1
|
Radwan NA, Atlam AI, Abdel-Malek AR, Moustafa AY. Nematicidal Potentiality of Four Marine Molluscans' Defensive Secretions From the Red Sea Against Syphacia obvelata (Nematoda: Oxyuridae) In Vitro. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:149-158. [PMID: 39473236 DOI: 10.1002/jez.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 02/04/2025]
Abstract
The continuous requirement to substitute safe and affordable alternatives for helminth medications, as well as address the resistance of some used drug classes, introduced bioactive products derived from marine animals into the field of competition; however, almost all the previous research only focused on their impact on bacterial and protozoal infection. In the present work, we investigated the potential in vitro nematocidal effect of the aqueous extract of defense secretions for four species of marine mollusks: two cephalopods, namely the cuttlefish Sepia pharaonis and the common Octopus Octopus vulagris and two gastropods, the sea hare Aplysia argus and the sea slug Berthillina citrina, against the adult murine pinworm Syphacia obvelata. Data showed dose and time efficacy in all examined extracts. The sea slug's skin acid secretion has the highest impact, causing death in the cultivated worms, followed by the ink of the sea hare, the common octopus and the cuttlefish, where LC90 after 10 h of exposure were 250, 290, 316, and 391 µg/mL, respectively. Comparatively with the control and albendazole-treated groups, the skin acid secretion of the sea slug caused the highest levels of the antioxidant enzymes SOD, Cat and GSH-PX; however, albendazole prompted the highest level of GSH-PX enzyme in all experimental groups.
Collapse
Affiliation(s)
- Nahla A Radwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aalaa I Atlam
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Alaa Y Moustafa
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Sensitized by a sea slug: site-specific short-term and general long-term sensitization in Aplysia following Navanax attack. Neurobiol Learn Mem 2021; 187:107542. [PMID: 34748927 DOI: 10.1016/j.nlm.2021.107542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Neurobiological studies of the model species, Aplysia californica (Mollusca, Gastropoda, Euopisthobranchia), have helped advance our knowledge of the neural bases of different forms of learning, including sensitization, a non-associative increase in withdrawal behaviors in response to mild innocuous stimuli However, our understanding of the natural context for this learning has lagged behind the mechanistic studies. Because previous studies of sensitization used electric shock, or other artificial stimulus to produce sensitization, they left unaddressed the question of what stimuli in nature might cause sensitization, until our laboratory demonstrated short and long-term sensitization after predatory attack by spiny lobsters. In the present study, we tested for sensitization after attack by a very different predator, the predacious sea-slug, Navanax inermis (Mollusca, Gastropoda, Euopisthobranchia). Unlike the biting and prodding action of lobster attack, Navanax uses a rapid strike that sucks and squeezes its prey in an attempt to swallow it whole. We found that Navanax attack to the head of Aplysia caused strong immediate sensitization of head withdrawal, and weaker, delayed, sensitization of tail-mantle withdrawal. By contrast, attack to the tail of Aplysia resulted in no sensitization of either reflex. We also developed an artificial attack stimulus that allowed us to mimick a more consistently strong attack. This artificial attack produced stronger but qualitatively similar sensitization: Strong immediate sensitization of head withdrawal and weaker sensitization of tail-mantle withdrawal after head attack, immediate sensitization in tail-mantle withdrawal, but no sensitization of head withdrawal after tail attack. We conclude that Navanax attack causes robust site-specific sensitization (enhanced sensitization near the site of attack), and weaker general sensitization (sensitization of responses to stimuli distal to the attack site). We also tested for long-term sensitization (lasting longer than 24 hours) after temporally-spaced delivery of four natural Navanax attacks to the head of subject Aplysia. Surprisingly, these head attacks, any one of which strongly sensitizes head withdrawal in the short term, failed to sensitize head-withdrawal in the long term. Paradoxically, these repeated head attacks produced long-term sensitization in tail-mantle withdrawal. These experiments and observations confirm that Navanax attack causes short, and long-term sensitization of withdrawal reflexes of Aplysia. Together with the observation of sensitization after lobster attack, they strongly support the premise that sensitization in Aplysia is an adaptive response to sub-lethal predator attack. They also add site-specific sensitization to the list of naturally induced learning phenotypes, as well as paradoxical long-term sensitization of tail-mantle withdrawal (but not head withdrawal) after multiple head attacks.
Collapse
|
3
|
Simone Y, van der Meijden A. Armed stem to stinger: a review of the ecological roles of scorpion weapons. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210002. [PMID: 34527038 PMCID: PMC8425188 DOI: 10.1590/1678-9199-jvatitd-2021-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpions possess two systems of weapons: the pincers (chelae) and the stinger (telson). These are placed on anatomically and developmentally well separated parts of the body, that is, the oral appendages and at the end of the body axis. The otherwise conserved body plan of scorpions varies most in the shape and relative dimensions of these two weapon systems, both across species and in some cases between the sexes. We review the literature on the ecological function of these two weapon systems in each of three contexts of usage: (i) predation, (ii) defense and (iii) sexual contests. In the latter context, we will also discuss their usage in mating. We first provide a comparative background for each of these contexts of usage by giving examples of other weapon systems from across the animal kingdom. Then, we discuss the pertinent aspects of the anatomy of the weapon systems, particularly those aspects relevant to their functioning in their ecological roles. The literature on the functioning and ecological role of both the chelae and the telson is discussed in detail, again organized by context of usage. Particular emphasis is given on the differences in morphology or usage between species or higher taxonomic groups, or between genders, as such cases are most insightful to understand the roles of each of the two distinct weapon systems of the scorpions and their evolutionary interactions. We aimed to synthesize the literature while minimizing conjecture, but also to point out gaps in the literature and potential future research opportunities.
