1
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. Mol Biol Cell 2025; 36:ar52. [PMID: 40042941 PMCID: PMC12005099 DOI: 10.1091/mbc.e24-08-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1∆ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1∆ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1∆ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
2
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide towards cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
3
|
Gudimchuk NB, Alexandrova VV. Measuring and modeling forces generated by microtubules. Biophys Rev 2023; 15:1095-1110. [PMID: 37974983 PMCID: PMC10643784 DOI: 10.1007/s12551-023-01161-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Tubulins are essential proteins, which are conserved across all eukaryotic species. They polymerize to form microtubules, cytoskeletal components of paramount importance for cellular mechanics. The microtubules combine an extraordinarily high flexural rigidity and a non-equilibrium behavior, manifested in their intermittent assembly and disassembly. These chemically fueled dynamics allow microtubules to generate significant pushing and pulling forces at their ends to reposition intracellular organelles, remodel membranes, bear compressive forces, and transport chromosomes during cell division. In this article, we review classical and recent studies, which have allowed the quantification of microtubule-generated forces. The measurements, to which we owe most of the quantitative information about microtubule forces, were carried out in biochemically reconstituted systems in vitro. We also discuss how mathematical and computational modeling has contributed to the interpretations of these results and shaped our understanding of the mechanisms of force production by tubulin polymerization and depolymerization.
Collapse
Affiliation(s)
- Nikita B. Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Pskov State University, Pskov, Russia
| | - Veronika V. Alexandrova
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
4
|
Bellingham-Johnstun K, Thorn A, Belmonte JM, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. Mol Biol Cell 2023; 34:ar77. [PMID: 37099380 PMCID: PMC10398876 DOI: 10.1091/mbc.e23-01-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Cells actively position their nuclei based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over an ∼90-min period, approximately half of the duration of the cell cycle. Live-cell and simulation experiments support the cooperation of two distinct microtubule competition mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic spindle pole body microtubules that push the nucleus away from the ends of the cell, while a postanaphase array of microtubules baskets the nucleus and limits its migration toward the division plane. Second, a slow-and-grow mechanism slowly centers the nucleus in the newborn cell by a combination of microtubule competition and asymmetric cell growth. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Annelise Thorn
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Julio M. Belmonte
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
- Physics Department, College of Sciences, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
5
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
6
|
Bellingham-Johnstun K, Thorn A, Belmonte J, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526443. [PMID: 36778333 PMCID: PMC9915666 DOI: 10.1101/2023.01.31.526443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells actively position their nucleus based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over a ~90 min period, approximately half of the duration of the cell cycle. Live cell and simulation experiments support the cooperation of two distinct mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic Spindle Pole Body microtubules that push the nucleus away from the ends of the cell while post-anaphase array of microtubules basket the nucleus and limit its migration toward the division plane. Second, a slow-and-grow mechanism finalizes nuclear centering in the newborn cell. In this mechanism, microtubule competition stalls the nucleus while asymmetric cell growth slowly centers it. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
|
7
|
Ashraf S, Tay YD, Kelly DA, Sawin KE. Microtubule-independent movement of the fission yeast nucleus. J Cell Sci 2021; 134:jcs.253021. [PMID: 33602740 PMCID: PMC8015250 DOI: 10.1242/jcs.253021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Movement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In the fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here, we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. The vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum-plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells.
