1
|
Tiwari B. Immune checkpoint inhibitors and myocarditis: Lessons from a nationwide cohort study. Oncoscience 2025; 12:34-35. [PMID: 40343251 PMCID: PMC12060927 DOI: 10.18632/oncoscience.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Indexed: 05/11/2025] Open
Affiliation(s)
- Bishal Tiwari
- Nassau University Medical Center, East Meadow, NY 11554, USA
| |
Collapse
|
2
|
Oddershede JK, Meklenborg IK, Bastholt L, Guldbrandt LM, Schmidt H, Friis RB. Cardiotoxicity in patients with metastatic melanoma treated with BRAF/MEK inhibitors: a real-world analysis of incidence, risk factors, and reversibility. Acta Oncol 2025; 64:507-515. [PMID: 40223207 PMCID: PMC12012651 DOI: 10.2340/1651-226x.2025.42567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/01/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND BRAF/MEK inhibitors (BRAFi/MEKi) improve outcome in patients with BRAF-mutated metastatic melanoma but are associated with cardiotoxicity, leading to a decline in left ventricular ejection fraction (LVEF). This study aimed to evaluate the incidence, timeline, risk factors, and reversibility of BRAFi/MEKi-induced cardiotoxicity in a real-world setting. PATIENTS/MATERIALS AND METHODS Patients with metastatic melanoma (n = 170) treated with Encorafenib/Binimetinib, Vemurafenib/Cobimetinib, or Dabrafenib/Trametinib at Aarhus and Odense University Hospital, Denmark, from 2015 to 2023 were included. Cardiac function was assessed at baseline and every 3 months during treatment with either echocardiograms or multigated acquisition scans. Cardiotoxicity was defined as a reduction of LVEF by ≥10 percentage points (pp) to an LVEF < 50% (Major cardiotoxicity) or a reduction of LVEF by ≥15 pp but remaining > 50% (Minor cardiotoxicity). RESULTS Cardiotoxicity occurred in 21% of patients, with 14% experiencing major cardiotoxicity. The mean time to LVEF decline was 187 days, with 92% of major cardiotoxicity cases occurring within the first year. Cardiotoxicity was reversible in 79% of patients following dose reduction, treatment pauses, heart failure therapy, or continued treatment with monitoring. Baseline atrial fibrillation (odds ratio 13.67, p = 0.008) was identified as a risk factor for major cardiotoxicity. INTERPRETATION BRAFi/MEKi-induced cardiotoxicity is a significant but manageable complication, often reversible with timely interventions. Routine LVEF monitoring is recommended. The majority (92%) of major cardiac events were diagnosed within the first year of treatment, which might warrant a discontinuation of routine LVEF monitoring after 1 year of BRAFi/MEKi treatment.
Collapse
Affiliation(s)
| | - Ida K Meklenborg
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus B Friis
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
3
|
Chen YC, Dolladille C, Rao A, Palaskas NL, Deswal A, Lehmann L, Cautela J, Courand PY, Hayek S, Zhu H, Cheng RK, Alexandre J, Baldassarre LA, Roubille F, Laufer-Perl M, Asnani A, Ederhy S, Tamura Y, Francis S, Gaughan EM, Johnson DB, Flint DL, Rainer PP, Bailly G, Ewer SM, Aras MA, Arangalage D, Cariou E, Florido R, Peretto G, Itzhaki Ben Zadok O, Akhter N, Narezkina A, Levenson JE, Liu Y, Crusz SM, Issa N, Piriou N, Leong D, Sandhu S, Turker I, Moliner P, Obeid M, Heinzerling L, Chang WT, Stewart A, Venkatesh V, Du Z, Yadavalli A, Kim D, Chandra A, Zhang KW, Power JR, Moslehi J, Salem JE, Zaha VG. Immune Checkpoint Inhibitor Myocarditis and Left Ventricular Systolic Dysfunction. JACC CardioOncol 2025; 7:234-248. [PMID: 40246381 PMCID: PMC12046861 DOI: 10.1016/j.jaccao.2025.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, but ICI myocarditis (ICI-M) remains a potentially fatal complication. The clinical implications and predictors of left ventricular ejection fraction (LVEF) <50% in ICI-M are not well understood. OBJECTIVES The aim of this study was to identify factors associated with LVEF <50% vs ≥50% at the time of hospitalization for ICI-M. A secondary objective was to evaluate the relationship between LVEF and 30-day all-cause mortality. METHODS The International ICI-Myocarditis Registry, a retrospective, international, multicenter database, included 757 patients hospitalized with ICI-M. Patients were stratified by LVEF as reduced LVEF (<50%) or preserved LVEF (≥50%) on admission. Cox proportional hazards models were used to assess the associations between LVEF and clinical events, and multivariable logistic regression was conducted to examine factors linked to LVEF. RESULTS Of 757 patients, 707 had documented LVEFs on admission: 244 (35%) with LVEF <50% and 463 (65%) with LVEF ≥50%. Compared with patients with LVEF ≥50%, those with LVEF <50% were younger (<70 years), had a body mass index of <25 kg/m2, and were more likely to have received chest radiation (24.2% vs 13.5%; P < 0.001). Multivariable analysis identified predictors of LVEF <50%, including exposure to v-raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase inhibitors, pre-existing heart failure, dyspnea at presentation, and at least 40 days from ICI initiation to ICI-M onset. Conversely, myositis symptoms were associated with LVEF ≥50%. LVEF <50% was marginally associated with 30-day all-cause mortality (unadjusted log-rank P = 0.062; adjusted for age, cancer types, and ICI therapy, HR: 1.50; 95% CI: 1.02-2.20). CONCLUSIONS Dyspnea, time from ICI initiation, a history of heart failure, and prior cardiotoxic therapy may be predictors of an initial LVEF <50% in patients with ICI-M.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Charles Dolladille
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, Caen, France; Caen-Normandy University Hospital, PICARO Cardio-Oncology Program, Department of Pharmacology, Caen, France; Department of Pharmacology, Sorbonne University, INSERM, CIC-1901, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anjali Rao
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lorenz Lehmann
- Department of Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, partner site Heidelberg/Mannheim, Mannheim, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jennifer Cautela
- Department of Cardiology, University Mediterranean Centre of CardioOncology, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Pierre-Yves Courand
- Fédération de Cardiologie, Hôpital de la Croix-Rousse et Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Université Claude Bernard, Lyon, France
| | - Salim Hayek
- Department of Cardiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Joachim Alexandre
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, Caen, France; Caen-Normandy University Hospital, PICARO Cardio-Oncology Program, Department of Pharmacology, Caen, France
| | | | - François Roubille
- Department of Cardiology, INI-CRT, CHU de Montpellier, PhyMedExp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Michal Laufer-Perl
- Department of Cardiology, Tel Aviv Sourasky Medical Center, affiliated to the Tel Aviv University Faculty of Medicine, Tel Aviv-Yafo, Israel
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Stephane Ederhy
- Cardiology Department, Hospital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yuichi Tamura
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Sanjeev Francis
- Cardiovascular Service Line, Maine Medical Center, Portland, Maine, USA
| | - Elizabeth M Gaughan
- Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas B Johnson
- Division of Hematology and Oncology, Vanderbilt University, Nashville, Tennessee, USA
| | - Danette L Flint
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz Austria; BioTechMed Graz, Graz, Austria; St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Guillaume Bailly