Collapse
Affiliation(s)
- Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| |
Collapse
|
4
|
Echeverri SA, Miller AE, Chen J, McQueen EW, Plakke M, Spicer M, Hoke KL, Stoddard MC, Morehouse NI. How signaling geometry shapes the efficacy and evolution of animal communication systems. Integr Comp Biol 2021; 61:787-813. [PMID: 34021338 DOI: 10.1093/icb/icab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal communication is inherently spatial. Both signal transmission and signal reception have spatial biases-involving direction, distance and position-that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional. Likewise, receivers may only be able to detect signals if they arrive from certain directions. Alignment between these directional biases is therefore critical for effective communication, with even slight misalignments disrupting perception of signaled information. In addition, signals often degrade as they travel from signaler to receiver, and environmental conditions that impact transmission can vary over even small spatiotemporal scales. Thus, how animals position themselves during communication is likely to be under strong selection. Despite this, our knowledge regarding the spatial arrangements of signalers and receivers during communication remains surprisingly coarse for most systems. We know even less about how signaler and receiver behaviors contribute to effective signaling alignment over time, or how signals themselves may have evolved to influence and/or respond to these aspects of animal communication. Here, we first describe why researchers should adopt a more explicitly geometric view of animal signaling, including issues of location, direction, and distance. We then describe how environmental and social influences introduce further complexities to the geometry of signaling. We discuss how multimodality offers new challenges and opportunities for signalers and receivers. We conclude with recommendations and future directions made visible by attention to the geometry of signaling.
Collapse
Affiliation(s)
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Jason Chen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, Emory University, Atlanta, GA
| | - Eden W McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Michelle Spicer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Biology Department, University of Puget Sound, Tacoma, WA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
5
|
Rühs PA, Bergfreund J, Bertsch P, Gstöhl SJ, Fischer P. Complex fluids in animal survival strategies. SOFT MATTER 2021; 17:3022-3036. [PMID: 33729256 DOI: 10.1039/d1sm00142f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animals have evolved distinctive survival strategies in response to constant selective pressure. In this review, we highlight how animals exploit flow phenomena by manipulating their habitat (exogenous) or by secreting (endogenous) complex fluids. Ubiquitous endogenous complex fluids such as mucus demonstrate rheological versatility and are therefore involved in many animal behavioral traits ranging from sexual reproduction to protection against predators. Exogenous complex fluids such as sand can be used either for movement or for predation. In all cases, time-dependent rheological properties of complex fluids are decisive for the fate of the biological behavior and vice versa. To exploit these rheological properties, it is essential that the animal is able to sense the rheology of their surrounding complex fluids in a timely fashion. As timing is key in nature, such rheological materials often have clearly defined action windows matching the time frame of their direct biological behavior. As many rheological properties of these biological materials remain poorly studied, we demonstrate with this review that rheology and material science might provide an interesting quantitative approach to study these biological materials in particular in context towards ethology and bio-mimicking material design.
Collapse
Affiliation(s)
- Patrick A Rühs
- Department of Bioengineering, University of California, 218 Hearst Memorial Mining Building, Berkeley, CA 94704, USA
| | | | | | | | | |
Collapse
|
6
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
7
|
Nicholson MD, Artim JD, Hendrick GC, Packard AJ, Sikkel PC. Fish-Parasitic Gnathiid Isopods Metamorphose Following Invertebrate-Derived Meal. J Parasitol 2019. [DOI: 10.1645/19-59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Matthew D. Nicholson
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, Arkansas 72467
| | - John D. Artim
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, Arkansas 72467
| | - Gina C. Hendrick
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, Arkansas 72467
| | - Amber J. Packard
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, U.S. Virgin Islands 00802
| | - Paul C. Sikkel
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, Arkansas 72467
| |
Collapse
|
8
|
Chaudhary G, Fudge DS, Macias-Rodriguez B, Ewoldt RH. Concentration-independent mechanics and structure of hagfish slime. Acta Biomater 2018; 79:123-134. [PMID: 30170194 DOI: 10.1016/j.actbio.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
The defense mechanism of hagfish slime is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a concentrated material into a comparably "infinite" sea of water to form a dilute, sticky, cohesive elastic gel. This raises questions about the robustness of gel formation and rheological properties across a range of concentrations, which we study here for the first time. Across a nearly 100-fold change in concentration, we discover that the gel has similar viscoelastic time-dependent properties with constant power-law exponent (α=0.18±0.01), constant relative damping tanδ=G''/G'≈0.2-0.3, and varying overall stiffness that scales linearly with the concentration (∼c0.99±0.05). The power-law viscoelasticity (fit by a fractional Kelvin-Voigt model) is persistent at all concentrations with nearly constant fractal dimension. This is unlike other materials and suggests that the underlying material structure of slime remains self-similar irrespective of concentration. This interpretation is consistent with our microscopy studies of the fiber network. We derive a structure-rheology model to test the hypothesis that the origins of ultra-soft elasticity are based on bending of the fibers. The model predictions show an excellent agreement with the experiments. Our findings illustrate the unusual and robust properties of slime which may be vital in its physiological use and provide inspiration for the design of new engineered materials. STATEMENT OF SIGNIFICANCE Hagfish produce a unique gel-like material to defend themselves against predator attacks. The successful use of the defense gel is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a small quantity of biomaterial which then expands by a factor of 10,000 (by volume) into an "infinite" sea of water. This raises questions about the robustness of gel formation and properties across a range of concentrations. This study provides the first ever understanding of the mechanics of hagfish slime over a very wide range of concentration. We discover that some viscoelastic properties of slime are remarkably constant regardless of its concentration. Such a characteristic is uncommon in most known materials.
Collapse
|
9
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Derby CD, Gilbert ES, Tai PC. Molecules and Mechanisms Underlying the Antimicrobial Activity of Escapin, an l-Amino Acid Oxidase from the Ink of Sea Hares. THE BIOLOGICAL BULLETIN 2018; 235:52-61. [PMID: 30160994 DOI: 10.1086/699175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many marine animals use chemicals to defend themselves and their eggs from predators. Beyond their ecologically relevant functions, these chemicals may also have properties that make them beneficial for humans, including biomedical and industrial applications. For example, some chemical defenses are also powerful antimicrobial or antitumor agents with relevance to human health and disease. One such chemical defense, escapin, an l-amino acid oxidase in the defensive ink of the sea hare Aplysia californica, and related proteins have been investigated for their biomedical properties. This review details our current understanding of escapin's antimicrobial activity, including the array of molecules generated by escapin's oxidation of its major substrates, l-lysine and l-arginine, and mechanisms underlying these molecules' bactericidal and bacteriostatic effects on planktonic cells and the prevention of formation and removal of bacterial biofilms. Models of escapin's effects are presented, and future directions are proposed.
