1
|
Leerberg DM, Avillion GB, Priya R, Stainier DY, Yelon D. Regionalized regulation of actomyosin organization influences cardiomyocyte cell shape changes during chamber curvature formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631779. [PMID: 39829878 PMCID: PMC11741281 DOI: 10.1101/2025.01.07.631779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cardiac chambers emerge from a heart tube that balloons and bends to create expanded ventricular and atrial structures, each containing a convex outer curvature (OC) and a recessed inner curvature (IC). A comprehensive understanding of the cellular and molecular mechanisms underlying the formation of these characteristic curvatures remains lacking. Here, we demonstrate in zebrafish that the initially similar populations of OC and IC ventricular cardiomyocytes diverge in the organization of their actomyosin cytoskeleton and subsequently acquire distinct OC and IC cell shapes. Altering actomyosin dynamics hinders cell shape changes in the OC, and mosaic analyses indicate that actomyosin regulates cardiomyocyte shape in a cell-autonomous manner. Additionally, both blood flow and the transcription factor Tbx5a influence the basal enrichment of actomyosin and squamous cell morphologies in the OC. Together, our findings demonstrate that intrinsic and extrinsic factors intersect to control actomyosin organization in OC cardiomyocytes, which in turn promotes the cell shape changes that drive curvature morphogenesis.
Collapse
Affiliation(s)
- Dena M. Leerberg
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel B. Avillion
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
3
|
Matsuura Y, Kaizuka K, Inoue YH. Essential Role of COPII Proteins in Maintaining the Contractile Ring Anchoring to the Plasma Membrane during Cytokinesis in Drosophila Male Meiosis. Int J Mol Sci 2024; 25:4526. [PMID: 38674111 PMCID: PMC11050551 DOI: 10.3390/ijms25084526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila.
Collapse
Affiliation(s)
- Yoshiki Matsuura
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| | - Kana Kaizuka
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| |
Collapse
|
4
|
Advedissian T, Frémont S, Echard A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat Commun 2024; 15:1949. [PMID: 38431632 PMCID: PMC10908825 DOI: 10.1038/s41467-024-46062-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.
Collapse
Affiliation(s)
- Tamara Advedissian
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
5
|
Arima T, Okita K, Yumura S. Dynamics of actomyosin filaments in the contractile ring revealed by ultrastructural analysis. Genes Cells 2023; 28:845-856. [PMID: 37844904 DOI: 10.1111/gtc.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cytokinesis, the final process of cell division, involves the accumulation of actin and myosin II filaments at the cell's equator, forming a contractile ring that facilitates the division into two daughter cells. While light microscopy has provided valuable insights into the molecular mechanism of this process, it has limitations in examining individual filaments in vivo. In this study, we utilized transmission electron microscopy to observe actin and myosin II filaments in the contractile rings of dividing Dictyostelium cells. To synchronize cytokinesis, we developed a novel method that allowed us to visualize dividing cells undergoing cytokinesis with a frequency as high as 18%. This improvement enabled us to examine the lengths and alignments of individual filaments within the contractile rings. As the furrow constricted, the length of actin filaments gradually decreased. Moreover, both actin and myosin II filaments reoriented perpendicularly to the long axis during furrow constriction. Through experiments involving myosin II null cells, we discovered that myosin II plays a role in regulating both the lengths and alignments of actin filaments. Additionally, dynamin-like protein A was found to contribute to regulating the length of actin filaments, while cortexillins were involved in regulating their alignment.
Collapse
Affiliation(s)
- Takeru Arima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Keisuke Okita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
7
|
Nguyen LTS, Robinson DN. The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery. J Cell Biol 2022; 221:213504. [PMID: 36165849 PMCID: PMC9523886 DOI: 10.1083/jcb.202202063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/11/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Saito T, Matsunaga D, Deguchi S. Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching. PLoS One 2022; 17:e0276909. [PMCID: PMC9639824 DOI: 10.1371/journal.pone.0276909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin–myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Tohoku, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo, Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
9
|
Silva AM, Chan FY, Norman MJ, Sobral AF, Zanin E, Gassmann R, Belmonte JM, Carvalho AX. β-heavy-spectrin stabilizes the constricting contractile ring during cytokinesis. J Cell Biol 2022; 222:213538. [PMID: 36219157 PMCID: PMC9559602 DOI: 10.1083/jcb.202202024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Cytokinesis requires the constriction of an actomyosin-based contractile ring and involves multiple F-actin crosslinkers. We show that partial depletion of the C. elegans cytokinetic formin generates contractile rings with low F-actin levels that constrict but are structurally fragile, and we use this background to investigate the roles of the crosslinkers plastin/PLST-1 and β-heavy-spectrin/SMA-1 during ring constriction. We show that the removal of PLST-1 or SMA-1 has opposite effects on the structural integrity of fragile rings. PLST-1 loss reduces cortical tension that resists ring constriction and makes fragile rings less prone to ruptures and regressions, whereas SMA-1 loss exacerbates structural defects, leading to frequent ruptures and cytokinesis failure. Fragile rings without SMA-1 or containing a shorter SMA-1, repeatedly rupture at the same site, and SMA-1::GFP accumulates at repair sites in fragile rings and in rings cut by laser microsurgery. These results establish that β-heavy-spectrin stabilizes the constricting ring and reveals the importance of β-heavy-spectrin size for network connectivity at low F-actin density.