Collapse
|
8
|
Pavin N, Tolić IM. Mechanobiology of the Mitotic Spindle. Dev Cell 2020; 56:192-201. [PMID: 33238148 DOI: 10.1016/j.devcel.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division. As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly motivating the development of experimental approaches based on mechanical perturbations, which are complementary to and work together with the classical genetics and biochemistry methods. Recent data emerging from these approaches in combination with theoretical modeling led to novel ideas and significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome movements.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Blázquez-Castro A, Fernández-Piqueras J, Santos J. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective. Front Bioeng Biotechnol 2020; 8:580937. [PMID: 33072730 PMCID: PMC7530750 DOI: 10.3389/fbioe.2020.580937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Light can be employed as a tool to alter and manipulate matter in many ways. An example has been the implementation of optical trapping, the so called optical tweezers, in which light can hold and move small objects with 3D control. Of interest for the Life Sciences and Biotechnology is the fact that biological objects in the size range from tens of nanometers to hundreds of microns can be precisely manipulated through this technology. In particular, it has been shown possible to optically trap and move genetic material (DNA and chromatin) using optical tweezers. Also, these biological entities can be severed, rearranged and reconstructed by the combined use of laser scissors and optical tweezers. In this review, the background, current state and future possibilities of optical tweezers and laser scissors to manipulate, rearrange and alter genetic material (DNA, chromatin and chromosomes) will be presented. Sources of undesirable effects by the optical procedure and measures to avoid them will be discussed. In addition, first tentative approaches at cellular-level genetic and organelle surgery, in which genetic material or DNA-carrying organelles are extracted out or introduced into cells, will be presented.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| | - Javier Santos
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
11
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
12
|
Loiodice I, Janson ME, Tavormina P, Schaub S, Bhatt D, Cochran R, Czupryna J, Fu C, Tran PT. Quantifying Tubulin Concentration and Microtubule Number Throughout the Fission Yeast Cell Cycle. Biomolecules 2019; 9:biom9030086. [PMID: 30836700 PMCID: PMC6468777 DOI: 10.3390/biom9030086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αβ-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αβ-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.
Collapse
Affiliation(s)
- Isabelle Loiodice
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcel E Janson
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sebastien Schaub
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Divya Bhatt
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Cochran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Czupryna
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuanhai Fu
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phong T Tran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.
| |
Collapse
|
13
|
Sallé J, Xie J, Ershov D, Lacassin M, Dmitrieff S, Minc N. Asymmetric division through a reduction of microtubule centering forces. J Cell Biol 2019; 218:771-782. [PMID: 30563876 PMCID: PMC6400563 DOI: 10.1083/jcb.201807102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Asymmetric divisions are essential for the generation of cell fate and size diversity. They implicate cortical domains where minus end-directed motors, such as dynein, are activated to pull on microtubules to decenter asters attached to centrosomes, nuclei, or spindles. In asymmetrically dividing cells, aster decentration typically follows a centering phase, suggesting a time-dependent regulation in the competition between microtubule centering and decentering forces. Using symmetrically dividing sea urchin zygotes, we generated cortical domains of magnetic particles that spontaneously cluster endogenous dynein activity. These domains efficiently attract asters and nuclei, yielding marked asymmetric divisions. Remarkably, aster decentration only occurred after asters had first reached the cell center. Using intracellular force measurement and models, we demonstrate that this time-regulated imbalance results from a global reduction of centering forces rather than a local maturation of dynein activity at the domain. Those findings define a novel paradigm for the regulation of division asymmetry.
Collapse
Affiliation(s)
- Jérémy Sallé
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| | - Jing Xie
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| | - Dmitry Ershov
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| | - Milan Lacassin
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| | - Serge Dmitrieff
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| | - Nicolas Minc
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592 and Université Paris Diderot, Paris, France
| |
Collapse
|
14
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
15
|
Haupt A, Minc N. How cells sense their own shape - mechanisms to probe cell geometry and their implications in cellular organization and function. J Cell Sci 2018; 131:131/6/jcs214015. [PMID: 29581183 DOI: 10.1242/jcs.214015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells come in a variety of shapes that most often underlie their functions. Regulation of cell morphogenesis implies that there are mechanisms for shape sensing that still remain poorly appreciated. Global and local cell geometry features, such as aspect ratio, size or membrane curvature, may be probed by intracellular modules, such as the cytoskeleton, reaction-diffusion systems or molecular complexes. In multicellular tissues, cell shape emerges as an important means to transduce tissue-inherent chemical and mechanical cues into intracellular organization. One emergent paradigm is that cell-shape sensing is most often based upon mechanisms of self-organization, rather than determinism. Here, we review relevant work that has elucidated some of the core principles of how cellular geometry may be conveyed into spatial information to guide processes, such as polarity, signaling, morphogenesis and division-plane positioning.
