, hexokinase 1 (HK1) was identified as a direct target of 34b. Further mechanism investigations proved that 34b induced apoptosis, which was associated with mitochondrial dysfunction caused by the synergistic effects of downregulating mitochondrial-bound HK1 protein and promoting reactive oxygen species generation. In vivo, 34b had a favorable pharmacokinetic profile with a bioavailability of 23.20% and exhibited more potent tumor suppression than tamoxifen both in MCF-7 and LCC2 tumor xenograft models. Collectively, our studies showed that 34b is a promising new multifunctional candidate compound for ERα+ BC treatment, particularly for tamoxifen-resistant BC.
Collapse
Affiliation(s)
- Xiangping Deng
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Baohua Xie
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Qiuzi Li
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Yuan Xiao
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Zhiye Hu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Xiaofei Deng
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Pingping Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Jian Huang
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| |
Collapse
|
31
|
Pescatori S, Leone S, Cipolletti M, Bartoloni S, di Masi A, Acconcia F. Clinically relevant CHK1 inhibitors abrogate wild-type and Y537S mutant ERα expression and proliferation in luminal primary and metastatic breast cancer cells. J Exp Clin Cancer Res 2022; 41:141. [PMID: 35418303 PMCID: PMC9006609 DOI: 10.1186/s13046-022-02360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Challenges exist in the clinical treatment of luminal estrogen receptor α (ERα)-positive breast cancers (BCs) both to prevent resistance to endocrine therapy (ET) and to treat ET-resistant metastatic BCs (MBC). Therefore, we evaluated if kinases could be new targets for the treatment of luminal primary and MBCs. METHODS ~ 170 kinase inhibitors were applied to MCF-7 cells either with adaptative or genetic resistance to ET drugs and both ERα levels and cell proliferation were measured. Robust-Z-score calculation identified AZD7762 (CHK1/CHK2 inhibitor) as a positive hit. Subsequently, Kaplan-Meier analyses of CHK1 and CHK2 impact on ERα-positive BC patients relapse-free-survival (RFS), bioinformatic evaluations of CHK1 and CHK2 expression and activation status as a function of ERα activation status as well as drug sensitivity studies in ERα-positive BC cell lines, validation of the impact of the ATR:CHK1 and ATM:CHK2 pathways on the control of ERα stability and BC cell proliferation via inhibitor- and siRNA-based approaches, identification of the molecular mechanism required for inhibitor-dependent ERα degradation in BC and the impact of CHK1 and CHK2 inhibition on the 17β-estradiol (E2):ERα signaling, synergy proliferation studies between ET-drugs and clinically relevant CHK1 inhibitors in different luminal BC cell lines, were performed. RESULTS A reduced CHK1 expression correlates with a longer RFS in women with ERα-positive BCs. Interestingly, women carrying luminal A BC display an extended RFS when expressing low CHK1 levels. Accordingly, CHK1 and ERα activations are correlated in ERα-positive BC cell lines, and the ATR:CHK1 pathway controls ERα stability and cell proliferation in luminal A BC cells. Mechanistically, the generation of DNA replication stress rather than DNA damage induced by ATR:CHK1 pathway inhibition is a prerequisite for ERα degradation. Furthermore, CHK1 inhibition interferes with E2:ERα signaling to cell proliferation, and drugs approved for clinical treatment of primary and MBC (4OH-tamoxifen and the CDK4/CDK6 inhibitors abemaciclib and palbociclib) exert synergic effects with the CHK1 inhibitors in clinical trials for the treatment of solid tumors (AZD7762, MK8776, prexasertib) in preventing the proliferation of cells modeling primary and MBC. CONCLUSIONS CHK1 could be considered as an appealing novel pharmacological target for the treatment of luminal primary and MBCs.