Collapse
Affiliation(s)
- Ana Marta Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Michael J. Norman
- Department of Physics, North Carolina State University, Raleigh, NC,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Ana Filipa Sobral
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reto Gassmann
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Julio Monti Belmonte
- Department of Physics, North Carolina State University, Raleigh, NC,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Ana Xavier Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal,Correspondence to Ana Xavier Carvalho:
| |
Collapse
|
10
|
Krendel M, Gauthier NC. Building the phagocytic cup on an actin scaffold. Curr Opin Cell Biol 2022; 77:102112. [PMID: 35820329 PMCID: PMC10078615 DOI: 10.1016/j.ceb.2022.102112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
Cells ingest large particles, such as bacteria, viruses, or apoptotic cells, via the process of phagocytosis, which involves formation of an actin-rich structure known as the phagocytic cup. Phagocytic cup assembly and closure results from a concerted action of phagocytic receptors, regulators of actin polymerization, and myosin motors. Recent studies using advanced imaging approaches and biophysical techniques have revealed new information regarding phagocytic cup architecture, regulation of actin assembly, and the distribution, direction, and magnitude of the forces produced by the cytoskeletal elements that form the cup. These findings provide insights into the mechanisms leading to the assembly, expansion, and closure of phagocytic cups. The new data show that engulfment and internalization of phagocytic targets rely on several distinct yet complementary mechanisms that support the robust uptake of foreign objects and may be precisely tailored to the demands of specific phagocytic pathways.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Nils C Gauthier
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| |
Collapse
|
11
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
12
|
Malla M, Pollard TD, Chen Q. Counting actin in contractile rings reveals novel contributions of cofilin and type II myosins to fission yeast cytokinesis. Mol Biol Cell 2022; 33:ar51. [PMID: 34613787 PMCID: PMC9265160 DOI: 10.1091/mbc.e21-08-0376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Cytokinesis by animals, fungi, and amoebas depends on actomyosin contractile rings, which are stabilized by continuous turnover of actin filaments. Remarkably little is known about the amount of polymerized actin in contractile rings, so we used low concentrations of GFP-Lifeact to count total polymerized actin molecules in the contractile rings of live fission yeast cells. Contractile rings of wild-type cells accumulated polymerized actin molecules at 4900/min to a peak number of ∼198,000 followed by a loss of actin at 5400/min throughout ring constriction. In adf1-M3 mutant cells with cofilin that severs actin filaments poorly, contractile rings accumulated polymerized actin at twice the normal rate and eventually had almost twofold more actin along with a proportional increase in type II myosins Myo2, Myp2, and formin Cdc12. Although 30% of adf1-M3 mutant cells failed to constrict their rings fully, the rest lost actin from the rings at the wild-type rates. Mutations of type II myosins Myo2 and Myp2 reduced contractile ring actin filaments by half and slowed the rate of actin loss from the rings.
Collapse
Affiliation(s)
- Mamata Malla
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
| | - Thomas D. Pollard
- Departments of Molecular Cellular and Developmental Biology
- Molecular Biophysics and Biochemistry, and
- Cell Biology, Yale University, New Haven, CT 06520-8103
| | - Qian Chen
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
- Departments of Molecular Cellular and Developmental Biology
| |
Collapse
|
13
|
Staddon MF, Munro EM, Banerjee S. Pulsatile contractions and pattern formation in excitable actomyosin cortex. PLoS Comput Biol 2022; 18:e1009981. [PMID: 35353813 PMCID: PMC9000090 DOI: 10.1371/journal.pcbi.1009981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence. The cellular actin cortex is a dynamic sub-membranous network of filamentous actin, myosin motors, and other accessory proteins that regulates the ability of cells to maintain or change shapes. While the key molecular components and mechanical properties of the actin cortex have been characterized, the ways in which biochemical signalling and mechanical forces interact to regulate cortex behaviours remain poorly understood. In this article, we develop a mathematical model for the actomyosin cortex that combines the reaction-diffusion dynamics of signalling proteins with active force generation by actomyosin networks. Using this model, we investigate how the feedback between mechanics and biochemical signalling regulates the propagation of actomyosin flows, mechanical stresses, and pattern formation in the cortex. Our work reveals a variety of ways in which the cortex can tune the dynamic coupling between biochemical activity, force production, and advective transport to control mechanical behaviours.
Collapse
Affiliation(s)
- Michael F. Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Edwin M. Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Taneja N, Baillargeon SM, Burnette DT. Myosin light chain kinase-driven myosin II turnover regulates actin cortex contractility during mitosis. Mol Biol Cell 2021; 32:br3. [PMID: 34319762 PMCID: PMC8684764 DOI: 10.1091/mbc.e20-09-0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022] Open
Abstract
Force generation by the molecular motor myosin II (MII) at the actin cortex is a universal feature of animal cells. Despite its central role in driving cell shape changes, the mechanisms underlying MII regulation at the actin cortex remain incompletely understood. Here we show that myosin light chain kinase (MLCK) promotes MII turnover at the mitotic cortex. Inhibition of MLCK resulted in an alteration of the relative levels of phosphorylated regulatory light chain (RLC), with MLCK preferentially creating a short-lived pRLC species and Rho-associated kinase (ROCK) preferentially creating a stable ppRLC species during metaphase. Slower turnover of MII and altered RLC homeostasis on MLCK inhibition correlated with increased cortex tension, driving increased membrane bleb initiation and growth, but reduced bleb retraction during mitosis. Taken together, we show that ROCK and MLCK play distinct roles at the actin cortex during mitosis; ROCK activity is required for recruitment of MII to the cortex, while MLCK activity promotes MII turnover. Our findings support the growing evidence that MII turnover is an essential dynamic process influencing the mechanical output of the actin cortex.