- Assistance Publique-Hôpitaux de Paris Hôpital Lariboisière, Paris, France
| | - Steven M Ewer
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mandar A Aras
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA
| | - Dimitri Arangalage
- Department of Cardiology, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, UMRS1148, INSERM, Paris, France; Université de Paris, Paris, France
| | - Eve Cariou
- Department of Cardiology, Rangueil University Hospital, Toulouse, France
| | - Roberta Florido
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giovanni Peretto
- Disease Unit for Myocarditis and Arrhythmogenic Cardiomyopathies, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nausheen Akhter
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Narezkina
- Division of Cardiovascular Medicine, University of California-San Diego, San Diego, California, USA
| | - Joshua E Levenson
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yan Liu
- Division of Cardiology, Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Shanthini M Crusz
- Barts Health NHS Trust, University College London Hospital, London, United Kingdom
| | - Nahema Issa
- Bordeaux University Hospital, Bordeaux, France
| | - Nicolas Piriou
- Nantes Univesrité, CHU Nantes, Centre de Reference Cardiomyopathies, l'Institut du Thorax, Nantes, France
| | - Darryl Leong
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Isik Turker
- Department of Cardiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Pedro Moliner
- Bellvitge University Hospital, Catalan Institute of Oncology, Cardiology Department, Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute, CIBER CV, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois, University of Lausanne, LCIT Center, Immunology and Allergy Service, Lausanne, Switzerland
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | | | - Andrew Stewart
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vishnu Venkatesh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoe Du
- University of Texas at Dallas, Dallas, Texas, USA
| | | | - Dohyeong Kim
- University of Texas at Dallas, Dallas, Texas, USA
| | - Alvin Chandra
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen W Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R Power
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Javid Moslehi
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA
| | - Joe-Elie Salem
- Department of Pharmacology, Sorbonne University, INSERM, CIC-1901, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
4
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
5
|
Bai J, Wan Z, Zhou W, Wang L, Lou W, Zhang Y, Jin H. Global trends and emerging insights in BRAF and MEK inhibitor resistance in melanoma: a bibliometric analysis. Front Mol Biosci 2025; 12:1538743. [PMID: 39897423 PMCID: PMC11782018 DOI: 10.3389/fmolb.2025.1538743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to perform a comprehensive bibliometric analysis of global research on BRAF and MEK inhibitor resistance in melanoma, identifying key research trends, influential contributors, and emerging themes from 2003 to 2024. Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) database to retrieve publications related to BRAF and MEK inhibitor resistance from 1 January 2003, to 1 September 2024. Bibliometric analyses, including publication trends, citation networks, and keyword co-occurrence patterns, were performed using VOSviewer and CiteSpace. Collaborative networks, co-cited references, and keyword burst analyses were mapped to uncover shifts in research focus and global cooperation. Results A total of 3,503 documents, including 2,781 research articles and 722 review papers, were analyzed, highlighting significant growth in this field. The United States, China, and Italy led in publication volume and citation impact, with Harvard University and the University of California System among the top contributing institutions. Research output showed three phases of growth, peaking in 2020. Keyword and co-citation analyses revealed a transition from early focus on BRAF mutations and MAPK pathway activation to recent emphasis on immunotherapy, combination therapies, and non-apoptotic cell death mechanisms like ferroptosis and pyroptosis. These trends reflect the evolving priorities and innovative approaches shaping the field of resistance to BRAF and MEK inhibitors in melanoma. Conclusion Research on BRAF and MEK inhibitor resistance has evolved significantly. This analysis provides a strategic framework for future investigations, guiding the development of innovative, multi-modal approaches to improve treatment outcomes for melanoma patients.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanru Zhou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Torresan S, Bortolot M, De Carlo E, Bertoli E, Stanzione B, Del Conte A, Spina M, Bearz A. Matters of the Heart: Cardiotoxicity Related to Target Therapy in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:554. [PMID: 39859270 PMCID: PMC11765312 DOI: 10.3390/ijms26020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The treatment of Non Small Cell Lung Cancer (NSCLC) has been revolutionised by the introduction of targeted therapies. With the improvement of response and frequently of overall survival, however, a whole new set of adverse events emerged. In fact, due to the peculiar mechanism of action of each one of the tyrosine kinase inhibitors and other targeted therapies, every drug has its own specific safety profile. In addition, this safety profile could not fully emerge from clinical trials data, as patients in clinical practice usually have more comorbidities and frailties. Cardiotoxicity is a well-known and established adverse event of anti-cancer therapies. However, only recently it has become a central topic for targeted therapies in NSCLC, due to the unknown real range and frequency. Management of this toxicity begins with prevention, and must balance the need of continuing an effective anticancer treatment versus low risk of even fatal events and the preservation of long-term quality of life. The aim of this review is to summarise the current knowledge focusing on currently used targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| |
Collapse
|
7
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Senechal I, Andres MS, Tong J, Ramalingam S, Nazir MS, Rosen SD, Young K, Idaikkadar P, Larkin J, Lyon AR. Risk Stratification, Screening and Treatment of BRAF/MEK Inhibitors-Associated Cardiotoxicity. Curr Oncol Rep 2024; 26:1431-1441. [PMID: 39316222 DOI: 10.1007/s11912-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE OF REVIEW In this review article we describe the cardiovascular adverse events associated with BRAF and MEK inhibitors as well as their pathophysiologic mechanisms and provide up to date guidance for risk stratified surveillance of patients on treatment and the optimal management of emergent cardiotoxicities. RECENT FINDINGS Combination BRAF/MEK inhibition has become an established standard treatment option for patients with a wide variety of BRAF mutant haematological and solid organ cancers, its use is most commonly associated with stage three and metastatic melanoma. The introduction of these targeted drugs has significantly improved the prognosis of previously treatment resistant cancers. It is increasingly recognised that these drugs have a number of cardiovascular toxicities including left ventricular systolic dysfunction, hypertension and QTc interval prolongation. Whilst cardiotoxicity is largely reversible and manageable with medical therapy, it does limit the effective use of these highly active agents.