Collapse
Affiliation(s)
- Sara Pescatori
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Alessandra di Masi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
32
|
Kisla MM, Ates-Alagoz Z. Benzimidazoles Against Certain Breast Cancer Drug Targets: A Review. Mini Rev Med Chem 2022; 22:2463-2477. [PMID: 35345997 DOI: 10.2174/1389557522666220328161217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazoles are widely used scaffolds against various types of cancer including breast cancer. To this end, anticancer agents must be developed using the knowledge of the specific targets of BC. OBJECTIVE In this study, we aim to review the compounds used against some of the biomolecular targets of breast cancer. To this end, we present information about the various targets, with their latest innovative studies. CONCLUSION Benzimidazole ring is an important building block that can target diverse cancer scenarios since it can structurally mimic biomolecules in the human body. Additionally, many studies imply the involvement of this moiety on a plethora of pathways and enzymes related to BC. Herein, our target-based collection of benzimidazole derivatives strongly suggests the utilization of benzimidazole derivatives against BC.
Collapse
Affiliation(s)
- Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
33
|
Wilcox NS, Rotz SJ, Mullen M, Song EJ, Hamilton BK, Moslehi J, Armenian S, Wu JC, Rhee JW, Ky B. Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circ Res 2022; 130:632-651. [PMID: 35175846 PMCID: PMC8915444 DOI: 10.1161/circresaha.121.319901] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In both cardiovascular disease and cancer, there are established sex-based differences in prevalence and outcomes. Males and females may also differ in terms of risk of cardiotoxicity following cancer therapy, including heart failure, cardiomyopathy, atherosclerosis, thromboembolism, arrhythmias, and myocarditis. Here, we describe sex-based differences in the epidemiology and pathophysiology of cardiotoxicity associated with anthracyclines, hematopoietic stem cell transplant (HCT), hormone therapy and immune therapy. Relative to males, the risk of anthracycline-induced cardiotoxicity is higher in prepubertal females, lower in premenopausal females, and similar in postmenopausal females. For autologous hematopoietic cell transplant, several studies suggest an increased risk of late heart failure in female lymphoma patients, but sex-based differences have not been shown for allogeneic hematopoietic cell transplant. Hormone therapies including GnRH (gonadotropin-releasing hormone) modulators, androgen receptor antagonists, selective estrogen receptor modulators, and aromatase inhibitors are associated with cardiotoxicity, including arrhythmia and venous thromboembolism. However, sex-based differences have not yet been elucidated. Evaluation of sex differences in cardiotoxicity related to immune therapy is limited, in part, due to low participation of females in relevant clinical trials. However, some studies suggest that females are at increased risk of immune checkpoint inhibitor myocarditis, although this has not been consistently demonstrated. For each of the aforementioned cancer therapies, we consider sex-based differences according to cardiotoxicity management. We identify knowledge gaps to guide future mechanistic and prospective clinical studies. Furthering our understanding of sex-based differences in cancer therapy cardiotoxicity can advance the development of targeted preventive and therapeutic cardioprotective strategies.
Collapse
Affiliation(s)
- Nicholas S. Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J. Rotz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Evelyn J. Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Betty Ky Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Saro Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - June Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Thyroid Diseases and Breast Cancer. J Pers Med 2022; 12:jpm12020156. [PMID: 35207645 PMCID: PMC8876618 DOI: 10.3390/jpm12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies aimed at defining the association of thyroid diseases with extra-thyroidal malignancies (EM) have aroused considerable interest in the possibility of revealing common genetic and environmental factors underlying disease etiology and progression. Over the years, multiple lines of evidence indicated a significant relationship between thyroid carcinomas and other primary EM, especially breast cancer. For the latter, a prominent association was also found with benign thyroid diseases. In particular, a meta-analysis revealed an increased risk of breast cancer in patients with autoimmune thyroiditis, and our recent work demonstrated that the odds ratio (OR) for breast cancer was raised in both thyroid autoantibody-positive and -negative patients. However, the OR was significantly lower for thyroid autoantibody-positive patients compared to the negative ones. This is in agreement with findings showing that the development of thyroid autoimmunity in cancer patients receiving immunotherapy is associated with better outcome and supports clinical evidence that breast cancer patients with thyroid autoimmunity have longer disease-free interval and overall survival. These results seem to suggest that factors other than oncologic treatments may play a role in the initiation and progression of a second primary malignancy. The molecular links between thyroid autoimmunity and breast cancer remain, however, unidentified, and different hypotheses have been proposed. Here, we will review the epidemiological, clinical, and experimental data relating thyroid diseases and breast cancer, as well as the possible hormonal and molecular mechanisms underlying such associations.