Collapse
Affiliation(s)
- Nilay Taneja
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Sophie M. Baillargeon
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Dylan T. Burnette
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
15
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Bellingham-Johnstun K, Anders EC, Ravi J, Bruinsma C, Laplante C. Molecular organization of cytokinesis node predicts the constriction rate of the contractile ring. J Cell Biol 2021; 220:211718. [PMID: 33496728 PMCID: PMC7844425 DOI: 10.1083/jcb.202008032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The molecular organization of cytokinesis proteins governs contractile ring function. We used single molecule localization microscopy in live cells to elucidate the molecular organization of cytokinesis proteins and relate it to the constriction rate of the contractile ring. Wild-type fission yeast cells assemble contractile rings by the coalescence of cortical proteins complexes called nodes whereas cells without Anillin/Mid1p (Δmid1) lack visible nodes yet assemble contractile rings competent for constriction from the looping of strands. We leveraged the Δmid1 contractile ring assembly mechanism to determine how two distinct molecular organizations, nodes versus strands, can yield functional contractile rings. Contrary to previous interpretations, nodes assemble in Δmid1 cells. Our results suggest that Myo2p heads condense upon interaction with actin filaments and an excess number of Myo2p heads bound to actin filaments hinders constriction thus reducing the constriction rate. Our work establishes a predictive correlation between the molecular organization of nodes and the behavior of the contractile ring.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Erica Casey Anders
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - John Ravi
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Christina Bruinsma
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
17
|
Yamazaki S, Ueno Y, Hosoki R, Saito T, Idehara T, Yamaguchi Y, Otani C, Ogawa Y, Harata M, Hoshina H. THz irradiation inhibits cell division by affecting actin dynamics. PLoS One 2021; 16:e0248381. [PMID: 34339441 PMCID: PMC8328307 DOI: 10.1371/journal.pone.0248381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
Biological phenomena induced by terahertz (THz) irradiation are described in recent reports, but underlying mechanisms, structural and dynamical change of specific molecules are still unclear. In this paper, we performed time-lapse morphological analysis of human cells and found that THz irradiation halts cell division at cytokinesis. At the end of cytokinesis, the contractile ring, which consists of filamentous actin (F-actin), needs to disappear; however, it remained for 1 hour under THz irradiation. Induction of the functional structures of F-actin was also observed in interphase cells. Similar phenomena were also observed under chemical treatment (jasplakinolide), indicating that THz irradiation assists actin polymerization. We previously reported that THz irradiation enhances the polymerization of purified actin in vitro; our current work shows that it increases cytoplasmic F-actin in vivo. Thus, we identified one of the key biomechanisms affected by THz waves.
Collapse
Affiliation(s)
- Shota Yamazaki
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| | - Yuya Ueno
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Hosoki
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takanori Saito
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Toshitaka Idehara
- Research Center for Development of Far-Infrared Region, University of Fukui (FIR UF), Bunkyo, Fukui, Japan
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui (FIR UF), Bunkyo, Fukui, Japan
| | - Chiko Otani
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
| | - Yuichi Ogawa
- Laboratory of Bio-Sensing Engineering, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| | - Hiromichi Hoshina
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| |
Collapse
|
18
|
Qian A, Hsieh TB, Hossain MM, Lin JJC, Jin JP. A rapid degradation of calponin 2 is required for cytokinesis. Am J Physiol Cell Physiol 2021; 321:C355-C368. [PMID: 34133238 DOI: 10.1152/ajpcell.00569.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calponin 2 is an actin cytoskeleton-associated protein and plays a role in regulating cell motility-related functions such as phagocytosis, migration, and division. We previously reported that overexpression of calponin 2 inhibits the rate of cell proliferation. To investigate the underlying mechanism, our present study found that the levels of endogenous calponin 2 in NIH3T3 and HEK293 cells rapidly decreased before cell division characterized by an absence at the actin contractile ring. In cells lacking endogenous calponin 2, transfective expression of GFP-fusion calponin 2 inhibited cell proliferation similar to that of nonfusion calponin 2. Fluorescent imaging studies of mitotic cells indicated that a proper level of calponin 2 expression and effective degradation during cytokinesis are necessary for normal cell division. Computer-assisted dynamic image analysis of dividing cells revealed that overexpression of calponin 2 significantly affects motility and shape behaviors of cells only on the interval from the start of anaphase to the start of cytokinesis, i.e., the pre-cytokinesis phase, but not on the interval from the start of cytokinesis to 50% completion of cytokinesis. The pre-cytokinesis degradation of calponin 2 was attenuated by MG132 inhibition of the ubiquitin proteasome and inhibitor of protein kinase C (PKC), suggesting that PKC phosphorylation-triggered degradation of calponin 2 could determine the rate of cytokinesis. The novel role of calponin 2 in regulating the rate of cytokinesis may be targeted for therapeutic applications such as in an inhibition of malignant tumor growth.