Collapse
|
11
|
Rubin JJ, Hamilton CA, McClure CJW, Chadwell BA, Kawahara AY, Barber JR. The evolution of anti-bat sensory illusions in moths. SCIENCE ADVANCES 2018; 4:eaar7428. [PMID: 29978042 PMCID: PMC6031379 DOI: 10.1126/sciadv.aar7428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Prey transmit sensory illusions to redirect predatory strikes, creating a discrepancy between what a predator perceives and reality. We use the acoustic arms race between bats and moths to investigate the evolution and function of a sensory illusion. The spinning hindwing tails of silk moths (Saturniidae) divert bat attack by reflecting sonar to create a misleading echoic target. We characterized geometric morphometrics of moth hindwings across silk moths, mapped these traits onto a new, robust phylogeny, and found that elaborated hindwing structures have converged on four adaptive shape peaks. To test the mechanism underlying these anti-bat traits, we pit bats against three species of silk moths with experimentally altered hindwings that created a representative gradient of ancestral and extant hindwing shapes. High-speed videography of battles reveals that moths with longer hindwings and tails more successfully divert bat attack. We postulate that sensory illusions are widespread and are underappreciated drivers of diversity across systems.
Collapse
Affiliation(s)
| | - Chris A. Hamilton
- The McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611, USA
| | - Chris J. W. McClure
- Boise State University, Boise, ID 83725, USA
- The Peregrine Fund, Boise, ID 83709, USA
| | | | - Akito Y. Kawahara
- The McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
12
|
Dirrigl FJ, Badaoui Z, Tamez C, Vitek CJ, Parsons JG. Use of the sea hare (Aplysia fasciata) in marine pollution biomonitoring of harbors and bays. MARINE POLLUTION BULLETIN 2018; 129:681-688. [PMID: 29110893 DOI: 10.1016/j.marpolbul.2017.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/23/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Our study evaluated heavy metal concentrations in soft tissues of sea hare, Aplysia fasciata, from the Lower Laguna Madre, Texas. Heavy metals in tissues followed Se>As>Pb>Cd. Concentrations ranged As (BDL-28.08), Cd (BDL-5.50), Pb (BDL-12.85) and Se (4.25-93.43ppm). Median As, Cd, Pb, and Se tissue levels exceeded exposure levels. Significant relationships occurred in metal-metal (AsCd, AsPb, CdPb, CdSe, and PbSe), metal-tissue (significant Se uptake by inhalant and exhalant siphons and As in the hepatopancreas), and metal-metal within tissue (AsPb in the hepatopancreas and CdPb in the digestive cecum) analyses (p<0.05). Bioaccumulation factors (BAF) suggested the inhalant siphon, hepatopancreas, and digestive cecum function as macroconcentrators of Cd, hepatopancreas and digestive cecum as macroconcentrators of Pb, and all tissues were deconcentrators for As and Se. As a bioaccumulator of heavy metals, Aplysia was evaluated as a bioindicator of marine pollution in harbors and bays.
Collapse
Affiliation(s)
- Frank J Dirrigl
- Department of Biology, The University of Texas-Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539-2999, United States.
| | - Zachariah Badaoui
- Department of Biology, The University of Texas-Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539-2999, United States
| | - Carlos Tamez
- Department of Chemistry, The University of Texas-Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539-2999, United States.
| | - Christopher J Vitek
- Department of Biology, The University of Texas-Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539-2999, United States.
| | - Jason G Parsons
- Department of Chemistry, The University of Texas-Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539-2999, United States.
| |
Collapse
|
13
|
Ahmad TB, Liu L, Kotiw M, Benkendorff K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:156-178. [PMID: 28830818 DOI: 10.1016/j.jep.2017.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review focuses on traditional and contemporary anti-inflammatory uses of mollusc-derived products summarising all the in vitro, in vivo and human clinical trials that have tested the anti-inflammatory activity of molluscan natural products. Inflammatory conditions, burns and wounds have been an ongoing concern for human health since the early era of civilisation. Many texts from ancient medicine have recorded the symptoms, signs and treatments for these conditions. Natural treatments are well-documented in traditional European medicine, Traditional Chinese Medicine (TCM), Siddha and ancient Mediterranean and African traditional medicine and include a surprisingly large number of molluscan species. MATERIALS AND METHODS An extensive review of the Materia Medica and scientific literature was undertaken using key word searches for "mollusc" and "anti-inflammatory" or "immunomodulatory" or "wound healing". RESULTS Molluscs have been used in ethnomedicine by many traditional cultures to treat different aspects of inflammatory conditions. We found 104 different anti-inflammatory preparations from a variety of molluscan species, of which 70 were from the well-documented Traditional Chinese Medicine (TCM). This traditional use of molluscs has driven the testing for inflammatory activity in extracts from some species in the phylum Mollusca, with 20 in vitro studies, 40 in vivo animal studies and 14 human clinical trials performed to substantiate the anti-inflammatory and wound healing activity of molluscs. Some of these studies have led to the approval of mollusc-derived products to be used as over-the-counter (OTC) nutraceuticals, like Lyprinol® and Biolane™ from the New Zealand green lipped mussel Perna canaliculus. CONCLUSION Natural products provide important leads for the development of pharmaceuticals, including anti-inflammatory agents. Only a small proportion of the molluscan traditional medicines have been tested to confirm their anti-inflammatory activity and most screening studies have tested crude extracts from molluscs without any chemical characterisation. This highlights the need for further research to strategically identify the anti-inflammatory compounds in molluscan medicines to provide leads for novel anti-inflammatory drugs in the future.
Collapse
Affiliation(s)
- Tarek B Ahmad
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Australia; Centre for Health Sciences Research, University of Southern Queensland, Australia.
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Australia.
| | - Michael Kotiw
- Centre for Health Sciences Research, University of Southern Queensland, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Australia.
| |
Collapse
|
14
|
Sheppard-Brennand H, Poore AGB, Dworjanyn SA. A Waterborne Pursuit-Deterrent Signal Deployed by a Sea Urchin. Am Nat 2017; 189:700-708. [PMID: 28514632 DOI: 10.1086/691437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover.