Collapse
Affiliation(s)
- Isabelle Senechal
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada.
| | - Maria Sol Andres
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jieli Tong
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sivatharshini Ramalingam
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Muhummad Sohaib Nazir
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stuart D Rosen
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kate Young
- Royal Marsden Hospital Foundation Trust, London, UK
| | | | - James Larkin
- Royal Marsden Hospital Foundation Trust, London, UK
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Pedersen S, Nielsen MØ, Donia M, Svane IM, Zerahn B, Ellebaek E. Real-World Cardiotoxicity in Metastatic Melanoma Patients Treated with Encorafenib and Binimetinib. Cancers (Basel) 2024; 16:2945. [PMID: 39272803 PMCID: PMC11394091 DOI: 10.3390/cancers16172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Modern therapies targeting the BRAF gene mutation in advanced melanoma have significantly improved patient outcomes but pose cardiovascular risks. This retrospective study in Eastern Denmark (2019-2022) assessed 108 melanoma patients treated with encorafenib and binimetinib. Patients were monitored for heart function using multigated acquisition (MUGA) scans. The study defined major cardiotoxicity as a decline in left ventricular ejection fraction (LVEF) by more than 10 percentage points to below 50%, and minor cardiotoxicity as a decrease in LVEF by more than 15 points but remaining above 50%. Results showed that 19 patients (18%) developed minor cardiotoxicity and were asymptomatic, while 7 (6%) experienced major cardiotoxicity, with two requiring intervention. Notably, no significant declines in LVEF were observed after six months of treatment. The study concluded that significant cardiotoxicity occurred in 6% of cases, mostly asymptomatic and reversible, and suggests that monitoring LVEF could potentially be reduced after 6-9 months if no early signs of cardiotoxicity are detected. This provides valuable insights into the cardiac safety of these treatments in real-world settings.
Collapse
Affiliation(s)
- Sidsel Pedersen
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Marc Østergaard Nielsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, 2730 Herlev, Denmark
| |
Collapse
|
10
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Yamani N, Ahmed A, Ruiz G, Zubair A, Arif F, Mookadam F. Immune checkpoint inhibitor-induced cardiotoxicity in patients with lung cancer: a systematic review and meta-analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:37. [PMID: 38886852 PMCID: PMC11181582 DOI: 10.1186/s40959-024-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The use of immune checkpoint inhibitors (ICIs) for the treatment of lung cancer may precipitate cardiotoxic events. We aimed to perform a meta-analysis to evaluate the cardiotoxicity associated with ICIs in patients with lung cancer. METHODS A literature search was conducted across four electronic databases (Cochrane CENTRAL, MEDLINE, OVID EMBASE and Google Scholar) from inception through 31st May 2023. Randomized controlled trials (RCTs) assessing the impact of ICIs on cardiac outcomes in lung cancer patients were considered for inclusion. Risk ratios (RR) with 95% confidence intervals (CIs) were pooled and analysis was performed using a random-effects model. The Grading of Recommendations Assessment, Development and Evaluation approach was followed to assess confidence in the estimates of effect (i.e., the quality of evidence). RESULTS A total of 30 studies including 16,331 patients, were included in the analysis. Pooled results showed that single ICI (RR: 2.15; 95% CI: 1.13-4.12; p = 0.02; I2 = 0%) or a combination of single ICI plus chemotherapy (RR: 1.38 [1.05-1.82]; p = 0.02) significantly increased the risk of cardiac adverse events when compared with chemotherapy alone. No significant difference was noted when a dual ICI (RR: 0.48 [0.13-1.80]; p = 0.27) was compared with single ICI. In addition, there was no significant association between the use of ICIs and incidence of cardiac failure (RR: 1.11 [0.48-2.58]; p = 0.80), or arrhythmia (RR: 1.87; [0.69-5.08]; p = 0.22). CONCLUSION Compared with chemotherapy alone, use of a single ICI or a combination of single ICI plus chemotherapy significantly increased the risk of cardiotoxicity. However, employing dual immunotherapy did not result in a significant increase in the risk of cardiotoxicity when compared to the use of a single ICI.
Collapse
Affiliation(s)
- Naser Yamani
- Division of Cardiology, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA.
| | - Aymen Ahmed
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Gabriel Ruiz
- Division of Cardiology, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Amraha Zubair
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Fariha Arif
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Farouk Mookadam
- Division of Cardiology, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
12
|
Liu H, Fu L, Jin S, Ye X, Chen Y, Pu S, Xue Y. Cardiovascular toxicity with CTLA-4 inhibitors in cancer patients: A meta-analysis. CANCER INNOVATION 2024; 3:e116. [PMID: 38947758 PMCID: PMC11212283 DOI: 10.1002/cai2.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 07/02/2024]
Abstract
Background With the emergence of cytotoxic T lymphocyte-associated protein-4 (CTLA-4) inhibitors, the outcomes of patients with malignant tumors have improved significantly. However, the incidence of cardiovascular adverse events has also increased, which can affect tumor treatment. In this study, we evaluated the incidence and severity of adverse cardiovascular events caused by CTLA-4 inhibitors by analyzing reported trials that involved CTLA-4 inhibitor therapy. Methods Randomized clinical trials published in English from January 1, 2013, to November 30, 2022, were searched using the Cochrane Library and PubMed databases. All included trials examined all grade and grades 3-5 cardiac and vascular adverse events. These involved comparisons of CTLA-4 inhibitors to placebo, CTLA-4 inhibitors plus chemotherapy to chemotherapy alone, CTLA-4 inhibitors combined with PD-1/PD-L1 inhibitors to PD-1/PD-L1 inhibitors alone, and CTLA-4 inhibitors plus target agent to PD-1/PD-L1 inhibitors plus target agent. The odds ratio (OR) and corresponding 95% confidence intervals (CIs) were calculated using the Mantel-Haenszel method. Results Overall, 20 trials were included. CTLA-4 inhibitors significantly increased the incidence of all-grade cardiovascular toxicity (OR = 1.33, 95% CI: 1.00-1.75, p = 0.05). The incidence of all-grade cardiovascular toxicity increased in malignant tumor patients who received single-agent CTLA-4 inhibitors (OR = 1.73, 95% CI: 1.13-2.65, p = 0.01), as well as the incidence rate of grades 3-5 cardiovascular adverse events (OR = 2.00, 95% CI: 1.08-3.70, p = 0.03). Compared with the non-CTLA-4 inhibitor group, CTLA-4 inhibitors plus chemotherapy, PD-1/PD-L1 inhibitors, or target agent did not significantly affect the incidence of cardiac and vascular toxicity. The incidence of grades 3-5 cardiac failure, hypertension, pericardial effusion, myocarditis, and atrial fibrillation were much higher among patients exposed to CTLA-4 inhibitor, but the data were not statistically significant. Conclusion Our findings suggest that the incidence rate of all cardiovascular toxicity and severe cardiovascular toxicity increased in patients who were administered CTLA-4 inhibitors. In addition, the risk of serious cardiovascular toxic events was independent of the type of adverse event. From these results, physicians should assess the benefits and risks of CTLA-4 inhibitors when treating malignancies.