Collapse
Affiliation(s)
- Airong Qian
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Moazzem Hossain
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jim J-C Lin
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
19
|
Ramirez I, Gholkar AA, Velasquez EF, Guo X, Tofig B, Damoiseaux R, Torres JZ. The myosin regulatory light chain Myl5 localizes to mitotic spindle poles and is required for proper cell division. Cytoskeleton (Hoboken) 2021; 78:23-35. [PMID: 33641240 DOI: 10.1002/cm.21654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility, and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. We show that Myl5 localizes to the leading edge and filopodia during interphase and to mitotic spindle poles and spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to defects in mitotic spindle assembly, chromosome congression, and chromosome segregation and to a slower transition through mitosis. Furthermore, Myl5 bound to MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results suggest that Myl5 is important for cell division and that it may be performing its function through MYO10.
Collapse
Affiliation(s)
- Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
20
|
Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 2021; 134:jcs.248815. [PMID: 33262310 DOI: 10.1242/jcs.248815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Juri Habicht
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaonan Zhang
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edith Emmings
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Chinowsky CR, Pinette JA, Meenderink LM, Lau KS, Tyska MJ. Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Mol Biol Cell 2020; 31:2803-2815. [PMID: 33026933 PMCID: PMC7851865 DOI: 10.1091/mbc.e20-09-0582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.
Collapse
Affiliation(s)
- Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
22
|
Nolan JC, Salvucci M, Carberry S, Barat A, Segura MF, Fenn J, Prehn JHM, Stallings RL, Piskareva O. A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro. Front Cell Dev Biol 2020; 8:559553. [PMID: 33330445 PMCID: PMC7714770 DOI: 10.3389/fcell.2020.559553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).
Collapse
Affiliation(s)
- John C Nolan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Steven Carberry
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ana Barat
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Justine Fenn
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Raymond L Stallings
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Olga Piskareva
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
23
|
Vermeulen S, Roumans N, Honig F, Carlier A, Hebels DG, Eren AD, Dijke PT, Vasilevich A, de Boer J. Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells. Biomaterials 2020; 259:120331. [DOI: 10.1016/j.biomaterials.2020.120331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
24
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Chaubet L, Chaudhary AR, Heris HK, Ehrlicher AJ, Hendricks AG. Dynamic actin cross-linking governs the cytoplasm's transition to fluid-like behavior. Mol Biol Cell 2020; 31:1744-1752. [PMID: 32579489 PMCID: PMC7521843 DOI: 10.1091/mbc.e19-09-0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cells precisely control their mechanical properties to organize and differentiate into tissues. The architecture and connectivity of cytoskeletal filaments change in response to mechanical and biochemical cues, allowing the cell to rapidly tune its mechanics from highly cross-linked, elastic networks to weakly cross-linked viscous networks. While the role of actin cross-linking in controlling actin network mechanics is well-characterized in purified actin networks, its mechanical role in the cytoplasm of living cells remains unknown. Here, we probe the frequency-dependent intracellular viscoelastic properties of living cells using multifrequency excitation and in situ optical trap calibration. At long timescales in the intracellular environment, we observe that the cytoskeleton becomes fluid-like. The mechanics are well-captured by a model in which actin filaments are dynamically connected by a single dominant cross-linker. A disease-causing point mutation (K255E) of the actin cross-linker α-actinin 4 (ACTN4) causes its binding kinetics to be insensitive to tension. Under normal conditions, the viscoelastic properties of wild-type (WT) and K255E+/- cells are similar. However, when tension is reduced through myosin II inhibition, WT cells relax 3× faster to the fluid-like regime while K255E+/- cells are not affected. These results indicate that dynamic actin cross-linking enables the cytoplasm to flow at long timescales.
Collapse
Affiliation(s)
- Loïc Chaubet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | | - Hossein K. Heris
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Adam G. Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
27
|
Zambon P, Palani S, Jadhav SS, Gayathri P, Balasubramanian MK. Genetic suppression of defective profilin by attenuated Myosin II reveals a potential role for Myosin II in actin dynamics in vivo in fission yeast. Mol Biol Cell 2020; 31:2107-2114. [PMID: 32614646 PMCID: PMC7530902 DOI: 10.1091/mbc.e20-04-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays a variety of roles in eukaryotic cell physiology, ranging from cell polarity and migration to cytokinesis. Key to the function of the actin cytoskeleton is the mechanisms that control its assembly, stability, and turnover. Through genetic analyses in Schizosaccharomyces pombe, we found that myo2-S1 (myo2-G515D), a Myosin II mutant allele, was capable of rescuing lethality caused by partial defects in actin nucleation/stability caused, for example, through compromised function of the actin-binding protein Cdc3-profilin. The mutation in myo2-S1 affects the activation loop of Myosin II, which is involved in physical interaction with subdomain 1 of actin and in stimulating the ATPase activity of Myosin. Consistently, actomyosin rings in myo2-S1 cell ghosts were unstable and severely compromised in contraction on ATP addition. These studies strongly suggest a role for Myo2 in actin cytoskeletal disassembly and turnover in vivo, and that compromise of this activity leads to genetic suppression of mutants defective in actin filament assembly/stability at the division site.