Collapse
|
35
|
Xia S, Lin Q. Estrogen Receptor Bio-Activities Determine Clinical Endocrine Treatment Options in Estrogen Receptor-Positive Breast Cancer. Technol Cancer Res Treat 2022; 21:15330338221090351. [PMID: 35450488 PMCID: PMC9036337 DOI: 10.1177/15330338221090351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In estrogen receptor positive (ER+) breast cancer therapy, estrogen receptors (ERs) are the major targeting molecules. ER-targeted therapy has provided clinical benefits for approximately 70% of all breast cancer patients through targeting the ERα subtype. In recent years, mechanisms underlying breast cancer occurrence and progression have been extensively studied and largely clarified. The PI3K/AKT/mTOR pathway, microRNA regulation, and other ER downstream signaling pathways are found to be the effective therapeutic targets in ER+ BC therapy. A number of the ER+ (ER+) breast cancer biomarkers have been established for diagnosis and prognosis. The ESR1 gene mutations that lead to endocrine therapy resistance in ER+ breast cancer had been identified. Mutations in the ligand-binding domain of ERα which encoded by ESR1 gene occur in most cases. The targeted drugs combined with endocrine therapy have been developed to improve the therapeutic efficacy of ER+ breast cancer, particularly the endocrine therapy resistance ER+ breast cancer. The combination therapy has been demonstrated to be superior to monotherapy in overall clinical evaluation. In this review, we focus on recent progress in studies on ERs and related clinical applications for targeted therapy and provide a perspective view for therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
- Qiong Lin, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
36
|
Transcription Regulation and Genome Rewiring Governing Sensitivity and Resistance to FOXM1 Inhibition in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246282. [PMID: 34944900 PMCID: PMC8699539 DOI: 10.3390/cancers13246282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Forkhead box M1 (FOXM1), an oncogenic transcription factor associated with aggressiveness and highly expressed in many cancers, is an emerging therapeutic target. Using novel 1,1-diarylethylene-diammonium small molecule FOXM1 inhibitors, we undertook transcriptomic, protein, and functional analyses to identify mechanisms by which these compounds impact breast cancer growth and survival, and the changes that occur in estrogen receptor (ERα)-positive and triple negative breast cancer cells that acquire resistance upon long-term treatment with the inhibitors. In sensitive cells, these compounds regulated FOXM1 gene networks controlling cell cycle progression, DNA damage repair, and apoptosis. Resistant cells showed transcriptional alterations that reversed the expression of many genes in the FOXM1 network and rewiring that enhanced inflammatory signaling and upregulated HER2 or EGFR growth factor pathways. ERα-positive breast cancer cells that developed resistance showed greatly reduced ERα levels and responsiveness to fulvestrant and a 10-fold increased sensitivity to lapatinib, suggesting that targeting rewired processes in the resistant state may provide benefits and prolong anticancer effectiveness. Improved understanding of how FOXM1 inhibitors suppress breast cancer and how cancer cells can defeat their effectiveness and acquire resistance should be helpful in directing further studies to move these agents towards translation into the clinic.