Collapse
|
15
|
Kamio M, Derby CD. Finding food: how marine invertebrates use chemical cues to track and select food. Nat Prod Rep 2017; 34:514-528. [DOI: 10.1039/c6np00121a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers recent research on how marine invertebrates use chemical cues to find and select food.
Collapse
Affiliation(s)
- Michiya Kamio
- Tokyo University of Marine Science and Technology
- Tokyo 108-8477
- Japan
| | | |
Collapse
|
16
|
Bornancin L, Bonnard I, Mills SC, Banaigs B. Chemical mediation as a structuring element in marine gastropod predator-prey interactions. Nat Prod Rep 2017; 34:644-676. [DOI: 10.1039/c6np00097e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some diterpenoid compounds protect the sacoglossansElysiasp. andCyerce nigricansfrom their carnivorous predator the dorid nudibranch,Gymnodorissp., unlike chemically unprotected gastropods that are consumed by this voracious nudibranch (photo Philippe Bourseiller).
Collapse
Affiliation(s)
- L. Bornancin
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| | - I. Bonnard
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| | - S. C. Mills
- PSL Research University
- CRIOBE
- USR EPHE-UPVD-CNRS 3278
- 98729 Moorea
- French Polynesia
| | - B. Banaigs
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| |
Collapse
|
17
|
Wolfe KD, Wainwright ML, Smee DL, Mozzachiodi R. Eat or be eaten? Modifications of Aplysia californica feeding behaviour in response to natural aversive stimuli. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Inhibition and Dispersal of Pseudomonas aeruginosa Biofilms by Combination Treatment with Escapin Intermediate Products and Hydrogen Peroxide. Antimicrob Agents Chemother 2016; 60:5554-62. [PMID: 27401562 DOI: 10.1128/aac.02984-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/02/2016] [Indexed: 11/20/2022] Open
Abstract
Escapin is an l-amino acid oxidase that acts on lysine to produce hydrogen peroxide (H2O2), ammonia, and equilibrium mixtures of several organic acids collectively called escapin intermediate products (EIP). Previous work showed that the combination of synthetic EIP and H2O2 functions synergistically as an antimicrobial toward diverse planktonic bacteria. We initiated the present study to investigate how the combination of EIP and H2O2 affected bacterial biofilms, using Pseudomonas aeruginosa as a model. Specifically, we examined concentrations of EIP and H2O2 that inhibited biofilm formation or fostered disruption of established biofilms. High-throughput assays of biofilm formation using microtiter plates and crystal violet staining showed a significant effect from pairing EIP and H2O2, resulting in inhibition of biofilm formation relative to biofilm formation in untreated controls or with EIP or H2O2 alone. Similarly, flow cell analysis and confocal laser scanning microscopy revealed that the EIP and H2O2 combination reduced the biomass of established biofilms relative to that of the controls. Area layer analysis of biofilms posttreatment indicated that disruption of biomass occurs down to the substratum. Only nanomolar to micromolar concentrations of EIP and H2O2 were required to impact biofilm formation or disruption, and these concentrations are significantly lower than those causing bactericidal effects on planktonic bacteria. Micromolar concentrations of EIP and H2O2 combined enhanced P. aeruginosa swimming motility compared to the effect of either EIP or H2O2 alone. Collectively, our results suggest that the combination of EIP and H2O2 may affect biofilms by interfering with bacterial attachment and destabilizing the biofilm matrix.
Collapse
|
19
|
Chia MPC. Acute onset of generalized tremors, mild ataxia, and hyperesthesia in a young dog after presumptive ingestion of a giant sea hare belonging to the genus Aplysia. J Vet Emerg Crit Care (San Antonio) 2014; 25:778-82. [PMID: 25427849 DOI: 10.1111/vec.12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe an unusual case of canine toxicosis from presumptive sea hare ingestion, its management, and outcome. CASE SUMMARY A young dog was treated for acute toxicosis after partially ingesting a giant sea hare washed up on a beach. The primary symptoms of generalized tremors, mild ataxia, and hyperesthesia occurred rapidly within 20 minutes of ingestion. Decontamination procedures were performed early and the dog made a full recovery within an approximate period of 6 hours. NEW OR UNIQUE INFORMATION PROVIDED Sea hare toxicosis should be considered as a potential cause of acute onset of tremors, ataxia, and hyperesthesia in previously healthy dogs living in coastal areas.
Collapse
Affiliation(s)
- Michael P C Chia
- From the Malibu Veterinary Hospital, Safety Bay, WA, 6169, Australia
| |
Collapse
|
20
|
Jacob AS, Simon OR, Wheatle D, Ruddock P, McCook K. Antihistamine Effect of a Pure Bioactive Compound Isolated from Slug (Diplosolenodes occidentalis) Material. W INDIAN MED J 2014; 63:401-7. [PMID: 25781274 PMCID: PMC4655704 DOI: 10.7727/wimj.2013.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Folklore claims of the therapeutic effect of garden slug (Diplosolenodes occidentalis) extract used to relieve bronchoconstriction in asthmatic individuals were never validated scientifically. The aim of this study was to isolate the pure bioactive compound from slug extract causing this effect. METHODS The crude ground material was prepared in ethanol and after filtration, separation by flash column chromatography method was done. The structure was elucidated by data from hydrogen and carbon nuclear magnetic resonance (NMR) profiles. The bioactive compound was assessed for dose-dependent response effects on guinea pig tracheal smooth muscle pre-contracted with histamine. Receptor specificity studies were done by using HTMT dimaleate (H1 agonist). The type of antagonism was also identified. RESULTS The pure component isolated from garden slug material was identified by spectral studies as glyceryl trilinolenate (GT). It caused dose-dependent relaxation in guinea pig tracheal smooth muscle strips pre-contracted with histamine, it acted via H1 type receptors and showed non-competitive antagonism. CONCLUSION Glyceryl trilinolenate produced dose-dependent relaxation in tracheal smooth muscle strips in the presence of the agonist histamine. Glyceryl trilinolenate displayed non-competitive antagonism at H1 receptors in the trachea. This agent was able to alleviate bronchoconstriction in individuals presenting with atopic asthma in rural agricultural areas in Jamaica (verbal communications). It is possible that GT can be useful therapeutically to produce tracheal smooth muscle relaxation in individuals presenting with atopic asthma.