Collapse
Affiliation(s)
- Paola Zambon
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saravanan Palani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shekhar Sanjay Jadhav
- Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Genome-Wide Identification and Comparative Analysis of Myosin Gene Family in Four Major Cotton Species. Genes (Basel) 2020; 11:genes11070731. [PMID: 32630134 PMCID: PMC7397272 DOI: 10.3390/genes11070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Myosin protein as a molecular motor, binding with Actin, plays a significant role in various physiological activities such as cell division, movement, migration, and morphology; however, there are only a few studies on plant Myosin gene family, particularly in cotton. A total of 114 Myosin genes were found in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum. All Myosins could be grouped into six groups, and for each group of these genes, similar gene structures are found. Study of evolution suggested that the whole genome duplications event occurring about 13-20 MYA (millions of years ago) is the key explanation for Myosins expanse in cotton. Cis-element and qPCR analysis revealed that plant hormones such as abscisic acid, methyl jasmonate, and salicylic acid can control the expression of Myosins. This research provides useful information on the function of Myosin genes in regulating plant growth, production, and fiber elongation for further studies.
Collapse
|
29
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N. SRRF-Stream Imaging of Optogenetically Controlled Furrow Formation Shows Localized and Coordinated Endocytosis and Exocytosis Mediating Membrane Remodeling. ACS Synth Biol 2020; 9:902-919. [PMID: 32155337 DOI: 10.1021/acssynbio.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension, and endocytosis. FRAP, 4-D imaging, and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
Collapse
|
31
|
Cytokinesis in Eukaryotic Cells: The Furrow Complexity at a Glance. Cells 2020; 9:cells9020271. [PMID: 31979090 PMCID: PMC7072619 DOI: 10.3390/cells9020271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
The duplication cycle is the fascinating process that, starting from a cell, results in the formation of two daughter cells and it is essential for life. Cytokinesis is the final step of the cell cycle, it is a very complex phase, and is a concert of forces, remodeling, trafficking, and cell signaling. All of the steps of cell division must be properly coordinated with each other to faithfully segregate the genetic material and this task is fundamental for generating viable cells. Given the importance of this process, molecular pathways and proteins that are involved in cytokinesis are conserved from yeast to humans. In this review, we describe symmetric and asymmetric cell division in animal cell and in a model organism, budding yeast. In addition, we illustrate the surveillance mechanisms that ensure a proper cell division and discuss the connections with normal cell proliferation and organs development and with the occurrence of human diseases.
Collapse
|
32
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Osório DS, Chan FY, Saramago J, Leite J, Silva AM, Sobral AF, Gassmann R, Carvalho AX. Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development 2019; 146:dev.179150. [PMID: 31582415 PMCID: PMC6857588 DOI: 10.1242/dev.179150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
Cytokinesis in animal cells requires the assembly and constriction of a contractile actomyosin ring. Non-muscle myosin II is essential for cytokinesis, but the role of its motor activity remains unclear. Here, we examine cytokinesis in C. elegans embryos expressing non-muscle myosin motor mutants generated by genome editing. Two non-muscle motor-dead myosins capable of binding F-actin do not support cytokinesis in the one-cell embryo, and two partially motor-impaired myosins delay cytokinesis and render rings more sensitive to reduced myosin levels. Further analysis of myosin mutants suggests that it is myosin motor activity, and not the ability of myosin to crosslink F-actin, that drives the alignment and compaction of F-actin bundles during contractile ring assembly, and that myosin motor activity sets the pace of contractile ring constriction. We conclude that myosin motor activity is required at all stages of cytokinesis. Finally, characterization of the corresponding motor mutations in C. elegans major muscle myosin shows that motor activity is required for muscle contraction but is dispensable for F-actin organization in adult muscles. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: The motor activity of non-muscle myosin II is essential for cytokinesis and contributes to all stages of the process in C. elegans embryos.
Collapse
Affiliation(s)
- Daniel S Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Leite
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Sobral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
34
|
Ni Q, Papoian GA. Turnover versus treadmilling in actin network assembly and remodeling. Cytoskeleton (Hoboken) 2019; 76:562-570. [PMID: 31525282 DOI: 10.1002/cm.21564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/03/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Actin networks are highly dynamic cytoskeletal structures that continuously undergo structural remodeling. One prominent way to probe these processes is via Fluorescence Recovery After Photobleaching (FRAP), which can be used to estimate the rate of turnover for filamentous actin monomers. It is thought that head-to-tail treadmilling and de novo filament nucleation constitute two primary mechanisms underlying turnover kinetics. More generally, these self-assembly activities are responsible for many important cellular functions such as force generation, cellular shape dynamics, and cellular motility. In what relative proportions filament treadmilling and de novo filament nucleation contribute to actin network turnover is still not fully understood. We used an advanced stochastic reaction-diffusion model in three dimensions, MEDYAN, to study turnover dynamics of actin networks containing Arp2/3, formin and capping protein at experimentally meaningful length- and time-scales. Our results reveal that, most commonly, treadmilling of older filaments is the main contributor to actin network turnover. On the other hand, although turnover and treadmilling are often used interchangeably, we show clear instances where this assumption would not be justified, for example, finding that rapid turnover is accompanied by slow treadmilling in highly dendritic Arp2/3 networks.