Collapse
Affiliation(s)
- Huiyi Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Lu Fu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Shuyu Jin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xingdong Ye
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Yanlin Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Sijia Pu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Yumei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
13
|
Ali A, Caldwell R, Pina G, Beinart N, Jensen G, Yusuf SW, Koutroumpakis E, Hamzeh I, Khalaf S, Iliescu C, Deswal A, Palaskas NL. Elevated IL-6 and Tumor Necrosis Factor-α in Immune Checkpoint Inhibitor Myocarditis. Diseases 2024; 12:88. [PMID: 38785743 PMCID: PMC11120148 DOI: 10.3390/diseases12050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The impact of peripheral cytokine levels on the prognosis and treatment of immune checkpoint inhibitor (ICI) myocarditis has not been well studied. OBJECTIVES This study aimed to identify cytokines that can prognosticate and direct the treatment of ICI myocarditis. METHODS This was a single-center, retrospective cohort study of patients with ICI myocarditis who had available peripheral cytokine levels between January 2011 and May 2022. Major adverse cardiovascular events (MACEs) were defined as a composite of heart failure with/without cardiogenic shock, arterial thrombosis, life-threatening arrhythmias, pulmonary embolism, and sudden cardiac death. RESULTS In total, 65 patients with ICI myocarditis had cytokine data available. Patients were mostly males (70%), with a mean age of 67.8 ± 12.7 years. Interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) were the most common cytokines to be elevated with 48/65 (74%) of patients having a peak IL-6 above normal limits (>5 pg/mL) and 44/65 (68%) of patients with peak TNF-α above normal limits (>22 pg/mL). Patients with elevated peak IL-6 had similar 90-day mortality and MACE outcomes compared to those without (10.4% vs. 11.8%, p = 0.878 and 8.8% vs. 17.7%, p = 0.366, respectively). Similarly, those with elevated peak TNF-α had similar 90-day mortality and MACEs compared to those without (29.6% vs. 14.3%, p = 0.182 and 13.6% vs. 4.8%, p = 0.413, respectively). Kaplan-Meier survival analysis also showed that there was not a significant difference between MACE-free survival when comparing elevated and normal IL-6 and TNF-α levels (p = 0.182 and p = 0.118, respectively). MACEs and overall survival outcomes were similar between those who received infliximab and those who did not among all patients and those with elevated TNF-α (p-value 0.70 and 0.83, respectively). CONCLUSION Peripheral blood levels of IL-6 and TNF-α are the most commonly elevated cytokines in patients with ICI myocarditis. However, their role in the prognostication and guidance of immunomodulatory treatment is currently limited.
Collapse
Affiliation(s)
- Abdelrahman Ali
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Rebecca Caldwell
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Gaspar Pina
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Noah Beinart
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Garrett Jensen
- Texas A&M College of Medicine, Center for Genomics and Precision Medicine, Houston, TX 77030, USA;
| | - Syed Wamique Yusuf
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Efstratios Koutroumpakis
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Ihab Hamzeh
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Shaden Khalaf
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Cezar Iliescu
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Anita Deswal
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| | - Nicolas L. Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1451, Houston, TX 77030, USA; (A.A.); (R.C.); (G.P.); (N.B.); (S.W.Y.); (E.K.); (I.H.); (S.K.); (C.I.); (A.D.)
| |
Collapse
|
14
|
Zhao YN, Liu ZD, Yan T, Xu TX, Jin TY, Jiang YS, Zuo W, Lee KY, Huang LJ, Wang Y. Macrophage-specific FGFR1 deletion alleviates high-fat-diet-induced liver inflammation by inhibiting the MAPKs/TNF pathways. Acta Pharmacol Sin 2024; 45:988-1001. [PMID: 38279043 PMCID: PMC11053141 DOI: 10.1038/s41401-024-01226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yan-Ni Zhao
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Zhou-di Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting-Xin Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Sheng Jiang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Wei Zuo
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| | - Li-Jiang Huang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
| | - Yi Wang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Long HD, Du YP, Wang LY, Liu GC, Liang SX, Zeng ZH, Lin YE. Successful management of camrelizumab-induced immune-checkpoint-inhibitors-related myocarditis. J Oncol Pharm Pract 2024; 30:597-604. [PMID: 38043937 DOI: 10.1177/10781552231216104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors can cause immune-related toxicity in various systems, with myocarditis being the most severe and life-threatening manifestation. This report presents a case in which myocarditis developed following administration of programmed cell death protein-1 (PD-1) inhibitors therapy. We describe the diagnosis and treatment of this patient in detail. CASE REPORT We present the case of a 59-year-old female diagnosed with post-operative esophageal cancer and hepatic metastases. The patient underwent second-line treatment with domestically-made PD-1 inhibitor, camrelizumab, in combination with paclitaxel (albumin-bound) and carboplatin for two cycles. During the course of treatment, an electrocardiogram (ECG) revealed ST segment elevation in leads II, III, aVF, V2, V3, and V4, along with T wave changes in leads I and aVL. Laboratory examinations showed abnormal levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT). Despite the absence of clinical symptoms, the patient was routinely hospitalized three weeks later. Based on the findings from the ECG, cardiac biomarkers, echocardiography, echocardiogram, cardiac magnetic resonance, and angiography, she was diagnosed with immune-checkpoint-inhibitors-related myocarditis. MANAGEMENT AND OUTCOME The patient received immunoglobulin (0.5 g/kg/day) and was initially given methylprednisolone (1000 mg/day). Methylprednisolone was gradually reduced to 40 mg/day in 2 weeks. During this time, the levels of biomarkers indicative of myocardial injury also exhibited a simultaneous decline. DISCUSSION This case highlights the importance of early detection and prompt intervention, including initiating appropriate steroid therapy and discontinuing of immune checkpoint inhibitors. Such measures can effectively prevent morbidity and mortality, ultimately leading to an improved prognosis.
