1
|
Woo H, Oh J, Cho YJ, Oh GT, Kim SY, Dan K, Han D, Lee JS, Kim T. N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. SCIENCE ADVANCES 2024; 10:eadl6280. [PMID: 38996018 PMCID: PMC11244526 DOI: 10.1126/sciadv.adl6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03082, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
3
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
4
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Ellison MA, Namjilsuren S, Shirra M, Blacksmith M, Schusteff R, Kerr E, Fang F, Xiang Y, Shi Y, Arndt K. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:4814-4830. [PMID: 36928138 PMCID: PMC10250246 DOI: 10.1093/nar/gkad180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew S Blacksmith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Schusteff
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eleanor M Kerr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
9
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
10
|
Trans-tail regulation-mediated suppression of cryptic transcription. Exp Mol Med 2021; 53:1683-1688. [PMID: 34845331 PMCID: PMC8639711 DOI: 10.1038/s12276-021-00711-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Crosstalk between post-translational modifications of histone proteins influences the regulation of chromatin structure and gene expression. Among such crosstalk pathways, the best-characterized example is H2B monoubiquitination-mediated H3K4 and H3K79 methylation, which is referred to as trans-tail regulation. Although many studies have investigated the fragmentary effects of this pathway on silencing and transcription, its ultimate contribution to transcriptional control has remained unclear. Recent advances in molecular techniques and genomics have, however, revealed that the trans-tail crosstalk is linked to a more diverse cascade of histone modifications and has various functions in cotranscriptional processes. Furthermore, H2B monoubiquitination sequentially facilitates H3K4 dimethylation and histone sumoylation, thereby providing a binding platform for recruiting Set3 complex proteins, including two histone deacetylases, to restrict cryptic transcription from gene bodies. The removal of both ubiquitin and SUMO, small ubiquitin-like modifier, modifications from histones also facilitates a change in the phosphorylation pattern of the RNA polymerase II C-terminal domain that is required for subsequent transcriptional elongation. Therefore, this review describes recent findings regarding trans-tail regulation-driven processes to elaborate on their contribution to maintaining transcriptional fidelity. Crosstalk between different DNA-winding proteins, or histones, is a mechanism of molecular fidelity that helps prevent the initiation of aberrant gene expression, which may contribute to cancer and neurodegenerative disease. A team from South Korea, led by Jungmin Choi from the Korea University College of Medicine in Seoul and Hong-Yeoul Ryu from Kyungpook National University in Daegu, review the ways in which different histone proteins chemically modify parts of each other’s structure to regulate their functions. These modifications affect how histones interact with DNA, which in turn alters the dynamics of other factors implicated in gene expression. The correct interaction of histones is necessary to prevent the gene expression machinery from starting RNA synthesis from the wrong sites. Accurate control of these mechanisms is essential for cellular wellbeing
Collapse
|
11
|
Connelly CJ, Vidal-Cardenas S, Goldsmith S, Greider CW. The Bur1 cyclin-dependent kinase regulates telomere length in Saccharomyces cerevisiae. Yeast 2021; 39:177-192. [PMID: 34781413 PMCID: PMC9299788 DOI: 10.1002/yea.3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Telomere length regulation is essential for cell viability in eukaryotes. While many pathways that affect telomere length are known, we do not yet have a complete understanding of the mechanism of length regulation. To identify new pathways that might regulate telomere length, we carried out a genetic screen in yeast and identified the cyclin‐dependent kinase complex Bur1/2 as a regulator of telomere length. Mutations in either BUR1 cyclin‐dependent kinase or the associated BUR2 cyclin resulted in short telomeres. This regulation did not function through the known role of BUR1 in regulating histone modification as bur1∆ set2∆ and bur2∆ set2∆ double mutants rescued cell growth but did not rescue the telomere shortening effects. We found that both bur1∆ and bur2∆ set2∆ were also defective in de novo telomere addition, and deletion of SET2 did also not rescue this elongation defect. The Bur1/2 cyclin‐dependent kinase regulates transcription of many genes. We found that TLC1 RNA levels were reduced in bur2∆ set2∆ mutants; however, overexpression of TLC1 restored the transcript levels but did not restore de novo telomere elongation or telomere length. These data suggest that the Bur1/2 kinase plays a role in telomere elongation separate from its role in transcription of telomerase components. Dissecting the role of the Bur1/2 kinase pathway at telomeres will help complete our understanding of the complex network of telomere length regulation. Loss of Bur1/2 cyclin‐dependent kinase activity causes short telomeres. Short telomere phenotype is not due to the role of Bur1/2 in histone modification. Short telomeres are not due to decreased levels of telomerase components Est1, Est2, Est3, or Tlc1. In absence of Bur1/2 activity, TLC1 deleted cells do not form survivors. Bur1/2 kinase directly or indirectly regulates telomere length.