Collapse
Affiliation(s)
- Qin Ni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.,Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| |
Collapse
|
35
|
The observation of high hypotonicity manipulating cell division. Heliyon 2019; 5:e02095. [PMID: 31508515 PMCID: PMC6726586 DOI: 10.1016/j.heliyon.2019.e02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/12/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022] Open
Abstract
We report a morphological manipulation of cell division which was achieved by changing the environment from isotonic to highly hypotonic. Cells at telophase were observed to undergo a morphological reversal to anaphase, with the contractile ring being reopened and the cell shape reversing from dumb-bell back to spherical. Once restored to isosmotic environment, the reversed cells would either continue to divide or instead to form binuclear cells that further proliferated in runaway fashions. The immunofluorescent staining of tubulins and myosin II indicated that the hypotonic stress affected the accumulation of tubulins and myosin II at the contractile ring. Distinct from previous studies using specific chemical reagents, the present study provides a simple method to manipulate cell division. The morphological reversal is the adaption of dividing cells to the environmental change. The observation opens a new window to understand cell division mechanisms and runaways.
Collapse
|
36
|
Chen S, Liu M, Huang H, Li B, Zhao H, Feng XQ, Zhao HP. Heat Stress-Induced Multiple Multipolar Divisions of Human Cancer Cells. Cells 2019; 8:E888. [PMID: 31412680 PMCID: PMC6721694 DOI: 10.3390/cells8080888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022] Open
Abstract
Multipolar divisions of heated cells has long been thought to stem from centrosome aberrations of cells directly caused by heat stress. In this paper, through long-term live-cell imaging, we provide direct cellular evidences to demonstrate that heat stress can promote multiple multipolar divisions of MGC-803 and MCF-7 cells. Our results show that, besides facilitating centrosome aberration, polyploidy induced by heat stress is another mechanism that causes multipolar cell divisions, in which polyploid cancer cells engendered by mitotic slippage, cytokinesis failure, and cell fusion. Furthermore, we also find that the fates of theses polyploid cells depend on their origins, in the sense that the polyploid cells generated by mitotic slippage experience bipolar divisions with a higher rate than multipolar divisions, while those polyploid cells induced by both cytokinesis failure and cell fusion have a higher frequency of multipolar divisions compared with bipolar divisions. This work indicates that heat stress-induced multiple multipolar divisions of cancer cells usually produce aneuploid daughter cells, and might lead to genetically unstable cancer cells and facilitate tumor heterogeneity.
Collapse
Affiliation(s)
- Shaoyong Chen
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Mingyue Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huiming Huang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Hong-Ping Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Habicht J, Mooneyham A, Shetty M, Zhang X, Shridhar V, Winterhoff B, Zhang Y, Cepela J, Starr T, Lou E, Bazzaro M. UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biol Ther 2019; 20:1304-1313. [PMID: 31328624 PMCID: PMC6783119 DOI: 10.1080/15384047.2019.1632637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.
Collapse
Affiliation(s)
- Juri Habicht
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Medicine, Brandenburg Medical School Theodor Fontane , Neuruppin , Germany
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of MN , Minneapolis , MN , USA
| | - Jason Cepela
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Timothy Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota , Minneapolis , MN , USA.,Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis , MN , USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
38
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Booth AJ, Yue Z, Eykelenboom JK, Stiff T, Luxton GG, Hochegger H, Tanaka TU. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. eLife 2019; 8:46902. [PMID: 31264963 PMCID: PMC6634967 DOI: 10.7554/elife.46902] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus, we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome-spindle interactions.
Collapse
Affiliation(s)
- Alexander Jr Booth
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Gw Gant Luxton
- College of Biological Sciences, University of Minnesota, Minneapolis, United States
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
40
|
Pocaterra A, Santinon G, Romani P, Brian I, Dimitracopoulos A, Ghisleni A, Carnicer-Lombarte A, Forcato M, Braghetta P, Montagner M, Galuppini F, Aragona M, Pennelli G, Bicciato S, Gauthier N, Franze K, Dupont S. F-actin dynamics regulates mammalian organ growth and cell fate maintenance. J Hepatol 2019; 71:130-142. [PMID: 30878582 DOI: 10.1016/j.jhep.2019.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.
Collapse
Affiliation(s)
| | - Giulia Santinon
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Patrizia Romani
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Irene Brian
- Department of Molecular Medicine DMM, University of Padova, Italy
| | | | - Andrea Ghisleni
- Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM Institute FIRC for Molecular Oncology), Milan, Italy
| | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Paola Braghetta
- Department of Molecular Medicine DMM, University of Padova, Italy
| | - Marco Montagner
- Department of Molecular Medicine DMM, University of Padova, Italy
| | | | | | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Nils Gauthier
- Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM Institute FIRC for Molecular Oncology), Milan, Italy
| | - Kristian Franze
- Department of Physiology Development and Neuroscience, University of Cambridge, UK
| | - Sirio Dupont
- Department of Molecular Medicine DMM, University of Padova, Italy.