Collapse
Affiliation(s)
- Armin Haupt
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Nicolas Minc
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
16
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
17
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
18
|
Nuclear displacement and fluorescence recovery after photobleaching (FRAP) assays to study division site placement and cytokinesis in fission yeast. Methods Cell Biol 2017. [PMID: 28065315 DOI: 10.1016/bs.mcb.2016.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytokinesis is an essential cellular event that completes the cell division cycle. It begins with the assembly of an actomyosin contractile ring that undergoes constriction concomitant with the septum formation to divide the cell in two. Placement of the septum at the right position is important to ensure fidelity of the division process. In fission yeast, the medially placed nucleus is a major spatial cue to position the site of division. In this chapter, we describe a simple synthetic biology-based approach to displace the nucleus and study the consequence on division site positioning. We also describe how to perform fluorescence recovery after photobleaching to follow the dynamics of cytokinetic proteins at defined time points by live-cell microscopy.
Collapse
|
19
|
|
20
|
Rincon SA, Paoletti A. Molecular control of fission yeast cytokinesis. Semin Cell Dev Biol 2016; 53:28-38. [PMID: 26806637 DOI: 10.1016/j.semcdb.2016.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France
| | - Anne Paoletti
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France.
| |
Collapse
|
21
|
Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. J Cell Biol 2015; 211:653-68. [PMID: 26553932 PMCID: PMC4639868 DOI: 10.1083/jcb.201504073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
Collapse
Affiliation(s)
- Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Comparative biology of cell division in the fission yeast clade. Curr Opin Microbiol 2015; 28:18-25. [PMID: 26263485 DOI: 10.1016/j.mib.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 11/21/2022]
Abstract
Cytokinesis must be regulated in time and space in order to preserve genome integrity during cell proliferation and to allow daughter cells to adopt distinct fates and geometries during differentiation. The fission yeast Schizosaccharomyces pombe has been a popular model organism for understanding spatiotemporal regulation of cytokinesis in a symmetrically dividing cell. Recent work on another member of the same genus, Schisozaccharomyces japonicus, suggests that S. pombe may have evolved an unusual division site placement mechanism based on a recently duplicated anillin paralog. Here we discuss an extraordinary evolutionary plasticity of cytokinesis within the fission yeast clade and argue that the comparative cell biology approach may provide functional insights beyond those afforded by scrutinizing individual model species.
Collapse
|
23
|
Glunčić M, Maghelli N, Krull A, Krstić V, Ramunno-Johnson D, Pavin N, Tolić IM. Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe. PHYSICAL REVIEW LETTERS 2015; 114:078103. [PMID: 25763975 DOI: 10.1103/physrevlett.114.078103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Indexed: 06/04/2023]
Abstract
In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.
Collapse
Affiliation(s)
- Matko Glunčić
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alexander Krull
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Vladimir Krstić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | | | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Tao EY, Calvert M, Balasubramanian MK. Rewiring Mid1p-independent medial division in fission yeast. Curr Biol 2014; 24:2181-2188. [PMID: 25176634 DOI: 10.1016/j.cub.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes requires Mid1p, which recruits IQGAP-related Rng2p to the division site, after which other node components accumulate at the division site in a characteristic sequence [3-6]. How cytokinetic nodes assemble, whether the order of assembly of ring components is important, and whether Mid1p solely participates in ring positioning are poorly understood. Here, we show that synthetic targeting of IQGAP-related Rng2p, formin-Cdc12p, and myosin II (Myo2p) restores medial division in mid1 mutants, suggesting that ring proteins need not assemble at the division site in an invariant order. Unlike in wild-type cells, actomyosin rings in cells rewired to divide medially in the absence of Mid1p assemble late in anaphase. Furthermore, the rewiring process affects the ability of the actomyosin ring to track the nucleus upon perturbation of nuclear position. Our work reveals the power of synthetic rewiring studies in deciphering roles performed by multifunctional proteins.