Collapse
Affiliation(s)
- Hui-Dong Long
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yi-Peng Du
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Yan Wang
- Department of Urology Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guan-Cheng Liu
- Department of Ultrasound Room, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shi-Xiang Liang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Hua Zeng
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-En Lin
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
17
|
Nishizawa A, Kawakami M, Kitahara Y. Case report: A case of metastatic BRAFV600-mutated melanoma with heart failure treated with immune checkpoint inhibitors and BRAF/MEK inhibitors. Front Oncol 2024; 14:1366532. [PMID: 38529375 PMCID: PMC10961452 DOI: 10.3389/fonc.2024.1366532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Background Novel therapies, immune checkpoint inhibitors (ICIs), and BRAF/MEK inhibitors (BRAFi/MEKi) provide unprecedented survival benefits for patients with advanced melanoma. However, the management of drug-induced adverse events is problematic for both agents and, although rare, can cause serious cardiac dysfunction. Case report A 42-year-old male patient with no significant medical history noticed a fading dark brown patch on his left anterior chest, which had been there for 20 years, after his second coronavirus disease 2019 (COVID-19) vaccination. The left axillary lymph node became swollen one week after a third booster vaccination. Thinking of it as an adverse reaction to the vaccine, but the swelling increased, so he visited a hospital. The patient presented with a brown macule with depigmentation on the left anterior chest and a 13 cm left axillary mass. A biopsy of the axillary mass showed a metastatic malignant melanoma. Positron emission tomography (PET) showed an accumulation only in the axillary lymph nodes. One month after the initial diagnosis, the axillary mass had further enlarged. In addition, pleural effusion, ascites, difficulty breathing, and systemic edema appeared, and he was diagnosed with heart failure (NYHA class III). Echocardiography showed an ejection fraction of 52% and electrocardiogram (ECG) showed no abnormal findings. Though it was (a life-threatening instead of the life-threatening) the life-threatening condition, we determined that the symptoms were associated with the current disease. Then nivolumab (nivo) plus ipilimumab (ipi) was initiated after explaining the risk of cardiac dysfunction associated with drug use to the patient. After initiation of ICIs, treatment was switched to BRAFi/MEKi (encorafenib/vinimetinib) after the patient tested positive for BRAF V600E. After one month of treatment, the tumor shrank significantly and achieved a complete remission after four months. Furthermore, as the tumor shrank, the patient's heart failure improved, and he was able to continue treatment without serious drug-induced cardiotoxicity. Conclusion Both ICI and BRAFi/MEKi carry a risk of cardiac dysfunction. However, without any underlying cardiac disease or severe cardiac dysfunction, their administration should not necessarily be excluded if careful follow-up is provided.
Collapse
Affiliation(s)
- Aya Nishizawa
- Department of Dermatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Misaki Kawakami
- Department of Dermatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yasuyuki Kitahara
- Department of Cardiology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Pavlovic D, Niciforovic D, Papic D, Milojevic K, Markovic M. CDK4/6 inhibitors: basics, pros, and major cons in breast cancer treatment with specific regard to cardiotoxicity - a narrative review. Ther Adv Med Oncol 2023; 15:17588359231205848. [PMID: 37841752 PMCID: PMC10571689 DOI: 10.1177/17588359231205848] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer is characterized by the uncontrolled proliferation of breast cells, with a high incidence reported in 2020 to have affected over 2 million women. In recent years, the conventional methods of treating breast cancer have involved radiotherapy and chemotherapy. However, the emergence of CDK4/6 inhibitors has shown potential as a promising cancer therapy. Cyclin-dependent kinases (CDK) inhibitors are a class of molecules that impede the formation of an active kinase complex, thereby hindering its activity and consequently halting the progression of the cell cycle. It was discovered that they have a significant impact on impeding the progression of the cancer. This is evident with the Food and Drug Administration's approval of drugs such as palbociclib, ribociclib, and abemaciclib for hormone receptor-positive metastatic breast cancer in combination with specific endocrine therapies. In spite of enormous success in breast cancer treatment, certain obstacles have emerged, such as therapy resistance, side effects, and most of all, cardiotoxicity. Some of these drawbacks have been successfully overcome by dosage reduction, different combinations of the drugs, and the assessment of each patient's condition and suitability prior to treatment. Yet other drawbacks still require tenacious research, especially certain cases of cardiotoxicities. This article delves into the biological mechanisms of CDK4/6 in the cell cycle and cancer, as well as the clinical advantages and most common adverse events (AEs) associated with CDK4/6 inhibitors. The primary objective of this review is to provide a comprehensive analysis of cardiotoxic AEs and elucidate the underlying pathophysiological mechanisms responsible for the cardiotoxicity of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac 34000, Serbia
| | - Danijela Niciforovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Dragana Papic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Milojevic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Markovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
19
|
Kashyap MK, Mangrulkar SV, Kushwaha S, Ved A, Kale MB, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kopalli SR. Recent Perspectives on Cardiovascular Toxicity Associated with Colorectal Cancer Drug Therapy. Pharmaceuticals (Basel) 2023; 16:1441. [PMID: 37895912 PMCID: PMC10610064 DOI: 10.3390/ph16101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.
Collapse
Affiliation(s)
- Monu Kumar Kashyap
- Goel Institute of Pharmaceutical Sciences, Faizabad Road, Lucknow 226028, Uttar Pradesh, India;
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Shubhada V. Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education and Research, Raebareli 229010, Uttar Pradesh, India
| | - Akash Ved
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Nitu L. Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Brijesh G. Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain Collge of Pharmacy, Neminagar, Chandwad, Nadik 423101, Maharashtra, India;
| | - Milind J. Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si 27478, Chungcheongbuk Do, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
20
|
Özdemir BC, Espinosa da Silva C, Arangalage D, Monney P, Guler SA, Huynh-Do U, Stirnimann G, Possamai L, Trepp R, Hoepner R, Salmen A, Gerard CL, Hruz P, Christ L, Rothschild SI. Multidisciplinary recommendations for essential baseline functional and laboratory tests to facilitate early diagnosis and management of immune-related adverse events among cancer patients. Cancer Immunol Immunother 2023; 72:1991-2001. [PMID: 37017694 PMCID: PMC10264466 DOI: 10.1007/s00262-023-03436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have fundamentally changed the treatment landscape of various cancers. While ICI treatments result in improved survival, quality of life and are cost-effective, the majority of patients experience at least one immune-related adverse event (irAE). Many of these side effects cause little discomfort or are asymptomatic; however, irAEs can affect any organ and are potentially life-threatening. Consequently, early diagnosis and appropriate treatment of irAEs are critical for optimizing long-term outcomes and quality of life in affected patients. Some irAEs are diagnosed according to typical symptoms, others by abnormal findings from diagnostic tests. While there are various guidelines addressing the management of irAEs, recommendations for the early recognition of irAEs as well as the optimal extent and frequency of laboratory tests are mostly lacking. In clinical practice, blood sampling is usually performed before each ICI administration (i.e., every 2-3 weeks), often for several months, representing a burden for patients as well as health care systems. In this report, we propose essential laboratory and functional tests to improve the early detection and management of irAEs and in cancer patients treated with ICIs. These multidisciplinary expert recommendations regarding essential laboratory and functional tests can be used to identify possible irAEs at an early time point, initiate appropriate interventions to improve patient outcomes, and reduce the burden of blood sampling during ICI treatment.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Cristina Espinosa da Silva