| |
Collapse
|
41
|
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J Cell Sci 2019; 132:132/12/jcs226928. [PMID: 31209062 DOI: 10.1242/jcs.226928] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal cells, amoebas and yeast divide using a force-generating, actin- and myosin-based contractile ring or 'cytokinetic ring' (CR). Despite intensive research, questions remain about the spatial organization of CR components, the mechanism by which the CR generates force, and how other cellular processes are coordinated with the CR for successful membrane ingression and ultimate cell separation. This Review highlights new findings about the spatial relationship of the CR to the plasma membrane and the arrangement of molecules within the CR from studies using advanced microscopy techniques, as well as mechanistic information obtained from in vitro approaches. We also consider advances in understanding coordinated cellular processes that impact the architecture and function of the CR.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
42
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|
43
|
Kang B, Jo S, Baek J, Nakamura F, Hwang W, Lee H. Role of mechanical flow for actin network organization. Acta Biomater 2019; 90:217-224. [PMID: 30928733 DOI: 10.1016/j.actbio.2019.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
The major cytoskeletal protein actin forms complex networks to provide structural support and perform vital functions in cells. In vitro studies have revealed that the structure of the higher-order actin network is determined primarily by the type of actin binding protein (ABP). By comparison, there are far fewer studies about the role of the mechanical environment for the organization of the actin network. In particular, the duration over which cells reorganize their shape in response to functional demands is relatively short compared to the in vitro protein polymerization time, suggesting that such changes can influence the actin network formation. We hypothesize that mechanical flows in the cytoplasm generated by exogenous and endogenous stimulation play a key role in the spatiotemporal regulation of the actin architecture. To mimic cytoplasmic streaming, we generated a circulating flow using surface acoustic wave in a microfluidic channel and investigated its effect on the formation of networks by actin and ABPs. We found that the mechanical flow affected the orientation and thickness of actin bundles, depending on the type and concentration of ABPs. Our computational model shows that the extent of alignment and thickness of actin bundle are determined by the balance between flow-induced drag forces and the tendency of ABPs to crosslink actin filaments at given angles. These results suggest that local intracellular flows can affect the assembly dynamics and morphology of the actin cytoskeleton. STATEMENT OF SIGNIFICANCE: Spatiotemporal regulation of actin cytoskeleton structure is essential in many cellular functions. It has been shown that mechanical cues including an applied force and geometric boundary can alter the structural characteristics of actin network. However, even though the cytoplasm accounts for a large portion of the cell volume, the effect of the cytoplasmic streaming flow produced during cell dynamics on actin network organization has not been reported. In this study, we demonstrated that the mechanical flow exerted during actin network organization play an important role in determining the orientation and dimension of actin bundle network. Our result will be beneficial in understanding the mechanism of the actin network reorganization occurred during physiological and pathological processes.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghan Jo
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghyeok Baek
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Wonmuk Hwang
- Departments of Biomedical Engineering, Materials Science & Engineering, and Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
44
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
45
|
Carter TY, Gadwala S, Chougule AB, Bui APN, Sanders AC, Chaerkady R, Cormier N, Cole RN, Thomas JH. Actomyosin contraction during cellularization is regulated in part by Src64 control of Actin 5C protein levels. Genesis 2019; 57:e23297. [PMID: 30974046 DOI: 10.1002/dvg.23297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.
Collapse
Affiliation(s)
- Tammy Y Carter
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Swetha Gadwala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashish B Chougule
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Anh P N Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alex C Sanders
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathaly Cormier
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
46
|
Wang K, Wloka C, Bi E. Non-muscle Myosin-II Is Required for the Generation of a Constriction Site for Subsequent Abscission. iScience 2019; 13:69-81. [PMID: 30825839 PMCID: PMC6396101 DOI: 10.1016/j.isci.2019.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
It remains unknown when, where, and how the site of abscission is generated during cytokinesis. Here, we show that the sites of constriction, i.e., the sites of future abscission, are initially formed at the ends of the intercellular bridge during early midbody stage, and that these sites are associated with the non-muscle myosin-IIB (not myosin-IIA), actin filaments, and septin 9 until abscission. The ESCRT-III component CHMP4B localizes to the midbody and "spreads" to the site of abscission only during late midbody stage. Strikingly, inhibition of myosin-II motor activity by a low dose of Blebbistatin completely abolishes the formation of the constriction sites, resulting in the localization of all the above-mentioned components to the midbody region. These data strongly suggest that a secondary actomyosin ring provides the primary driving force for the thinning of the intercellular bridge to allow ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands.
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
47
|
Cheffings TH, Burroughs NJ, Balasubramanian MK. Actin turnover ensures uniform tension distribution during cytokinetic actomyosin ring contraction. Mol Biol Cell 2019; 30:933-941. [PMID: 30759055 PMCID: PMC6589908 DOI: 10.1091/mbc.e18-08-0511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In many eukaryotes, cytokinesis is facilitated by the contraction of an actomyosin ring (AMR). The exact mechanisms that lead to this contractility are unknown, although some models posit that actin turnover in the AMR is essential. The effect of reduced actin dynamics during AMR formation has been well studied in Schizosaccharomyces pombe; however, the corresponding effects on AMR contraction are not well understood. By using mutants of the fission yeast actin severing protein Adf1, we observed that contracting AMRs display a "peeling" phenotype, where bundles of actin and myosin peel off from one side of the AMR, and are pulled across to the opposite side. This occurs multiple times during cytokinesis and is dependent on the activity of myosins Myo2, Myp2, and Myo51. We found that the distribution of Myo2 in the AMR anticorrelates with the location of peeling events, suggesting that peeling is caused by a nonuniform tension distribution around the AMR, and that one of the roles of actin turnover is to maintain a uniform tension distribution around the AMR.