Collapse
Affiliation(s)
- Evelyn Yaqiong Tao
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Meredith Calvert
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Mohan K Balasubramanian
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore; Mechanobiology Institute, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
25
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
26
|
Pavin N, Tolić-Nørrelykke IM. Swinging a sword: how microtubules search for their targets. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:179-86. [PMID: 25136379 PMCID: PMC4127178 DOI: 10.1007/s11693-014-9134-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
The cell interior is in constant movement, which is to a large extent determined by microtubules, thin and long filaments that permeate the cytoplasm. To move large objects, microtubules need to connect them to the site of their destination. For example, during cell division, microtubules connect chromosomes with the spindle poles via kinetochores, protein complexes on the chromosomes. A general question is how microtubules, while being bound to one structure, find the target that needs to be connected to this structure. Here we review the mechanisms of how microtubules search for kinetochores, with emphasis on the recently discovered microtubule feature to explore space by pivoting around the spindle pole. In addition to accelerating the search for kinetochores, pivoting helps the microtubules to search for cortical anchors, as well as to self-organize into parallel arrays and asters to target specific regions of the cell. Thus, microtubule pivoting constitutes a mechanism by which they locate targets in different cellular contexts.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, 10000 Zagreb, Croatia
| | - Iva M Tolić-Nørrelykke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany ; Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Abstract
Asymmetric cell division (ACD), a mechanism for cell-type diversification in both prokaryotes and eukaryotes, is accomplished through highly coordinated cell-fate segregation, genome partitioning, and cell division. Whereas important paradigms have arisen from the study of animal embryonic divisions, the strategies for choreographing the dynamic subprocesses are, in fact, highly varied. This review examines divergent mechanisms of ACD across different kingdoms. Examples discussed show that there is no obligatory hierarchy among the dynamic events and that asymmetry can emerge from each event, but cell polarization more often occurs as the initial instructive process for patterning ACD especially in the multicellular context.
Collapse
Affiliation(s)
- Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
28
|
Sott K, Eriksson E, Petelenz E, Goksör M. Optical systems for single cell analyses. Expert Opin Drug Discov 2013; 3:1323-44. [PMID: 23496168 DOI: 10.1517/17460441.3.11.1323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Data extracted from a population of cells represent the average response from all cells within the population. Even when the cells are genetically identical, cell-to-cell variations and genetic noise can make the cells respond in completely different ways. To understand the mechanisms behind the behaviour of a population, the cells must also be analysed on an individual basis. OBJECTIVE This review highlights the use of optical manipulation, microfluidics and advanced fluorescence imaging techniques for the acquisition of single cell data. CONCLUSION By implementation of these three techniques, it is possible to achieve a deeper insight into the principles underlying cellular functioning and a more thorough understanding of the phenomena often observed in cell populations, thus facilitating research in drug discovery.
Collapse
Affiliation(s)
- Kristin Sott
- Postdoctoral fellow University of Gothenburg, Department of Physics, SE-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.
Collapse
Affiliation(s)
- Hoyoung Yun
- Rowland Institute at Harvard University, MA, USA
| | | | | |
Collapse
|
30
|
Lo Presti L, Chang F, Martin SG. Myosin Vs organize actin cables in fission yeast. Mol Biol Cell 2012; 23:4579-91. [PMID: 23051734 PMCID: PMC3510019 DOI: 10.1091/mbc.e12-07-0499] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 11/11/2022] Open
Abstract
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.
Collapse
Affiliation(s)
- Libera Lo Presti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Fred Chang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Hachet O, Bendezú FO, Martin SG. Fission yeast: in shape to divide. Curr Opin Cell Biol 2012; 24:858-64. [PMID: 23127610 DOI: 10.1016/j.ceb.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/27/2023]
Abstract
How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division.
Collapse
Affiliation(s)
- Olivier Hachet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
32
|
Rincon SA, Paoletti A. Mid1/anillin and the spatial regulation of cytokinesis in fission yeast. Cytoskeleton (Hoboken) 2012; 69:764-77. [DOI: 10.1002/cm.21056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
|
33
|
Panbianco C, Gotta M. Coordinating cell polarity with cell division in space and time. Trends Cell Biol 2011; 21:672-80. [PMID: 21930382 DOI: 10.1016/j.tcb.2011.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/08/2023]
Abstract
Decisions of when and where to divide are crucial for cell survival and fate, and for tissue organization and homeostasis. The temporal coordination of mitotic events during cell division is essential to ensure that each daughter cell receives one copy of the genome. The spatial coordination of these events is also crucial because the cytokinetic furrow must be aligned with the axis of chromosome segregation and, in asymmetrically dividing cells, the polarity axis. Several recent papers describe how cell shape and polarity are coordinated with cell division in single cells and tissues and begin to unravel the underlying molecular mechanisms, revealing common principles and molecular players. Here, we discuss how cells regulate the spatial and temporal coordination of cell polarity with cell division.