Collapse
Affiliation(s)
- A S Jacob
- Department of Basic Medical Sciences, Pharmacology Section, The University of the West Indies, Kingston 7, Jamaica.
| | - O R Simon
- Department of Basic Medical Sciences, Pharmacology Section, The University of the West Indies, Kingston 7, Jamaica
| | - D Wheatle
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| | - P Ruddock
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| | - K McCook
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| |
Collapse
|
21
|
Mason MJ, Watkins AJ, Wakabayashi J, Buechler J, Pepino C, Brown M, Wright WG. Connecting model species to nature: predator-induced long-term sensitization in Aplysia californica. ACTA ACUST UNITED AC 2014; 21:363-7. [PMID: 25028394 PMCID: PMC4105716 DOI: 10.1101/lm.034330.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous research on sensitization in Aplysia was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce long-term sensitization (≥24 h) as well as similar, although not identical, neuronal correlates as observed after electric shock. Together these findings establish long- and short-term sensitization caused by sublethal predator attack as a natural equivalent to sensitization caused by artificial stimuli.
Collapse
Affiliation(s)
- Maria J Mason
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Amanda J Watkins
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Jordann Wakabayashi
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Jennifer Buechler
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Christine Pepino
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Michelle Brown
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - William G Wright
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| |
Collapse
|
22
|
Derby CD. Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 2014; 12:2700-30. [PMID: 24824020 PMCID: PMC4052311 DOI: 10.3390/md12052700] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
One of the most distinctive and defining features of coleoid cephalopods—squid, cuttlefish and octopus—is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these—melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute and Department of Biology, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
23
|
Kelley LA, Kelley JL. Animal visual illusion and confusion: the importance of a perceptual perspective. Behav Ecol 2013. [DOI: 10.1093/beheco/art118] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Derby CD, Tottempudi M, Love-Chezem T, Wolfe LS. Ink from longfin inshore squid, Doryteuthis pealeii, as a chemical and visual defense against two predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. THE BIOLOGICAL BULLETIN 2013; 225:152-160. [PMID: 24445441 DOI: 10.1086/bblv225n3p152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemical and visual defenses are used by many organisms to avoid being approached or eaten by predators. An example is inking molluscs-including gastropods such as sea hares and cephalopods such as squid, cuttlefish, and octopus-which release a colored ink upon approach or attack. Previous work showed that ink can protect molluscs through a combination of chemical, visual, and other effects. In this study, we examined the effects of ink from longfin inshore squid, Doryteuthis pealeii, on the behavior of two species of predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. Using a cloud assay, we found that ink from longfin inshore squid affected the approach phase of predation by summer flounder, primarily through its visual effects. Using a food assay, we found that the ink affected the consummatory and ingestive phase of predation of both sea catfish and summer flounder, through the ink's chemical properties. Fractionation of ink showed that most of its deterrent chemical activity is associated with melanin granules, suggesting that either compounds adhering to these granules or melanin itself are the most biologically active. This work provides the basis for a comparative approach to identify deterrent molecules from inking cephalopods and to examine neural mechanisms whereby these chemicals affect behavior of fish, using the sea catfish as a chemosensory model.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, Georgia 30303; and The Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
25
|
Love-Chezem T, Aggio JF, Derby CD. Defense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors. J Exp Biol 2013; 216:1364-72. [DOI: 10.1242/jeb.081828] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mechanism – sensory inactivation – in which ink inactivates the predator's reception of food odors associated with would-be prey. We tested this hypothesis using spiny lobsters, Panulirus argus, as model predators. Ink secretion is composed of two glandular products, one being opaline, a viscous substance containing concentrations of hundreds of millimolar of total free amino acids. Opaline sticks to antennules, mouthparts and other chemosensory appendages of lobsters, physically blocking access of food odors to the predator's chemosensors, or over-stimulating (short term) and adapting (long term) the chemosensors. We tested the sensory inactivation hypotheses by treating the antennules with opaline and mimics of its physical and/or chemical properties. We compared the effects of these treatments on responses to a food odor for chemoreceptor neurons in isolated antennules, as a measure of effect on chemosensory input, and for antennular motor responses of intact lobsters, as a measure of effect on chemically driven motor behavior. Our results indicate that opaline reduces the output of chemosensors by physically blocking reception of and response to food odors, and this has an impact on motor responses of lobsters. This is the first experimental demonstration of inactivation of peripheral sensors as an antipredatory defense.
Collapse
Affiliation(s)
- Tiffany Love-Chezem
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Juan F. Aggio
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Charles D. Derby
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
26
|
Ferrer RP, Zimmer RK. Community ecology and the evolution of molecules of keystone significance. THE BIOLOGICAL BULLETIN 2012; 223:167-177. [PMID: 23111129 DOI: 10.1086/bblv223n2p167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Molecules of keystone significance are vital in structuring ecological communities. Select bioactive compounds can cause disproportionately large effects by connecting such seemingly disparate processes as microbial loop dynamics and apex predation. Here, we develop a general theory and propose mechanisms that could lead to the evolution of keystone molecules. Introduced into a respective community by one, or only a few, autotrophic or microbial species, these compounds often originate as chemical defenses. When co-opted by resistant consumer species, however, they are used either in chemical defense against higher-order predators or as chemosensory cues that elicit courtship and mating, alarm, and predatory search. Requisite to these multifunctional properties, biosynthetic capacity evolves along with mechanisms for resistance and/or toxin storage in primary producers. Subsequently, consumers acquire resistances or tolerances, and the toxins are transferred through food webs via trophic interactions. In consumers, mechanisms eventually evolve for recognizing toxins as feeding cues and, ultimately, as signals or pheromones in chemical communication within or between species. One, or a few, active compounds can thus mediate a vast array of physiological traits, expressed differentially across many species in a given community. Through convergent evolution, molecules of keystone significance provide critical information to phylogenetically diverse species, initiate major trophic cascades, and structure communities within terrestrial, freshwater, coastal-ocean and open-ocean habitats.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Biology, Seattle Pacific University, 3307 Third Avenue West, Seattle, Washington 98119, USA.