Collapse
Affiliation(s)
- Thomas H Cheffings
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School.,Zeeman Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nigel J Burroughs
- Zeeman Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.,Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School
| |
Collapse
|
48
|
Mooneyham A, Iizuka Y, Yang Q, Coombes C, McClellan M, Shridhar V, Emmings E, Shetty M, Chen L, Ai T, Meints J, Lee MK, Gardner M, Bazzaro M. UNC-45A Is a Novel Microtubule-Associated Protein and Regulator of Paclitaxel Sensitivity in Ovarian Cancer Cells. Mol Cancer Res 2019; 17:370-383. [PMID: 30322860 PMCID: PMC6359974 DOI: 10.1158/1541-7786.mcr-18-0670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
UNC-45A, a highly conserved member of the UCS (UNC45A/CRO1/SHE4P) protein family of cochaperones, plays an important role in regulating cytoskeletal-associated functions in invertebrates and mammalian cells, including cytokinesis, exocytosis, cell motility, and neuronal development. Here, for the first time, UNC-45A is demonstrated to function as a mitotic spindle-associated protein that destabilizes microtubules (MT) activity. Using in vitro biophysical reconstitution and total internal reflection fluorescence microscopy analysis, we reveal that UNC-45A directly binds to taxol-stabilized MTs in the absence of any additional cellular cofactors or other MT-associated proteins and acts as an ATP-independent MT destabilizer. In cells, UNC-45A binds to and destabilizes mitotic spindles, and its depletion causes severe defects in chromosome congression and segregation. UNC-45A is overexpressed in human clinical specimens from chemoresistant ovarian cancer and that UNC-45A-overexpressing cells resist chromosome missegregation and aneuploidy when treated with clinically relevant concentrations of paclitaxel. Lastly, UNC-45A depletion exacerbates paclitaxel-mediated stabilizing effects on mitotic spindles and restores sensitivity to paclitaxel. IMPLICATIONS: These findings reveal novel and significant roles for UNC-45A in regulation of cytoskeletal dynamics, broadening our understanding of the basic mechanisms regulating MT stability and human cancer susceptibility to paclitaxel, one of the most widely used chemotherapy agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoshie Iizuka
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Edith Emmings
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liqiang Chen
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Teng Ai
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota Minneapolis, MN 55455 USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota Minneapolis, MN 55455 USA
| | - Melissa Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA,,Corresponding author: Martina Bazzaro, Masonic Cancer Center, 420 Delaware Street S.E, Room 490, Minneapolis, Minnesota 55455, Tel: 612-6252889, Fax: 612-626-0665,
| |
Collapse
|
49
|
Cortes DB, Dawes A, Liu J, Nickaeen M, Strychalski W, Maddox AS. Unite to divide - how models and biological experimentation have come together to reveal mechanisms of cytokinesis. J Cell Sci 2018; 131:131/24/jcs203570. [PMID: 30563924 DOI: 10.1242/jcs.203570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis is the fundamental and ancient cellular process by which one cell physically divides into two. Cytokinesis in animal and fungal cells is achieved by contraction of an actomyosin cytoskeletal ring assembled in the cell cortex, typically at the cell equator. Cytokinesis is essential for the development of fertilized eggs into multicellular organisms and for homeostatic replenishment of cells. Correct execution of cytokinesis is also necessary for genome stability and the evasion of diseases including cancer. Cytokinesis has fascinated scientists for well over a century, but its speed and dynamics make experiments challenging to perform and interpret. The presence of redundant mechanisms is also a challenge to understand cytokinesis, leaving many fundamental questions unresolved. For example, how does a disordered cytoskeletal network transform into a coherent ring? What are the long-distance effects of localized contractility? Here, we provide a general introduction to 'modeling for biologists', and review how agent-based modeling and continuum mechanics modeling have helped to address these questions.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| | - Adriana Dawes
- Departments of Mathematics and of Molecular Genetics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA
| | - Jian Liu
- National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, 50 South Drive, NIH, Bethesda, MD 20892, USA
| | - Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Hall ET, Hoesing E, Sinkovics E, Verheyen EM. Actomyosin contractility modulates Wnt signaling through adherens junction stability. Mol Biol Cell 2018; 30:411-426. [PMID: 30540525 PMCID: PMC6589568 DOI: 10.1091/mbc.e18-06-0345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actomyosin contractility can influence the canonical Wnt signaling pathway in processes like mesoderm differentiation and tissue stiffness during tumorigenesis. We identified that increased nonmuscle myosin II activation and cellular contraction inhibited Wnt target gene transcription in developing Drosophila imaginal disks. Genetic interactions studies were used to show that this effect was due to myosin-induced accumulation of cortical F-actin resulting in clustering and accumulation of E-cadherin to the adherens junctions. This results in E-cadherin titrating any available β-catenin, the Wnt pathway transcriptional coactivator, to the adherens junctions in order to maintain cell-cell adhesion under contraction. We show that decreased levels of cytoplasmic β-catenin result in insufficient nuclear translocation for full Wnt target gene transcription. Previous studies have identified some of these interactions, but we present a thorough analysis using the wing disk epithelium to show the consequences of modulating myosin phosphatase. Our work elucidates a mechanism in which the dynamic promotion of actomyosin contractility refines patterning of Wnt transcription during development and maintenance of epithelial tissue in organisms.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Elizabeth Hoesing
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Endre Sinkovics
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|