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, USA
| | - Dimitri Arangalage
- Department of Cardiology, INSERM U1148, Bichat Hospital, University of Paris, Paris, France
| | - Pierre Monney
- Department of Cardiology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sabina A Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Stirnimann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucia Possamai
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism (UDEM), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Camille L Gerard
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - Petr Hruz
- Department of Gastroenterology, University Hospital Basel, Basel, Switzerland
| | - Lisa Christ
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sacha I Rothschild
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Department Internal Medicine, Center for Oncology and Hematology, Cantonal Hospital Baden, Baden, Switzerland
| |
Collapse
|
21
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
22
|
Zirkenbach VA, Ignatz RM, Öttl R, Cehreli Z, Stroikova V, Kaya M, Lehmann LH, Preusch MR, Frey N, Kaya Z. Effect of SARS-CoV-2 mRNA-Vaccine on the Induction of Myocarditis in Different Murine Animal Models. Int J Mol Sci 2023; 24:ijms24055011. [PMID: 36902442 PMCID: PMC10002951 DOI: 10.3390/ijms24055011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
In the course of the SARS-CoV-2 pandemic, vaccination safety and risk factors of SARS-CoV-2 mRNA-vaccines were under consideration after case reports of vaccine-related side effects, such as myocarditis, which were mostly described in young men. However, there is almost no data on the risk and safety of vaccination, especially in patients who are already diagnosed with acute/chronic (autoimmune) myocarditis from other causes, such as viral infections, or as a side effect of medication and treatment. Thus, the risk and safety of these vaccines, in combination with other therapies that could induce myocarditis (e.g., immune checkpoint inhibitor (ICI) therapy), are still poorly assessable. Therefore, vaccine safety, with respect to worsening myocardial inflammation and myocardial function, was studied in an animal model of experimentally induced autoimmune myocarditis. Furthermore, it is known that ICI treatment (e.g., antibodies (abs) against PD-1, PD-L1, and CTLA-4, or a combination of those) plays an important role in the treatment of oncological patients. However, it is also known that treatment with ICIs can induce severe, life-threatening myocarditis in some patients. Genetically different A/J (most susceptible strain) and C57BL/6 (resistant strain) mice, with diverse susceptibilities for induction of experimental autoimmune myocarditis (EAM) at various age and gender, were vaccinated twice with SARS-CoV-2 mRNA-vaccine. In an additional A/J group, an autoimmune myocarditis was induced. In regard to ICIs, we tested the safety of SARS-CoV-2 vaccination in PD-1-/- mice alone, and in combination with CTLA-4 abs. Our results showed no adverse effects related to inflammation and heart function after mRNA-vaccination, independent of age, gender, and in different mouse strains susceptible for induction of experimental myocarditis. Moreover, there was no worsening effect on inflammation and cardiac function when EAM in susceptible mice was induced. However, in the experiments with vaccination and ICI treatment, we observed, in some mice, low elevation of cardiac troponins in sera, and low scores of myocardial inflammation. In sum, mRNA-vaccines are safe in a model of experimentally induced autoimmune myocarditis, but patients undergoing ICI therapy should be closely monitored when vaccinated.
Collapse
Affiliation(s)
| | - Rebecca M. Ignatz
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Renate Öttl
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Cehreli
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Stroikova
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mansur Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael R. Preusch
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ziya Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-5639617
| |
Collapse
|
23
|
Nardone V, Reginelli A, De Marco G, Natale G, Patanè V, De Chiara M, Buono M, Russo GM, Monti R, Balestrucci G, Salvarezza M, Di Guida G, D’Ippolito E, Sangiovanni A, Grassi R, D’Onofrio I, Belfiore MP, Cimmino G, Della Corte CM, Vicidomini G, Fiorelli A, Gambardella A, Morgillo F, Cappabianca S. Role of Cardiac Biomarkers in Non-Small Cell Lung Cancer Patients. Diagnostics (Basel) 2023; 13:400. [PMID: 36766506 PMCID: PMC9914841 DOI: 10.3390/diagnostics13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Treatment-induced cardiac toxicity represents an important issue in non-small cell lung cancer (NSCLC) patients, and no biomarkers are currently available in clinical practice. A novel and easy-to-calculate marker is the quantitative analysis of calcium plaque in the coronary, calculated on CT. It is called the Agatston score (or CAD score). At the same time, other potential predictors include cardiac ultrasonography and anamnesis of the patients. Our work aimed to correlate cardiac biomarkers with overall survival (OS) in NSCLC patients. We retrospectively analyzed patients with NSCLC discussed in the Multidisciplinary Tumor Board of our Institute for the present analysis between January 2018 and July 2022. Inclusion criteria were the availability of basal CT imaging of the thorax, cardiac ultrasonography with the calculation of ejection fraction (EF), and complete anamnesis, including assessment of co-pathologies and pharmacological drugs. The clinical data of the patients were retrospectively collected, and the CAD scores was calculated on a CT scan. All of these parameters were correlated with overall survival (OS) with univariate analysis (Kaplan-Meier analysis) and multivariate analysis (Cox regression analysis). Following the above-mentioned inclusion criteria, 173 patients were included in the present analysis. Of those, 120 patients died in the follow-up period (69.6%), and the median overall survival (OS) was 28 months (mean 47.2 months, 95% CI, 36-57 months). In univariate analysis, several parameters that significantly correlated with lower OS were the stage (p < 0.001), the CAD grading (p < 0.001), history of ischemic heart disease (p: 0.034), use of beta blocker drugs (p: 0.036), and cardiac ejection fraction (p: 0.005). In multivariate analysis, the only parameters that remained significant were as follows: CAD score (p: 0.014, OR 1.56, 95% CI: 1.04-1.83), stage (p: 0.016, OR: 1.26, 95% CI: 1.05-1.53), and cardiac ejection fraction (p: 0.011, OR 0.46, 95% CI: 0.25-0.84). Both CAD score and ejection fraction are correlated with survival in NSCLC patients at all stages of the disease. Independently from the treatment choice, a cardiological evaluation is mandatory for patients with NSCLC.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giuseppina De Marco
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Natale
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Marco De Chiara
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Mauro Buono
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Gaetano Maria Russo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Riccardo Monti
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Balestrucci
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Maria Salvarezza
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Gaetano Di Guida
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Emma D’Ippolito
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Ida D’Onofrio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Radiotherapy Unit, Ospedale del Mare, ASL Napoli 1 Centro, 80138 Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Cimmino
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | | | - Giovanni Vicidomini
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Antonio Gambardella
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
24
|