Collapse
Affiliation(s)
- Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Vidal-Cardenas
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Exelixis, Inc., Alameda, California, USA
| | - Stephanie Goldsmith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
12
|
Maudlin IE, Beggs JD. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. RNA Biol 2021; 18:782-793. [PMID: 34705599 PMCID: PMC8782173 DOI: 10.1080/15476286.2021.1991673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
From yeast to humans, pre-mRNA splicing occurs mainly co-transcriptionally, with splicing and transcription functionally coupled such that they influence one another. The recruitment model of co-transcriptional splicing proposes that core members of the transcription elongation machinery have the potential to influence co-transcriptional spliceosome assembly and pre-mRNA splicing. Here, we tested whether the transcription elongation kinases Bur1 and Ctk1 affect co-transcriptional spliceosome assembly and pre-mRNA splicing in the budding yeast Saccharomyces cerevisiae. In S. cerevisiae, Ctk1 is the major kinase that phosphorylates serine 2 of the carboxy-terminal domain of the largest subunit of RNA polymerase II, whilst Bur1 augments the kinase activity of Ctk1 and is the major kinase for elongation factor Spt5. We used the auxin-inducible degron system to conditionally deplete Bur1 and Ctk1 kinases, and investigated the effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. Depletion of Ctk1 effectively reduced phosphorylation of serine 2 of the carboxy-terminal domain but did not impact co-transcriptional spliceosome assembly or pre-mRNA splicing. In striking contrast, depletion of Bur1 did not reduce phosphorylation of serine 2 of the carboxy-terminal domain, but reduced Spt5 phosphorylation and enhanced co-transcriptional spliceosome assembly and pre-mRNA splicing, suggesting a role for this kinase in modulating co-transcriptional splicing.
Collapse
Affiliation(s)
- Isabella E. Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D. Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Shirra MK, Kocik RA, Ellison MA, Arndt KM. Opposing functions of the Hda1 complex and histone H2B mono-ubiquitylation in regulating cryptic transcription in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6360461. [PMID: 34499735 PMCID: PMC8527469 DOI: 10.1093/g3journal/jkab298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022]
Abstract
Maintenance of chromatin structure under the disruptive force of transcription requires cooperation among numerous regulatory factors. Histone post-translational modifications can regulate nucleosome stability and influence the disassembly and reassembly of nucleosomes during transcription elongation. The Paf1 transcription elongation complex, Paf1C, is required for several transcription-coupled histone modifications, including the mono-ubiquitylation of H2B. In Saccharomyces cerevisiae, amino acid substitutions in the Rtf1 subunit of Paf1C greatly diminish H2B ubiquitylation and cause transcription to initiate at a cryptic promoter within the coding region of the FLO8 gene, an indicator of chromatin disruption. In a genetic screen to identify factors that functionally interact with Paf1C, we identified mutations in HDA3, a gene encoding a subunit of the Hda1C histone deacetylase (HDAC), as suppressors of an rtf1 mutation. Absence of Hda1C also suppresses the cryptic initiation phenotype of other mutants defective in H2B ubiquitylation. The genetic interactions between Hda1C and the H2B ubiquitylation pathway appear specific: loss of Hda1C does not suppress the cryptic initiation phenotypes of other chromatin mutants and absence of other HDACs does not suppress the absence of H2B ubiquitylation. Providing further support for an appropriate balance of histone acetylation in regulating cryptic initiation, absence of the Sas3 histone acetyltransferase elevates cryptic initiation in rtf1 mutants. Our data suggest that the H2B ubiquitylation pathway and Hda1C coordinately regulate chromatin structure during transcription elongation and point to a potential role for a HDAC in supporting chromatin accessibility.
Collapse
Affiliation(s)
- Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Kocik
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Strahl BD, Briggs SD. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194600. [PMID: 32645359 DOI: 10.1016/j.bbagrm.2020.194600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/30/2023]
Abstract
Fueled by key technological innovations during the last several decades, chromatin-based research has greatly advanced our mechanistic understanding of how genes are regulated by epigenetic factors and their associated histone-modifying activities. Most notably, the landmark finding that linked histone acetylation by Gcn5 of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex to gene activation ushered in a new area of chromatin research and a realization that histone-modifying activities have integral genome functions. This review will discuss past and recent studies that have shaped our understanding of how the histone-modifying activities of SAGA are regulated by, and modulate the outcomes of, other histone modifications during gene transcription. Because much of our understanding of SAGA was established with budding yeast, we will focus on yeast as a model. We discuss the actions of cis- and trans-histone crosstalk pathways that involve the histone acetyltransferase, deubiquitylase, and reader domains of SAGA. We conclude by considering unanswered questions about SAGA and related complexes.