| | | |
Collapse
|
27
|
Aggio JF, Tieu R, Wei A, Derby CD. Oesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food. J Exp Biol 2012; 215:1700-10. [DOI: 10.1242/jeb.065854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARY
Decapod crustaceans such as blue crabs possess a variety of chemoreceptors that control different stages of the feeding process. All these chemoreceptors are putative targets for feeding deterrents that cause animals to avoid or reject otherwise palatable food. As a first step towards characterizing the chemoreceptors that mediate the effect of deterrents, we used a behavioral approach to investigate their precise location. Data presented here demonstrate that chemoreceptors located on the antennules, pereiopods and mouthparts do not mediate the food-rejection effects of a variety of deterrents, both natural and artificial to crabs. Crabs always searched for deterrent-laced food and took it to their oral region. The deterrent effect was manifested as either rejection or extensive manipulation, but in both cases crabs bit the food. The biting behavior is relevant because the introduction of food into the oral cavity ensured that the deterrents gained access to the oesophageal taste receptors, and so we conclude that they are the ones mediating rejection. Additional support comes from the fact that a variety of deterrent compounds evoked oesophageal dilatation, which is mediated by oesophageal receptors and has been linked to food rejection. Further, there is a positive correlation between a compound’s ability to elicit rejection and its ability to evoke oesophageal dilatation. The fact that deterrents do not act at a distance is in accordance with the limited solubility of most known feeding deterrents, and likely influences predator–prey interactions and their outcome: prey organisms will be attacked and bitten before deterrents become relevant.
Collapse
Affiliation(s)
- Juan F. Aggio
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Ryan Tieu
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Amy Wei
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Charles D. Derby
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| |
Collapse
|
28
|
Nusnbaum M, Aggio JF, Derby CD. Taste-mediated behavioral and electrophysiological responses by the predatory fish Ariopsis felis to deterrent pigments from Aplysia californica ink. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:283-94. [DOI: 10.1007/s00359-011-0707-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022]
|
29
|
Kawsar SMA, Matsumoto R, Fujii Y, Matsuoka H, Masuda N, Chihiro I, Yasumitsu H, Kanaly RA, Sugawara S, Hosono M, Nitta K, Ishizaki N, Dogasaki C, Hamako J, Matsui T, Ozeki Y. Cytotoxicity and Glycan-Binding Profile of a d-Galactose-Binding Lectin from the Eggs of a Japanese Sea Hare (Aplysia kurodai). Protein J 2011; 30:509-19. [DOI: 10.1007/s10930-011-9356-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Kicklighter CE, Kamio M, Nguyen L, Germann MW, Derby CD. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community. Proc Natl Acad Sci U S A 2011; 108:11494-9. [PMID: 21709250 PMCID: PMC3136258 DOI: 10.1073/pnas.1103906108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)--N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)--as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems.
Collapse
Affiliation(s)
- Cynthia E. Kicklighter
- Neuroscience Institute
- Department of Biology, and
- Department of Biology, Goucher College, Baltimore, MD 21204; and
| | - Michiya Kamio
- Neuroscience Institute
- Department of Biology, and
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Linh Nguyen
- Neuroscience Institute
- Department of Biology, and
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Markus W. Germann
- Neuroscience Institute
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | | |
Collapse
|
31
|
|
32
|
Paul VJ, Ritson-Williams R, Sharp K. Marine chemical ecology in benthic environments. Nat Prod Rep 2010; 28:345-87. [PMID: 21125086 DOI: 10.1039/c0np00040j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA.
| | | | | |
Collapse
|
33
|
Abstract
Studies of the neural mechanisms of learning, especially of sensitization, have benefitted from extensive research on the model species, Aplysia californica (hereafter Aplysia). Considering this volume of literature on mechanisms, it is surprising that our understanding of the ecological context of sensitization in Aplysia is completely lacking. Indeed, the widespread use of strong electric shock to induce sensitization (an enhancement of withdrawal reflexes following noxious stimulation) is completely unnatural and leaves unanswered the question of whether this simple form of learning has any ecological relevance. We hypothesized that sublethal attack by a co-occurring predator, the spiny lobster, Panulirus interruptus, might be a natural sensitizing stimulus. We tested reflex withdrawal of the tail-mantle and head of individual Aplysia before and after attack by lobsters. Lobster attack significantly increased the amplitude of both reflexes, with a temporal onset that closely matched that observed with electric shock. This result suggests that electric shock may indeed mimic at least one naturally occurring sensitizing stimulus, suggesting, for the first time, an ecological context for this well studied form of learning.
Collapse
|
34
|
Kamio M, Grimes TV, Hutchins MH, van Dam R, Derby CD. The purple pigment aplysioviolin in sea hare ink deters predatory blue crabs through their chemical senses. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Nusnbaum M, Derby CD. Effects of sea hare ink secretion and its escapin-generated components on a variety of predatory fishes. THE BIOLOGICAL BULLETIN 2010; 218:282-292. [PMID: 20570851 DOI: 10.1086/bblv218n3p282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sea hares, Aplysia californica, have a diversity of anti-predatory defenses. One is an actively released chemical defense: an ink secretion that is a mixture of two glandular products--ink from the ink gland and opaline from the opaline gland. The mechanisms of action of ink secretion and its components have recently been examined in detail against several predatory invertebrates. Our goal is to extend this mechanistic analysis to predatory vertebrates. Toward this end, the current study details the effects of ink, opaline, and one set of its components--the products of the reaction of escapin, an l-amino acid oxidase, with its natural substrates, L-lysine and L-arginine--on the palatability of food for five species of fishes: bluehead wrasses Thalassoma bifasciatum, señorita wrasses Oxyjulis californica, pinfish Lagodon rhomboides, mummichogs Fundulus heteroclitus, and bonnethead sharks Sphyrna tiburo. These fishes have different feeding styles, ranging from large fishes able to engulf sea hares to smaller fishes able to attack sea hares by pecking at them; and they live in a variety of habitats, including those that sea hares typically inhabit. We show that ink but not opaline significantly decreases the palatability of food for all five species, and that escapin products are mildly unpalatable to the two species of wrasses but not to the other species. These results, together with others, show that sea hare ink affects a diversity of predatory fishes, setting the stage for mechanistic studies using electrophysiological analysis of their chemosensory systems.