Collapse
|
37
|
Takahashi M, Maeda H, Tsujikawa T, Kono H, Mori T, Kiyono Y, Okazawa H, Noriki S, Imamura Y, Goi T. 18F-Fluoroestradiol Tumor Uptake Is Influenced by Structural Components in Breast Cancer. Clin Nucl Med 2021; 46:884-889. [PMID: 34319950 DOI: 10.1097/rlu.0000000000003835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Estrogen receptor (ER) is expressed in the majority of invasive breast cancer and is an important prognostic indicator. The tumor stroma also plays an important role in disease progression. This study evaluated the effect of stromal components on 16α-[18F]-fluoro-17β-estradiol (18F-FES) uptake in breast cancer and proposed a partial-volume correction method for 18F-FES PET based on histopathological analyses. PATIENTS AND METHODS Fifteen patients with biopsy-confirmed breast cancer underwent preoperative 18F-FES PET. Estrogen receptor expression in biopsy specimens was assayed by immunohistochemistry, cellular components in surgical specimens were measured using hematoxylin-eosin staining, and nuclear components in surgical and biopsy specimens were measured using Azan-Mallory staining. The relationship between 18F-FES SUV of the primary tumor and histopathological findings including ER expression, the Allred score, ER-positive cellular component ratio, and ER-positive nuclear component ratio (NCR) was examined. The relationship between stroma-free 18F-FES SUV and ER expression was also examined. RESULTS 18F-FES uptake was not significantly positively correlated with ER expression (r = 0.44, P = 0.10). 18F-FES uptake was significantly correlated with the Allred score, ER-positive cellular component ratio, and ER-positive NCR in surgical specimens (ρ = 0.60, P = 0.02; r = 0.55, P = 0.03; and r = 0.65, P = 0.01, respectively). 18F-FES uptake was predominantly correlated with ER-positive NCR in biopsy specimens (r = 0.84, P < 0.001). Stroma-free 18F-FES SUV was significantly correlated with ER expression (r = 0.78, P < 0.01). CONCLUSIONS 18F-FES PET predominantly demonstrates the level of ER expression in breast cancer cell nucleus. Although tumor 18F-FES uptake is affected by the degree of stromal components, the partial volume effect on the uptake can be corrected by stroma-volume fraction in Azan-Mallory staining.
Collapse
Affiliation(s)
- Mizuho Takahashi
- From the First Department of Surgery, Faculty of Medical Sciences
| | - Hiroyuki Maeda
- From the First Department of Surgery, Faculty of Medical Sciences
| | | | - Hiroko Kono
- From the First Department of Surgery, Faculty of Medical Sciences
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui
| | | | | | - Sakon Noriki
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, Fukui, Japan
| | - Takanori Goi
- From the First Department of Surgery, Faculty of Medical Sciences
| |
Collapse
|
38
|
Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021; 26:molecules26216532. [PMID: 34770941 PMCID: PMC8588551 DOI: 10.3390/molecules26216532] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.
Collapse
Affiliation(s)
- Liang Shang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin 150081, China;
| | - Jiarui Zhang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Yujie Shi
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence:
| |
Collapse
|
39
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Abstract
Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.
Collapse
|
41
|
Ahmed NS, Samec M, Liskova A, Kubatka P, Saso L. Tamoxifen and oxidative stress: an overlooked connection. Discov Oncol 2021; 12:17. [PMID: 35201439 PMCID: PMC8777555 DOI: 10.1007/s12672-021-00411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is the gold standard drug for the treatment of breast cancer in pre and post-menopausal women. Its journey from a failing contraceptive to a blockbuster is an example of pharmaceutical innovation challenges. Tamoxifen has a wide range of pharmacological activities; a drug that was initially thought to work via a simple Estrogen receptor (ER) mechanism was proven to mediate its activity through several non-ER mechanisms. Here in we review the previous literature describing ER and non-ER targets of tamoxifen, we highlighted the overlooked connection between tamoxifen, tamoxifen apoptotic effects and oxidative stress.