Collapse
Affiliation(s)
- Costanza Panbianco
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
34
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
35
|
Abstract
Biopolymers are essential for cellular organization. They bridge the cell interior, forming a framework that is used as a reference for different cellular organelles. This framework, called the cytoskeleton, is not static but constantly reorganizes. The dynamics of the cytoskeleton allows the cell to rearrange its interior for various processes, such as cell division. This dynamic reorganization relies at least partly on forces that arise from the assembly and disassembly of cytoskeletal biopolymers. In many cases, these forces are generated when biopolymers interact with the cell boundary. This chapter focuses on force generation by and regulation of microtubules (MTs) that interact with growth-opposing barriers. We describe three in vitro assays that can be used to mimic MT interactions with the cell boundary. The essential components in each of our minimal systems are (functionalized) microfabricated barriers against which we grow MTs under different conditions. We describe in detail the different methods and assays necessary to realize these in vitro experiments.
Collapse
Affiliation(s)
- Svenja-Marei Kalisch
- FOM Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, The Netherlands.
| | | | | |
Collapse
|
36
|
Abstract
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Collapse
Affiliation(s)
- Fred Chang
- Columbia University, College of Physicians and Surgeons, Department of Microbiology, 701 W 168th Street, New York 10032, USA.
| | | |
Collapse
|
37
|
Almonacid M, Paoletti A. Mechanisms controlling division-plane positioning. Semin Cell Dev Biol 2010; 21:874-80. [PMID: 20708089 DOI: 10.1016/j.semcdb.2010.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/02/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
Abstract
A critical and irreversible step in the cell division cycle is cytokinesis which physically separates the two daughter cells. This event is consequently subject to tight spatial and temporal regulation. This review focuses on the spatial regulatory mechanisms controlling the position of the division plane. Studies performed in prokaryotic and eukaryotic systems have revealed that various signal-emitting spatial cues - mitotic spindle, nucleus, nucleoid or cell tips - can favour or inhibit the assembly of the cytokinetic apparatus in their vicinity. Most often, several mechanisms operate in parallel to integrate spatial information and promote faithful genome segregation as well as proper cytoplasmic division. We primarily describe the spatial regulatory mechanisms operating in the fission yeast model system, where a detailed molecular understanding of cytokinesis has been achieved. In this system, spatial regulations target a major factor controlling the position of the division plane, the anillin-like protein Mid1. These mechanisms are then compared to spatial regulatory mechanisms prevailing in animal cells and rod-shaped bacteria.
Collapse
Affiliation(s)
- Maria Almonacid
- Institut Curie, Centre de recherche, CNRS, UMR144, Paris, France
| | | |
Collapse
|
38
|
Drake T, Vavylonis D. Cytoskeletal dynamics in fission yeast: a review of models for polarization and division. HFSP JOURNAL 2010; 4:122-30. [PMID: 21119765 DOI: 10.2976/1.3385659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/18/2010] [Indexed: 11/19/2022]
Abstract
We review modeling studies concerning cytoskeletal activity of fission yeast. Recent models vary in length and time scales, describing a range of phenomena from cellular morphogenesis to polymer assembly. The components of cytoskeleton act in concert to mediate cell-scale events and interactions such as polarization. The mathematical models reduce these events and interactions to their essential ingredients, describing the cytoskeleton by its bulk properties. On a smaller scale, models describe cytoskeletal subcomponents and how bulk properties emerge.
Collapse
Affiliation(s)
- Tyler Drake
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
| | | |
Collapse
|
39
|
Abstract
The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast.