Collapse
Affiliation(s)
- Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, Hansen Life Science Research Building, 201S, University Street, West Lafayette, IN 47907; USA.
| |
Collapse
|
15
|
Maudlin IE, Beggs JD. Spt5 modulates cotranscriptional spliceosome assembly in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1298-1310. [PMID: 31289129 PMCID: PMC6800482 DOI: 10.1261/rna.070425.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in Saccharomyces cerevisiae and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.
Collapse
Affiliation(s)
- Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
16
|
Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 2019; 10:47-56. [PMID: 30488763 PMCID: PMC6602562 DOI: 10.1080/21541264.2018.1553483] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription cycle of RNA polymerase II (Pol II) is regulated by a set of cyclin-dependent kinases (CDKs). Cdk7, associated with the transcription initiation factor TFIIH, is both an effector CDK that phosphorylates Pol II and other targets within the transcriptional machinery, and a CDK-activating kinase (CAK) for at least one other essential CDK involved in transcription. Recent studies have illuminated Cdk7 functions that are executed throughout the Pol II transcription cycle, from promoter clearance and promoter-proximal pausing, to co-transcriptional chromatin modification in gene bodies, to mRNA 3´-end formation and termination. Cdk7 has also emerged as a target of small-molecule inhibitors that show promise in the treatment of cancer and inflammation. The challenges now are to identify the relevant targets of Cdk7 at each step of the transcription cycle, and to understand how heightened dependence on an essential CDK emerges in cancer, and might be exploited therapeutically.
Collapse
Affiliation(s)
- Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Schenstrøm SM, Rebula CA, Tatham MH, Hendus-Altenburger R, Jourdain I, Hay RT, Kragelund BB, Hartmann-Petersen R. Expanded Interactome of the Intrinsically Disordered Protein Dss1. Cell Rep 2018; 25:862-870. [PMID: 30355493 PMCID: PMC6218214 DOI: 10.1016/j.celrep.2018.09.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Dss1 (also known as Sem1) is a conserved, intrinsically disordered protein with a remarkably broad functional diversity. It is a proteasome subunit but also associates with the BRCA2, RPA, Csn12-Thp1, and TREX-2 complexes. Accordingly, Dss1 functions in protein degradation, DNA repair, transcription, and mRNA export. Here in Schizosaccharomyces pombe, we expand its interactome further to include eIF3, the COP9 signalosome, and the mitotic septins. Within its intrinsically disordered ensemble, Dss1 forms a transiently populated C-terminal helix that dynamically interacts with and shields a central binding region. The helix interfered with the interaction to ATP-citrate lyase but was required for septin binding, and in strains lacking Dss1, ATP-citrate lyase solubility was reduced and septin rings were more persistent. Thus, even weak, transient interactions within Dss1 may dynamically rewire its interactome.
Collapse
Affiliation(s)
- Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ruth Hendus-Altenburger
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
18
|
Rodrigues J, Lydall D. Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast. Curr Genet 2018; 64:1105-1116. [PMID: 29564528 PMCID: PMC6153643 DOI: 10.1007/s00294-018-0828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/23/2022]
Abstract
Saccharomyces cerevisiae is a commonly used model organism for understanding eukaryotic gene function. However, the close proximity between yeast genes can complicate the interpretation of yeast genetic data, particularly high-throughput data. In this study, we examined the interplay between genes encoding components of the PAF1 complex and VPS36, the gene located next to CDC73 on chromosome XII. The PAF1 complex (Cdc73, Paf1, Ctr9, Leo1, and Rtf1, in yeast) affects RNA levels by affecting transcription, histone modifications, and post-transcriptional RNA processing. The human PAF1 complex is linked to cancer, and in yeast, it has been reported to play a role in telomere biology. Vps36, part of the ESCRT-II complex, is involved in sorting proteins for vacuolar/lysosomal degradation. We document a complex set of genetic interactions, which include an adjacent gene effect between CDC73 and VPS36 and synthetic sickness between vps36Δ and cdc73Δ, paf1Δ, or ctr9Δ. Importantly, paf1Δ and ctr9Δ are synthetically lethal with deletions of other components of the ESCRT-II (SNF8 and VPS25), ESCRT-I (STP22), or ESCRT-III (SNF7) complexes. We found that RNA levels of VPS36, but not other ESCRT components, are positively regulated by all components of the PAF1 complex. Finally, we show that deletion of ESCRT components decreases the telomere length in the S288C yeast genetic background, but not in the W303 background. Together, our results outline complex interactions, in cis and in trans, between genes encoding PAF1 and ESCRT-II complex components that affect telomere function and cell viability in yeast.