Collapse
Affiliation(s)
- Matthew Nusnbaum
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
36
|
Nusnbaum M, Derby CD. Ink secretion protects sea hares by acting on the olfactory and nonolfactory chemical senses of a predatory fish. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Kamio M, Nguyen L, Yaldiz S, Derby C. How to Produce a Chemical Defense: Structural Elucidation and Anatomical Distribution of Aplysioviolin and Phycoerythrobilin in the Sea Hare Aplysia californica. Chem Biodivers 2010; 7:1183-97. [DOI: 10.1002/cbdv.201000006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Butzke D, Luch A. High-molecular weight protein toxins of marine invertebrates and their elaborate modes of action. EXS 2010; 100:213-32. [PMID: 20358685 DOI: 10.1007/978-3-7643-8338-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
High-molecular weight protein toxins significantly contribute to envenomations by certain marine invertebrates, e.g., jellyfish and fire corals. Toxic proteins frequently evolved from enzymes meant to be employed primarily for digestive purposes. The cellular intermediates produced by such enzymatic activity, e.g., reactive oxygen species or lysophospholipids, rapidly and effectively mediate cell death by disrupting cellular integrity. Membrane integrity may also be disrupted by pore-forming toxins that do not exert inherent enzymatic activity. When targeted to specific pharmacologically relevant sites in tissues or cells of the natural enemy or prey, toxic enzymes or pore-forming toxins even may provoke fast and severe systemic reactions. Since toxin-encoding genes constitute "hot spots" of molecular evolution, continuous variation and acquirement of new pharmacological properties are guaranteed. This also makes individual properties and specificities of complex proteinaceous venoms highly diverse and inconstant. In the present chapter we portray high-molecular weight constituents of venoms present in box jellyfish, sea anemones, sea hares, fire corals and the crown-of-thorns starfish. The focus lies on the latest achievements in the attempt to elucidate their molecular modes of action.
Collapse
Affiliation(s)
- Daniel Butzke
- Center for Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment, Berlin, Germany.
| | | |
Collapse
|
39
|
Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 2009; 61:395-412. [PMID: 19926678 PMCID: PMC2802426 DOI: 10.1124/pr.109.001735] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to modify synaptic transmission between neurons is a fundamental process of the nervous system that is involved in development, learning, and disease. Thus, synaptic plasticity is the ability to bidirectionally modify transmission, where long-term potentiation and long-term depression (LTD) represent the best characterized forms of plasticity. In the hippocampus, two main forms of LTD coexist that are mediated by activation of either N-methyl-d-aspartic acid receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). Compared with NMDAR-LTD, mGluR-LTD is less well understood, but recent advances have started to delineate the underlying mechanisms. mGluR-LTD at CA3:CA1 synapses in the hippocampus can be induced either by synaptic stimulation or by bath application of the group I selective agonist (R,S)-3,5-dihydroxyphenylglycine. Multiple signaling mechanisms have been implicated in mGluR-LTD, illustrating the complexity of this form of plasticity. This review provides an overview of recent studies investigating the molecular mechanisms underlying hippocampal mGluR-LTD. It highlights the role of key molecular components and signaling pathways that are involved in the induction and expression of mGluR-LTD and considers how the different signaling pathways may work together to elicit a persistent reduction in synaptic transmission.
Collapse
Affiliation(s)
- Clare M Gladding
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
40
|
Hay ME. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2009; 1:193-212. [PMID: 21141035 PMCID: PMC3380104 DOI: 10.1146/annurev.marine.010908.163708] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.
Collapse
Affiliation(s)
- Mark E Hay
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
41
|
Ko KC, Wang B, Tai PC, Derby CD. Identification of potent bactericidal compounds produced by escapin, an L-amino acid oxidase in the ink of the sea hare Aplysia californica. Antimicrob Agents Chemother 2008; 52:4455-62. [PMID: 18852282 PMCID: PMC2592893 DOI: 10.1128/aac.01103-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 11/20/2022] Open
Abstract
The ink of sea hares (Aplysia californica) contains escapin, an L-amino acid oxidase that metabolizes L-lysine, thereby producing a mixture that kills microbes and deters attacking predators. This secretion contains H2O2,ammonia, and an equilibrium mixture of "escapin intermediate product" (EIP-K) that includes alpha-keto-epsilon-aminocaproic acid and several other molecules. Components of the equilibrium mixture react nonenzymatically with H2O2 to form "escapin end product" (EEP-K), which contains delta-aminovaleric acid and delta-valerolactam. The proportions of the molecules in this equilibrium mixture change with pH, and this is biologically important because the secretion is pH 5 when released but becomes pH 8 when fully diluted in seawater. The goal of the current study was to identify which molecules in this equilibrium mixture are bactericidal. We show that a mixture of H2O2 and EIP-K, but not EEP-K, at low mM concentrations is synergistically responsible for most of the bactericidal activity of the secretion against Escherichia coli, Vibrio harveyi, Staphylococcus aureus,and Pseudomonas aeruginosa. Low pH enhances the bactericidal effect, and this does not result from stress associated with low pH itself. Sequential exposure to low mM concentrations of EIP-K and H2O2, in either order, does not kill E. coli. Reaction products formed when L-arginine is substituted for L-lysine have almost no bactericidal activity. Our results favor the idea that the bactericidal activity is due to unstable intermediates of the reaction of alpha-keto-epsilon-aminocaproic acid with H2O2.
Collapse
Affiliation(s)
- Ko-Chun Ko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
42
|
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 2008; 34:898-914. [PMID: 18521679 DOI: 10.1007/s10886-008-9489-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.