Collapse
|
40
|
Pollard TD. Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 2010; 22:50-6. [PMID: 20031383 PMCID: PMC2871152 DOI: 10.1016/j.ceb.2009.11.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/11/2022]
Abstract
Research on eukaryotic cytokinesis using advantageous model systems is rapidly advancing our understanding of most aspects of the process. Cytokinesis is very complicated with more than 100 proteins participating. Both fungi and animal cells use proteins to mark the cleavage site for the assembly of a contractile ring of actin filaments and myosin-II. Formins nucleate and elongate the actin filaments and myosin-II helps to organize the filaments into a contractile ring. Much is still to be learned about the organization of the contractile ring and the mechanisms that disassemble the ring as it constricts. Although fungi and animals share many proteins that contribute to cytokinesis, the extent to which they share mechanisms for the location, assembly, constriction, and disassembly of their contractile rings is still in question.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular Cellular, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
41
|
Tolić-Nørrelykke IM. Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast. Curr Opin Cell Biol 2010; 22:21-8. [DOI: 10.1016/j.ceb.2009.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/01/2009] [Accepted: 12/15/2009] [Indexed: 01/12/2023]
|
42
|
Maghelli N, Tolić-Nørrelykke IM. Optical trapping and laser ablation of microtubules in fission yeast. Methods Cell Biol 2010; 97:173-83. [PMID: 20719271 DOI: 10.1016/s0091-679x(10)97010-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Manipulation has been used as a powerful investigation technique since the early history of biology. Every technical advance resulted in more refined instruments that led to the discovery of new phenomena and to the solution of old problems. The invention of laser in 1960 gave birth to what is now called optical manipulation: the use of light to interact with matter. Since then, the tremendous progress of laser technology made optical manipulation not only an affordable, reliable alternative to traditional manipulation techniques but disclosed also new, intriguing applications that were previously impossible, such as contact-free manipulation. Currently, optical manipulation is used in many fields, yet has the potential of becoming an everyday technique in a broader variety of contexts. Here, we focus on two main optical manipulation techniques: optical trapping and laser ablation. We illustrate with selected applications in fission yeast how in vivo optical manipulation can be used to study organelle positioning and the force balance in the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | | |
Collapse
|
43
|
Laan L, Dogterom M. In vitro assays to study force generation at dynamic microtubule ends. Methods Cell Biol 2010; 95:617-39. [PMID: 20466156 DOI: 10.1016/s0091-679x(10)95031-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biopolymers are essential for cellular organization. They bridge the cell interior, forming a framework that is used as a reference for different cellular organelles. Interestingly, this framework called the cytoskeleton is not static but constantly reorganizes. The dynamics of the cytoskeleton allows the cell to rearrange its interior for various processes such as cell division. This dynamic reorganization relies at least partly on forces that arise from assembly and disassembly of the cytoskeletal polymers. In many cases, these forces are generated when cytoskeletal polymers interact with the cell boundary. This chapter focuses on force generation by and regulation of microtubules (MTs) that interact with opposing barriers. In this chapter we describe four in vitro assays to study how MT interactions with the cell boundary play a role in cellular organization. In our minimal systems, (functionalized) microfabricated barriers mimic cell boundaries. We carefully design experiments where we grow MTs against these microfabricated structures to study a specific cellular process. Furthermore in this chapter different methods and assays necessary to realize these in vitro experiments are described. Section II describes the materials used, and Section III elaborates on the microfabrication. In Section III.C we explain how we specifically label our microfabricated structures, and in Section III.D we present how these functionalized microfabricated structures are incorporated into assays, with a discussion of the details of the assays themselves. Finally in Section IV we give examples of data obtained with these assays, and in Section V we discuss the assays in a general context.