Collapse
Affiliation(s)
- Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Department of Experimental Carcinogenesis (Biomedical Center Martin, Division of Oncology), Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 03601, Martin, Slovak Republic
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
42
|
Du J, Shao Y, Hu Y, Chen Y, Cang J, Chen X, Pei W, Miao F, Shen Y, Muddassir M, Zhang Y, Zhang J, Teng G. Multifunctional Liposomes Enable Active Targeting and Twinfilin 1 Silencing to Reverse Paclitaxel Resistance in Brain Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23396-23409. [PMID: 33982563 DOI: 10.1021/acsami.1c02822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for breast cancer, but PTX resistance often occurs in metastatic breast cancer. In addition, due to the poor targeting of chemotherapeutic drugs and the presence of the blood-brain barrier (BBB), it is hard to effectively treat brain metastatic breast cancer using paclitaxel. Thus, it is urgent to develop an effective drug delivery system for the treatment of brain metastatic breast cancer. The current study found that TWF1 gene, an epithelial-mesenchymal transition-associated gene, was overexpressed in brain metastatic breast cancer (231-BR) cells and was associated with the PTX resistance of 231-BR cells. Knockdown of TWF1 by small interference RNA (siRNA) in 231-BR cells could effectively increase the sensitivity of brain metastatic breast cancer cells to paclitaxel. Then, a liposome-based drug delivery system was developed for PTX delivery across BBB, enhancing PTX sensitivity and brain metastases targeting via BRBP1 peptide modification. The results showed that BRBP1-modified liposomes could effectively cross the BBB, specifically accumulate in brain metastases, and effectively interfere TWF1 gene expression in vitro and in vivo, and thus they enhanced proliferation inhibition, cell cycle arrest, and apoptosis induction, thereby inhibiting the formation and growth of brain metastases. In summary, our results indicated that BRBP1-modified and PTX- and TWF1 siRNA-loaded liposomes have the potential for the treatment of brain metastatic breast cancer, which lays the foundation for the development of a new targeted drug delivery system.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yue Hu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yiwen Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jiehui Cang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Xin Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Wenqin Pei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, KSA
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
43
|
Yuan Y, Xiao WW, Xie WH, Li RZ, Gao YH. Prognostic value of ubiquitin E2 UBE2W and its correlation with tumor-infiltrating immune cells in breast cancer. BMC Cancer 2021; 21:479. [PMID: 33931024 PMCID: PMC8086329 DOI: 10.1186/s12885-021-08234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme E2W (UBE2W) is a protein-coding gene that has an important role in ubiquitination and may be vital in the repair of DNA damage. However, studies on the prognostic value of UBE2W and its correlation with tumor-infiltrating immune cells in multiple cancers have not been addressed. Methods We investigated UBE2W expression in the Oncomine database, the Tumor Immune Estimation Resource (TIMER), TNMplot database. Then, the clinical prognostic value of UBE2W was analyzed via online public databases. Meanwhile, we explored the correlation between UBE2W and DNA repair associate genes expression and DNA methyltransferase expression by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA). By using the same method, the correlation between UBE2W and tumor-infiltrating immune cells was explored. Genomic Profiles of UBE2W in breast cancer (BRCA) were accessed in cBioPortal (v3.5.0). Functional proteins associated network was analyzed by STRING database (v11.0). Results UBE2W was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels, DNA methyltransferase, and BRCA1/2 expression in breast cancer. High expression of UBE2W may promote the tumor immunosuppression and metastasis, induce endocrine therapy resistance and deteriorate outcomes of patients with breast cancer. These findings suggest that UBE2W could be a potential biomarker of prognosis and tumor-infiltrating immune cells. Besides, RBX1 may be a new E3 that was regulated by UBE2W. Conclusions Ubiquitin E2 UBE2W is a potential prognostic biomarker and is correlated with immune infiltration in BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08234-4.