Collapse
Affiliation(s)
- Charles D Derby
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, GA, USA.
| | | |
Collapse
|
43
|
Cohen SAP, Hatt H, Kubanek J, McCarty NA. Reconstitution of a chemical defense signaling pathway in a heterologous system. ACTA ACUST UNITED AC 2008; 211:599-605. [PMID: 18245637 DOI: 10.1242/jeb.009225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemical signaling plays an important role in ecological interactions, such as communication and predator-prey dynamics. Since sessile species cannot physically escape predators, many contain compounds that deter predation; however, it is largely unknown how predators physiologically detect deterrent chemicals. Few studies have investigated ecologically relevant aversive taste responses in any predator. Our objective was to determine if a signaling pathway for detecting marine sponge-derived deterrent compounds could be reconstituted in a heterologous expression system to ultimately facilitate investigation of the molecular mechanism of such an aversive behavioral response. Zebrafish (Danio rerio) rejected artificial diets laced with sponge chemical defense compounds that were previously shown to deter a generalist marine predator, Thalassoma bifasciatum, suggesting that zebrafish can recognize deterrent compounds relevant to coral reef systems. Transcripts made from a zebrafish cDNA library were expressed in a heterologous system, Xenopus laevis oocytes, and tested for chemoreceptor activation via electrophysiology, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a reporter. Oocytes expressing gene sequences from the library and CFTR exhibited a CFTR-like electrophysiological response to formoside and ectyoplasides A and B, sponge defense compounds. Therefore, the chemical defense-activated signaling pathway can be reconstituted in Xenopus oocytes. Kinetics of the responses suggested that the responses to formoside and ectyoplasides A and B were receptor-mediated and capable of using the G(alphas) signaling pathway in this system. This bioassay has the potential to lead to the identification of genes that encode receptors capable of interacting with deterrent chemicals, which would enable understanding of predator detection of chemical defenses.
Collapse
|
44
|
|
45
|
Derby CD. Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. THE BIOLOGICAL BULLETIN 2007; 213:274-289. [PMID: 18083967 DOI: 10.2307/25066645] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inking by marine molluscs such as sea hares, cuttlefish, squid, and octopuses is a striking behavior that is ideal for neuroecological explorations. While inking is generally thought to be used in active defense against predators, experimental evidence for this view is either scant or lacks mechanistic explanations. Does ink act through the visual or chemical modality? If inking is a chemical defense, how does it function and how does it affect the chemosensory systems of predators? Does it facilitate escape not only by acting directly on predators but also by being an alarm signal for conspecifics? This review examines these issues, within a broader context of passive and active chemical defensive secretions. It focuses on recent work on mechanisms of defense by inking in sea hares (Aplysia) and extends what we have learned about sea hares to other molluscs including the cephalopods.
Collapse
Affiliation(s)
- Charles D Derby
- Department of Biology, Brains & Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010, USA.
| |
Collapse
|
46
|
Zimmer RK, Ferrer RP. Neuroecology, chemical defense, and the keystone species concept. THE BIOLOGICAL BULLETIN 2007; 213:208-225. [PMID: 18083963 DOI: 10.2307/25066641] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Neuroecology unifies principles from diverse disciplines, scaling from biophysical properties of nerve and muscle cells to community-wide impacts of trophic interactions. Here, these principles are used as a common fabric, woven from threads of chemosensory physiology, behavior, and population and community ecology. The "keystone species" concept, for example, is seminal in ecological theory. It defines a species whose impacts on communities are far greater than would be predicted from its relative abundance and biomass. Similarly, neurotoxins could function in keystone roles. They are rare within natural habitats but exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These molecules compose some of the most potent natural poisons ever described, and they are introduced into communities by one, or only a few, host species. Functioning as voltage-gated sodium channel blockers for nerve and muscle cells, TTX and STX serve in chemical defense. When borrowed by resistant consumer species, however, they are used either in chemical defense against higher order predators or for chemical communication as chemosensory excitants. Cascading effects of the compounds profoundly impact community-wide attributes, including species compositions and rates of material exchange. Thus, a diverse array of physiological traits, expressed differentially across many species, renders TTX and STX fully functional as keystone molecules, with vast ecological consequences at multiple trophic levels.
Collapse
Affiliation(s)
- Richard K Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA.
| | | |
Collapse
|
47
|
Kicklighter CE, Germann M, Kamio M, Derby CD. Molecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2007.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Shabani S, Yaldiz S, Vu L, Derby CD. Acidity enhances the effectiveness of active chemical defensive secretions of sea hares, Aplysia californica, against spiny lobsters, Panulirus interruptus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1195-204. [PMID: 17912533 DOI: 10.1007/s00359-007-0271-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/01/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
Sea hares such as Aplysia californica, gastropod molluscs lacking a protective shell, can release a purple cloud of chemicals when vigorously attacked by predators. This active chemical defense is composed of two glandular secretions, ink and opaline, both of which contain an array of compounds. This secretion defends sea hares against predators such as California spiny lobsters Panulirus interruptus via multiple mechanisms, one of which is phagomimicry, in which secretions containing feeding chemicals attract and distract predators toward the secretion and away from the sea hare. We show here that ink and opaline are highly acidic, both having a pH of approximately 5. We examined if the acidity of ink and opaline affects their phagomimetic properties. We tested behavioral and electrophysiological responses of chemoreceptor neurons in the olfactory and gustatory organs of P. interruptus, to ink and opaline of A. californica within their natural range of pH values, from approximately 5 to 8. Both behavioral and electrophysiological responses to ink and opaline were enhanced at low pH, and low pH alone accounted for most of this effect. Our data suggest that acidity enhances the phagomimetic chemical defense of sea hares.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Department of Biology, Brains and Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | |
Collapse
|
49
|
Derby CD, Kicklighter CE, Johnson PM, Zhang X. Chemical Composition of Inks of Diverse Marine Molluscs Suggests Convergent Chemical Defenses. J Chem Ecol 2007; 33:1105-13. [PMID: 17393278 DOI: 10.1007/s10886-007-9279-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 01/09/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense.
Collapse
Affiliation(s)
- Charles D Derby
- Department of Biology, Brains & Behavior Program and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
This review covers the literature published in 2005 for marine natural products, with 704 citations (493 for the period January to December 2005) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (812 for 2005), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|