Collapse
Affiliation(s)
- Liedewij Laan
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Martin SG. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 2009; 19:447-54. [PMID: 19713114 DOI: 10.1016/j.tcb.2009.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Sophie G Martin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Abstract
Cytokinesis is the terminal step of the cell cycle during which a mother cell divides into daughter cells. Often, the machinery of cytokinesis is positioned in such a way that daughter cells are born roughly equal in size. However, in many specialized cell types or under certain environmental conditions, the cell division machinery is placed at nonmedial positions to produce daughter cells of different sizes and in many cases of different fates. Here we review the different mechanisms that position the division machinery in prokaryotic and eukaryotic cell types. We also describe cytokinesis-positioning mechanisms that are not adequately explained by studies in model organisms and model cell types.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | | | | |
Collapse
|
46
|
Almonacid M, Moseley JB, Janvore J, Mayeux A, Fraisier V, Nurse P, Paoletti A. Spatial control of cytokinesis by Cdr2 kinase and Mid1/anillin nuclear export. Curr Biol 2009; 19:961-6. [PMID: 19427212 DOI: 10.1016/j.cub.2009.04.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/23/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
Maintaining genome integrity and cellular function requires proper positioning of the cell division plane. In most eukaryotes, cytokinesis relies on a contractile actomyosin ring positioned by intrinsic spatial signals that are poorly defined at the molecular level. Fission yeast cells assemble a medial contractile ring in response to positive spatial cues from the nucleus at the cell center and negative spatial cues from the cell tips. These signals control the localization of the anillin-like protein Mid1, which defines the position of the division plane at the medial cortex, where it recruits contractile-ring components at mitosis onset. Here we show that Cdr2 kinase anchors Mid1 at the medial cortex during interphase through association with the Mid1 N terminus. This association underlies the negative regulation of Mid1 distribution by cell tips. We also demonstrate that the positive signaling from the nucleus is based on Mid1 nuclear export, which links division-plane position to nuclear position during early mitosis. After nuclear displacement, Mid1 nuclear export is dominant over Cdr2-dependent positioning of Mid1. We conclude that Cdr2- and nuclear export-dependent positioning of Mid1 constitute two overlapping mechanisms that relay cell polarity and nuclear positional information to ensure proper division-plane specification.
Collapse
|
47
|
RAABE I, VOGEL S, PEYCHL J, TOLIĆ-NØRRELYKKE I. Intracellular nanosurgery and cell enucleation using a picosecond laser. J Microsc 2009; 234:1-8. [DOI: 10.1111/j.1365-2818.2009.03142.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast. Mol Syst Biol 2009; 5:241. [PMID: 19293826 PMCID: PMC2671915 DOI: 10.1038/msb.2008.76] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/28/2008] [Indexed: 11/08/2022] Open
Abstract
The cytoskeleton is essential for the maintenance of cell morphology in eukaryotes. In fission yeast, for example, polarized growth sites are organized by actin, whereas microtubules (MTs) acting upstream control where growth occurs. Growth is limited to the cell poles when MTs undergo catastrophes there and not elsewhere on the cortex. Here, we report that the modulation of MT dynamics by forces as observed in vitro can quantitatively explain the localization of MT catastrophes in Schizosaccharomyces pombe. However, we found that it is necessary to add length-dependent catastrophe rates to make the model fully consistent with other previously measured traits of MTs. We explain the measured statistical distribution of MT-cortex contact times and re-examine the curling behavior of MTs in unbranched straight tea1Delta cells. Importantly, the model demonstrates that MTs together with associated proteins such as depolymerizing kinesins are, in principle, sufficient to mark the cell poles.
Collapse
|
49
|
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol 2009; 5:250. [PMID: 19293830 PMCID: PMC2671921 DOI: 10.1038/msb.2009.5] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length-dependent increase in the catastrophe frequency that is mediated by kinesin-8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin-8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells.
Collapse
|
50
|
Kunda P, Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 2009; 19:174-9. [PMID: 19285869 DOI: 10.1016/j.tcb.2009.01.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 12/30/2022]
Abstract
The most dramatic changes in eukaryotic cytoskeletal organization and dynamics occur during passage through mitosis. Although both spindle self-organization and actin-dependent cytokinesis have long been the subject of intense investigation, it has only recently become apparent that the actin cortex also has a key role during early mitosis. This is most striking in animal cells, in which changes in the actin cytoskeleton drive mitotic cell rounding and cortical stiffening. This mitotic cortex then functions as a foundation for spindle assembly and to guide spindle orientation with respect to extracellular chemical and mechanical cues. Here, we discuss this recent work and the possible role of crosstalk between the mitotic actin cortex and the plus ends of astral microtubules in this process.
Collapse
Affiliation(s)
- Patricia Kunda
- Department of Cell and Developmental Biology, University College London, UK.
| | | |
Collapse
|