Collapse
Affiliation(s)
- Yan Yuan
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Wei Xiao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hao Xie
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rong-Zhen Li
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Hong Gao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China. .,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
44
|
Hagio K, Amano T, Hayashi H, Takeshita T, Oshino T, Kikuchi J, Ohhara Y, Yabe I, Kinoshita I, Nishihara H, Yamashita H. Impact of clinical targeted sequencing on endocrine responsiveness in estrogen receptor-positive, HER2-negative metastatic breast cancer. Sci Rep 2021; 11:8109. [PMID: 33854152 PMCID: PMC8047009 DOI: 10.1038/s41598-021-87645-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/01/2021] [Indexed: 01/22/2023] Open
Abstract
Clinical targeted sequencing allows for the selection of patients expected to have a better treatment response, and reveals mechanisms of resistance to molecular targeted therapies based on actionable gene mutations. We underwent comprehensive genomic testing with either our original in-house CLHURC system or with OncoPrime. Samples from 24 patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer underwent targeted sequencing between 2016 and 2018. Germline and somatic gene alterations and patients' prognosis were retrospectively analyzed according to the response to endocrine therapy. All of the patients had one or more germline and/or somatic gene alterations. Four patients with primary or secondary endocrine-resistant breast cancer harbored germline pathogenic variants of BRCA1, BRCA2, or PTEN. Among somatic gene alterations, TP53, PIK3CA, AKT1, ESR1, and MYC were the most frequently mutated genes. TP53 gene mutation was more frequently observed in patients with primary endocrine resistance compared to those with secondary endocrine resistance or endocrine-responsive breast cancer. Recurrent breast cancer patients carrying TP53-mutant tumors had significantly worse overall survival compared to those with TP53-wild type tumors. Our 160-gene cancer panel will be useful to identify clinically actionable gene alterations in breast cancer in clinical practice.
Collapse
Affiliation(s)
- Kanako Hagio
- Department of Breast Surgery, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Toraji Amano
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hideyuki Hayashi
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takashi Takeshita
- Department of Breast Surgery, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Tomohiro Oshino
- Department of Breast Surgery, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Junko Kikuchi
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihito Ohhara
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Yabe
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Nishihara
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan.
| |
Collapse
|
45
|
Noyan S, Andac Ozketen A, Gurdal H, Gur Dedeoglu B. miR-770-5p regulates EMT and invasion in TNBC cells by targeting DNMT3A. Cell Signal 2021; 83:109996. [PMID: 33798630 DOI: 10.1016/j.cellsig.2021.109996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are shown to regulate various processes in cancer like motility and invasion that are key features of the metastatic triple negative breast cancer (TNBCs). Epithelial-mesenchymal transition (EMT) is one of the well-defined cellular transitioning processes characterized with reduced E-cadherin expression and increased mesenchymal molecules such as Vimentin or Snail thereby gives the cells mobility and invasive character. Aberrant DNA methylation by DNA methyltransferases (DNMTs) plays an important role in carcinogenesis. It is well known that DNMTs are required for transcriptional silencing of tumor-associated genes. DNMT3A-induced promoter hypermethylation of E-cadherin has also been known to improve cancer metastasis. Our results indicated that miR-770-5p could downregulate Vimentin and Snail expression levels, while increasing or restoring the expression of E-Cadherin hence, leading to inhibition of EMT phenotypes along with motility and invasion. Specifically, we showed that overexpression of miR-770-5p restored the expression of E-Cadherin in MDA-MB-231 cells via directly targeting DNMT3A. We also observed the change in the spindled shapes showing the loss of mesenchymal characteristics and gain of epithelial phenotype in miR-770-5p overexpressing cells. When considered together, our results show that miR-770-5p could effectively inhibit invasion potential driven by EMT.