Li X, Peng W, Wu J, Yeung SCJ, Yang R. Advances in immune checkpoint inhibitors induced-cardiotoxicity. Front Immunol 2023; 14:1130438. [PMID: 36911712 PMCID: PMC9995967 DOI: 10.3389/fimmu.2023.1130438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are approved as the first-line drug for treating many cancers and has shown significant survival benefits; however, it also causes immune-related adverse events (irAEs) while activating the immune system, involving multiple organs. Among them, cardiovascular immune-related adverse events (CV-irAE) are rare, but common causes of death in ICIs treated cancer patients, which manifest as myocardial, pericardial, vascular and other cardiovascular toxicities. Therefore, it is important that irAEs, especially CV-irAE should be carefully recognized and monitored during the whole ICIs treatment because early detection and treatment of CV-irAE can significantly reduce the mortality of such patients. Consequently, it is urgent to fully understand the mechanism and management strategies of CV-irAE. The effects of ICIs are multifaceted and the exact mechanism of CV-irAE is still elusive. Generally, T cells identify tumor cell antigens as well as antigen in cardiomyocytes that are the same as or homologous to those on tumor cells, thus causing myocardial damage. In addition, ICIs promote formation of cardiac troponin I (cTnI) that induces cardiac dysfunction and myocardial dilatation; moreover, ICIs also increase the production of cytokines, which promote infiltration of inflammation-linked molecules into off-target tissues. Currently, the management and treatment of cardiovascular toxicity are largely dependent on glucocorticoids, more strategies for prevention and treatment of CV-irAE, such as predictive markers are being explored. This review discusses risk factors, potential pathophysiological mechanisms, clinical manifestations, and management and treatment of CV-irAE, guiding the development of more effective prevention, treatment and management strategies in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenying Peng
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX, United States
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
25
|
Mauro AG, Yazbeck V, Salloum FN. Melanoma Treatment: The Heart Has Skin in the Game. JACC CardioOncol 2022; 4:549-551. [PMID: 36444230 PMCID: PMC9700251 DOI: 10.1016/j.jaccao.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Adolfo G. Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Victor Yazbeck
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
26
|
Gazdova M, Michalkova R, Kello M, Vilkova M, Kudlickova Z, Baloghova J, Mirossay L, Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int J Mol Sci 2022; 23:12266. [PMID: 36293123 PMCID: PMC9603750 DOI: 10.3390/ijms232012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Maria Vilkova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
27
|
Faggiano A, Mazzilli R, Natalicchio A, Adinolfi V, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Gallo M, Giuffrida D, Gori S, Montagnani M, Ragni A, Renzelli V, Russo A, Silvestris N, Franchina T, Tuveri E, Cinieri S, Colao A, Giorgino F, Zatelli MC. Corticosteroids in oncology: use, overuse, indications, contraindications. An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit Rev Oncol Hematol 2022; 180:103826. [PMID: 36191821 DOI: 10.1016/j.critrevonc.2022.103826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022] Open
Abstract
Corticosteroids (CSs) are widely used in oncology, presenting several different indications. They are useful for induction of apoptosis in hematological neoplasms, for management of anaphylaxis and cytokine release/hypersensitivity reaction and for the symptomatic treatment of many tumour- and treatment-related complications. If the employment of CSs in the oncological setting results in several benefits for patients and satisfaction for clinicians, on the other hand, many potential adverse events (AEs), both during treatment and after withdrawal of CSs, as well as the duality of the effects of these compounds in oncology, recommend being cautious in clinical practice. To date, several gray zones remain about indications, contraindications, dose, and duration of treatment. In this article, a panel of experts provides a critical review on CSs therapy in oncology, focusing on mechanisms of action and pharmacological characteristics, current and emerging therapeutic indications/contraindications, AEs related to CSs treatment, and the impact on patient outcome.
Collapse
Affiliation(s)
- Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | | | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stella D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - Dario Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, Medical School - University of Bari Aldo Moro, Bari, Italy
| | - Alberto Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - Valerio Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara
| | | |
Collapse
|
28
|
Risk of Cardiovascular Disease Death in Older Malignant Melanoma Patients: A Population-Based Study. Cancers (Basel) 2022; 14:cancers14194783. [PMID: 36230706 PMCID: PMC9563114 DOI: 10.3390/cancers14194783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Noncancer deaths account for a large proportion of deaths in patients with malignant melanoma (MM), but the risk of cardiovascular disease (CVD) death in older MM patients remains unclear. This study aimed to estimate the risk of CVD death in older MM patients. Data on older MM patients were obtained in the Surveillance, Epidemiology, and End Results database. Risk of CVD death was calculated by standardized mortality rates (SMRs), cumulative mortality and proportion of different causes of death. MM patients had a higher risk of CVD death than general populations (SMR = 1.98; 95% CI 1.93−2.03, p < 0.001). CVD death was more common in MM patients who were diagnosed at age 85 or older, had a localized stage, were white, had surgical treatment, had a primary head/neck/upper limb site and had a low-grade and superficial spreading/lentigo malignant pathologic type. Cumulative CVD mortality was more common than primary cancer in all older age groups, male or female, and patients with localized-stage disease. Other than primary cancer, CVD was the main cause of death in older patients diagnosed with MM. Our findings highlight CVD death is an important competing event of deaths in older MM patients, and more attention should be paid to reducing CVD death to improve survival.
Collapse
|
29
|
Ganesh S, Zhong P, Zhou X. Cardiotoxicity induced by immune checkpoint inhibitor: The complete insight into mechanisms, monitoring, diagnosis, and treatment. Front Cardiovasc Med 2022; 9:997660. [PMID: 36204564 PMCID: PMC9530557 DOI: 10.3389/fcvm.2022.997660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been taking cancer research by storm as they provide valuable therapeutic benefits to cancer patients in terms of immunotherapy. Melanoma and non-small cell lung cancer (NSCLC) are among the most prevalent cancer varieties that were utilized in ICI trials with many other cancer types being involved too. Despite impressive clinical benefits of overall response rate (ORR), progression-free survival (PFS), etc., ICIs are also accompanied by various immune-related adverse events (irAEs). Amongst the irAEs, cardiotoxicity bags a crucial role. It is of paramount importance that ICI-induced cardiotoxicity should be studied in detail due to its high mortality rate although the prevalence rate is low. Patients with ICI cardiotoxicity can have a greatly enhanced life quality despite adverse reactions from ICI therapy if diagnosed early and treated in time. As such, this review serves to provide a complete insight into the predisposing factors, mechanism, diagnostic methods and treatment plans revolving around ICI-induced cardiotoxicity.
Collapse
|
30
|
Cozma A, Sporis ND, Lazar AL, Buruiana A, Ganea AM, Malinescu TV, Berechet BM, Fodor A, Sitar-Taut AV, Vlad VC, Negrean V, Orasan OH. Cardiac Toxicity Associated with Immune Checkpoint Inhibitors: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810948. [PMID: 36142866 PMCID: PMC9502843 DOI: 10.3390/ijms231810948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are an important advancement in the field of cancer treatment, significantly improving the survival of patients with a series of advanced malignancies, like melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), renal cell carcinoma (RCC), and Hodgkin lymphoma. ICIs act upon T lymphocytes and antigen-presenting cells, targeting programmed cell death protein 1 (PD1), programmed cell death protein ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4), breaking the immune tolerance of the T cells against malignant cells and enhancing the body's own immune response. A variety of cardiac-adverse effects are associated with ICI-based treatment, including pericarditis, arrhythmias, cardiomyopathy, and acute coronary syndrome, with myocarditis being the most studied due to its often-unexpected onset and severity. Overall, Myocarditis is rare but presents an immune-related adverse event (irAE) that has a high fatality rate. Considering the rising number of oncological patients treated with ICIs and the severity of their potential adverse effects, a good understanding and continuous investigation of cardiac irAEs is of the utmost importance. This systematic review aimed to revise recent publications (between 2016-2022) on ICI-induced cardiac toxicities and highlight the therapeutical approach and evolution in the selected cases.