Collapse
Affiliation(s)
- Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Ayşe Andac Ozketen
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Hakan Gurdal
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | | |
Collapse
|
46
|
Palumbo R, Torrisi R, Sottotetti F, Presti D, Rita Gambaro A, Collovà E, Ferzi A, Agostinetto E, Maria Teragni C, Saltalamacchia G, Tagliaferri B, Balletti E, Bernardo A, Quaquarini E. Patterns of treatment and outcome of palbociclib plus endocrine therapy in hormone receptor-positive/HER2 receptor-negative metastatic breast cancer: a real-world multicentre Italian study. Ther Adv Med Oncol 2021; 13:1758835920987651. [PMID: 33796150 PMCID: PMC7970542 DOI: 10.1177/1758835920987651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/11/2020] [Indexed: 12/09/2022] Open
Abstract
Background The CDK4/6 inhibitor palbociclib combined with endocrine therapy (ET) has proven to prolong progression-free survival (PFS) in women with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Few data are available regarding the efficacy of such a regimen outside the clinical trials. Patients and methods This is a multicentre prospective real-world experience aimed at verifying the outcome of palbociclib plus ET in an unselected population of MBC patients. The primary aim was the clinical benefit rate (CBR); secondary aims were the median PFS, overall survival (OS) and safety. Patients received palbociclib plus letrozole 2.5 mg (cohort A) or fulvestrant 500 mg (cohort B). Results In total, 191 patients (92 in cohort A, 99 in cohort B) were enrolled and treated, and 182 were evaluable for the analysis. Median age was 62 years (range 47-79); 54% had visceral involvement; 28% of patients had previously performed one treatment line (including chemotherapy and ET), 22.6% two lines and 15.9% three. An overall response rate of 34.6% was observed with 11 (6.0%) complete responses and 52 (28.6%) partial responses. Stable disease was achieved by 78 patients (42.9%) with an overall CBR of 59.8%. At a median follow-up of 24 months (range 6-32), median PFS was 13 months without significant differences between the cohorts. When analysed according to treatment line, PFS values were significantly prolonged when palbociclib-based therapy was administered as first-line treatment (14.0 months), to decrease progressively in second and subsequent lines (11.7 and 6.7 months, respectively). Median OS was 25 months, ranging from 28.0 months in 1st line to 18.0 and 13.0 months in 2nd and subsequent lines, respectively. Conclusions Our data indicate that palbociclib plus ET is active and safe in HR+/HER2- MBC, also suggesting a better performance of the combinations in earlier treatment lines.
Collapse
Affiliation(s)
| | - Rosalba Torrisi
- Department of Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | | | | | - Anna Rita Gambaro
- Medical Oncology, ASST Fatebenefratelli Sacco PO Sacco, Milano, Italy
| | - Elena Collovà
- Medical Oncology, ASST Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - Antonella Ferzi
- Medical Oncology, ASST Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - Elisa Agostinetto
- Department of Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | | | | | | | | | | | - Erica Quaquarini
- Medical Oncology Unit, IRCCS ICS Maugeri, Via Maugeri 10, Pavia, 27100, Italy
| |
Collapse
|
47
|
High expression of TRAF4 predicts poor prognosis in tamoxifen-treated breast cancer and promotes tamoxifen resistance. Anticancer Drugs 2021; 31:558-566. [PMID: 32304412 DOI: 10.1097/cad.0000000000000943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tamoxifen is the main adjuvant endocrine therapeutic agent for patients with estrogen receptor positive breast cancer. However, the resistance to tamoxifen has become a serious clinical challenge and the underlying mechanisms are still poorly understood. TRAF4 is a member of tumor necrosis factor receptor-associated factor family and its role in tamoxifen resistance has not been found. In this study, we aimed to explore the roles of TRAF4 in tamoxifen-treated breast cancer and tamoxifen resistance. Through high-throughput sequencing and differential gene expression analyses, TRAF4 was identified as the research object in this study. The prognosis significance of TRAF4 was studied based on 155 tamoxifen-treated breast cancer patients obtained from Gene Expression Omnibus (GEO) database. We then investigated the TRAF4 expression level in tamoxifen-resistant and the tamoxifen-sensitive breast cancer cell lines with western blot and real-time quantitative PCR. The loss- and gain-of-function assay of TRAF4 in a tamoxifen-resistant cell line was evaluated using colony formation experiments and cell count kit-8 assay. We identified that TRAF4 was overexpressed in tamoxifen-resistant breast cancer cell line and TRAF4 overexpression was associated with worse overall survival (hazard ratio = 2.538, P = 0.017) and cancer-specific survival (hazard ratio = 2.713, P = 0.036) in tamoxifen-treated patients. Knockdown of TRAF4 reversed tamoxifen resistance, while overexpression of TRAF4 increased tamoxifen resistance, which confirmed the role of TRAF4 in tamoxifen resistance. Taken together, our study demonstrated that TRAF4 could be a novel prognostic biomarker for tamoxifen-treated breast cancer patients and a potential therapeutic target for tamoxifen resistance.