Collapse
Affiliation(s)
- Angela Cozma
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Dan Sporis
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Andrada Luciana Lazar
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Maria Ganea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Toma Vlad Malinescu
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Mihaela Berechet
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Fodor
- Clinical Centre of Diabetes, Nutrition and Metabolic Disease, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Taut
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vasile Calin Vlad
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vasile Negrean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Olga Hilda Orasan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Myocarditis Induced by Immunotherapy in Metastatic Melanoma—Review of Literature and Current Guidelines. J Clin Med 2022; 11:jcm11175182. [PMID: 36079112 PMCID: PMC9457343 DOI: 10.3390/jcm11175182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy is a widely used treatment modality in oncology. Immune checkpoint inhibitors, as a part of immunotherapy, caused a revolution in oncology, especially in melanoma therapy, due to the significant prolongation of patients’ overall survival. These drugs act by activation of inhibited immune responses of T lymphocytes against cancer cells. The mechanism responsible for the therapy’s high efficacy is also involved in immune tolerance of the patient’s own tissues. The administration of ICI therapy to a patient can cause severe immune reactions against non-neoplastic cells. Among them, cardiotoxicity seems most important due to the high mortality rate. In this article, we present the history of a 79 year-old patient diagnosed with melanoma who died due to myocarditis induced by ICI therapy, despite the fast administration of recommended immunosuppressive therapy, as an illustration of possible adverse events of ICI. Additionally, we summarize the mechanism, risk factors, biomarkers, and clinical data from currently published guidelines and studies about ICI-related myocarditis. The fast recognition of this fatal adverse effect of therapy may accelerate the rapid introduction of treatment and improve patients’ outcomes.
Collapse
|
32
|
Koutroumpakis E, Agrawal N, Palaskas NL, Abe JI, Iliescu C, Yusuf SW, Deswal A. Myocardial Dysfunction in Patients with Cancer. Heart Fail Clin 2022; 18:361-374. [PMID: 35718412 DOI: 10.1016/j.hfc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Myocardial dysfunction in patients with cancer is a major cause of morbidity and mortality. Cancer therapy-related cardiotoxicities are an important contributor to the development of cardiomyopathy in this patient population. Furthermore, cardiac AL amyloidosis, cardiac malignancies/metastases, accelerated atherosclerosis, stress cardiomyopathy, systemic and pulmonary hypertension are also linked to the development of myocardial dysfunction. Herein, we summarize current knowledge on the mechanisms of myocardial dysfunction in the setting of cancer and cancer-related therapies. Additionally, we briefly outline key recommendations on the surveillance and management of cancer therapy-related myocardial dysfunction based on the consensus of experts in the field of cardio-oncology.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Nikhil Agrawal
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Cezar Iliescu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Prescription Patterns, Recurrence, and Toxicity Rates of Adjuvant Treatment for Stage III/IV Melanoma—A Real World Single-Center Analysis. BIOLOGY 2022; 11:biology11030422. [PMID: 35336796 PMCID: PMC8945449 DOI: 10.3390/biology11030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Adjuvant treatment with the immune checkpoint inhibitors (ICI) pembrolizumab or nivolumab, or the targeted therapies dabrafenib and trametinib is recommended for patients with completely resected stage III melanoma and significantly decreases recurrence risk. Currently, limited data are available on physicians’ prescription preferences regarding ICI and targeted therapies and patient outcome in clinical practice. This study investigates the real-world situation of 109 patients from the Cancer Center of the University Hospital Bern, Switzerland, with an indication for adjuvant treatment since 2018. We describe treatment patterns, recurrence, and toxicity rates under immune checkpoint inhibitors, and targeted therapies. Abstract Approved adjuvant treatment options for stage III melanoma are the immune checkpoint inhibitors (ICI) pembrolizumab and nivolumab, and in presence of a BRAF V600E/K mutation additionally dabrafenib in combination with trametinib (BRAFi/MEKi). This study aims to describe prescription patterns and recurrence and toxicity rates of adjuvant-treated melanoma patients from the Cancer Center of the University Hospital Bern, Switzerland. One hundred and nine patients with an indication for adjuvant treatment were identified. Five (4.6%) had contraindications and, as such, were not proposed any adjuvant treatment, while 10 patients (9.2%) declined treatment. BRAF status was known for 91 (83.5%) patients. Of 40 (36.7%) patients with BRAF V600E/K melanoma, pembrolizumab was prescribed to 18 (45.0%), nivolumab to 16 (40.0%), and dabrafenib/trametinib to three (7.5%) patients. Grade 3–4 toxicity was reported in 18.9% and 16.7% of all the patients treated with pembrolizumab and nivolumab, respectively. No toxicities were observed for dabrafenib/trametinib. Thirty-eight percent of the patients treated with pembrolizumab and 40.0% of those treated with nivolumab relapsed. No relapses were reported for dabrafenib/trametinib. Prescription patterns indicate a clear preference for adjuvant ICI treatment.
Collapse
|
34
|
Grela-Wojewoda A, Pacholczak-Madej R, Adamczyk A, Korman M, Püsküllüoğlu M. Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. Int J Mol Sci 2022; 23:ijms23052815. [PMID: 35269958 PMCID: PMC8910876 DOI: 10.3390/ijms23052815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Kinase inhibitors (KIs) represent a growing class of drugs directed at various protein kinases and used in the treatment of both solid tumors and hematologic malignancies. It is a heterogeneous group of compounds that are widely applied not only in different types of tumors but also in tumors that are positive for a specific predictive factor. This review summarizes common cardiotoxic effects of KIs, including hypertension, arrhythmias with bradycardia and QTc prolongation, and cardiomyopathy that can lead to heart failure, as well as less common effects such as fluid retention, ischemic heart disease, and elevated risk of thromboembolic events. The guidelines for cardiac monitoring and management of the most common cardiotoxic effects of protein KIs are discussed. Potential signaling pathways affected by KIs and likely contributing to cardiac damage are also described. Finally, the need for further research into the molecular mechanisms underlying the cardiovascular toxicity of these drugs is indicated.
Collapse
Affiliation(s)
- Aleksandra Grela-Wojewoda
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
- Correspondence: ; Tel.: +48-1263-48350
| | - Renata Pacholczak-Madej
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Agnieszka Adamczyk
- Department of Tumour Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland;
| | - Michał Korman
- Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
| |
Collapse
|