Collapse
|
48
|
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B 2021; 9:1521-1535. [PMID: 33474559 DOI: 10.1039/d0tb02737e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The locoregional recurrence of breast cancer after tumor resection represents several clinical challenges, and conventional post-surgical adjuvant therapeutics always bring about significant systemic side effects. Thus, the local therapy strategy has received considerable interest in breast cancer treatment, and hydrogels can function as ideal platforms due to their remarkable properties such as good biocompatibility, biodegradability, flexibility, and multifunctionality. The nano-hydrogel composites can further incorporate the advantages of nanomaterials into the hydrogel system, to fabricate hierarchical structures for stimulating controlled multi-stage release of different therapeutic agents and improving the synergistic effects of combination therapy. In this review, the problems of clinical treatments of breast cancer and properties of hydrogels in current biomedical applications are briefly overviewed. The focus is on recent advances in local therapy based on nano-hydrogel composites for both monotherapy (chemotherapy, photothermal and photodynamic therapy) and combination therapy (dual chemotherapy, photothermal chemotherapy, photothermal immunotherapy, radio-chemotherapy). Moreover, the challenges and perspectives in the development of advanced nano-hydrogel systems are also discussed.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| |
Collapse
|
49
|
Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, Huang HH, Liu W. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics 2021; 11:1732-1752. [PMID: 33408778 PMCID: PMC7778588 DOI: 10.7150/thno.45302] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Estrogen and estrogen receptor (ER)-regulated gene transcriptional events have been well known to be involved in ER-positive breast carcinogenesis. Meanwhile, circular RNAs (circRNAs) are emerging as a new family of functional non-coding RNAs (ncRNAs) with implications in a variety of pathological processes, such as cancer. However, the estrogen-regulated circRNA program and the function of such program remain uncharacterized. Methods: CircRNA sequencing (circRNA-seq) was performed to identify circRNAs induced by estrogen, and cell proliferation, colony formation, wound healing, transwell and tumor xenograft experiments were applied to examine the function of estrogen-induced circRNA, circPGR. RNA sequencing (RNA-seq) and ceRNA network analysis wereperformed to identify circPGR's target genes and the microRNA (miRNA) bound to circPGR. Anti-sense oligonucleotide (ASO) was used to assess circPGR's effects on ER-positive breast cancer cell growth. Results: Genome-wide circRNA profiling by circRNA sequencing (circRNA-seq) revealed that a large number of circRNAs were induced by estrogen, and further functional screening for the several circRNAs originated from PGR revealed that one of them, which we named as circPGR, was required for ER-positive breast cancer cell growth and tumorigenesis. CircPGR was found to be localized in the cytosol of cells and functioned as a competing endogenous RNA (ceRNA) to sponge miR-301a-5p to regulate the expression of multiple cell cycle genes. The clinical relevance of circPGR was underscored by its high and specific expression in ER-positive breast cancer cell lines and clinical breast cancer tissue samples. Accordingly, anti-sense oligonucleotide (ASO) targeting circPGR was proven to be effective in suppressing ER-positive breast cancer cell growth. Conclusions: These findings reveled that, besides the well-known messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and enhancer RNA (eRNA) programs, estrogen also induced a circRNA program, and exemplified by circPGR, these estrogen-induced circRNAs were required for ER-positive breast cancer cell growth, providing a new class of therapeutic targets for ER-positive breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Estrogens/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Prognosis
- RNA, Circular/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ling-yun Lu
- Department of Orthopedics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, China
| | - Yue-ying Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lan Wang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Guo-sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fang-qing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
50
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|