Collapse
Affiliation(s)
- Joana Rodrigues
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
19
|
Voichek Y, Mittelman K, Gordon Y, Bar-Ziv R, Lifshitz Smit D, Shenhav R, Barkai N. Epigenetic Control of Expression Homeostasis during Replication Is Stabilized by the Replication Checkpoint. Mol Cell 2018; 70:1121-1133.e9. [PMID: 29910110 DOI: 10.1016/j.molcel.2018.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
DNA replication introduces a dosage imbalance between early and late replicating genes. In budding yeast, buffering gene expression against this imbalance depends on marking replicated DNA by H3K56 acetylation (H3K56ac). Whether additional processes are required for suppressing transcription from H3K56ac-labeled DNA remains unknown. Here, using a database-guided candidate screen, we find that COMPASS, the H3K4 methyltransferase, and its upstream effector, PAF1C, act downstream of H3K56ac to buffer expression. Replicated genes show reduced abundance of the transcription activating mark H3K4me3 and accumulate the transcription inhibitory mark H3K4me2 near transcription start sites. Notably, in hydroxyurea-exposed cells, the S phase checkpoint stabilizes H3K56ac and becomes essential for buffering. We suggest that H3K56ac suppresses transcription of replicated genes by interfering with post-replication recovery of epigenetic marks and assign a new function for the S phase checkpoint in stabilizing this mechanism during persistent dosage imbalance.
Collapse
Affiliation(s)
- Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karin Mittelman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gordon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Lifshitz Smit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rom Shenhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Cheng L, Liu CX, Jiang S, Hou S, Huang JG, Chen ZQ, Sun YY, Qi H, Jiang HW, Wang JF, Zhou YM, Czajkowsky DM, Dai J, Tao SC. Cell Lysate Microarray for Mapping the Network of Genetic Regulators for Histone Marks. Mol Cell Proteomics 2018; 17:1720-1736. [PMID: 29871872 DOI: 10.1074/mcp.ra117.000550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/22/2018] [Indexed: 11/06/2022] Open
Abstract
Proteins, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, to explore the impact of the genome-wide interruption on certain protein, we developed a cell lysate microarray on kilo-conditions (CLICK) with 4837 knockout (YKO) and 322 temperature-sensitive (ts) mutant strains of yeast (Saccharomyces cerevisiae). Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3, which covers most of the known regulators in S. cerevisiae We also noted that several group of proteins are involved in negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.
Collapse
Affiliation(s)
- Li Cheng
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China.,§Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Cheng-Xi Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuangying Jiang
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Sha Hou
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jin-Guo Huang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zi-Qing Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang-Yang Sun
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huan Qi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing-Fang Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yi-Ming Zhou
- ¶Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, 102206, PR China
| | - Daniel M Czajkowsky
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junbiao Dai
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China;
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China;
| |
Collapse
|
21
|
Karmakar S, Dey P, Vaz AP, Bhaumik SR, Ponnusamy MP, Batra SK. PD2/PAF1 at the Crossroads of the Cancer Network. Cancer Res 2018; 78:313-319. [PMID: 29311159 DOI: 10.1158/0008-5472.can-17-2175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Pancreatic differentiation 2 (PD2)/RNA polymerase II-associated factor 1 (PAF1) is the core subunit of the human PAF1 complex (PAF1C) that regulates the promoter-proximal pausing of RNA polymerase II as well as transcription elongation and mRNA processing and coordinates events in mRNA stability and quality control. As an integral part of its transcription-regulatory function, PD2/PAF1 plays a role in posttranslational histone covalent modifications as well as regulates expression of critical genes of the cell-cycle machinery. PD2/PAF1 alone, and as a part of PAF1C, provides distinct roles in the maintenance of self-renewal of embryonic stem cells and cancer stem cells, and in lineage differentiation. Thus, PD2/PAF1 malfunction or its altered abundance is likely to affect normal cellular functions, leading to disease states. Indeed, PD2/PAF1 is found to be upregulated in poorly differentiated pancreatic cancer cells and has the capacity for neoplastic transformation when ectopically expressed in mouse fibroblast cells. Likewise, PD2/PAF1 is upregulated in pancreatic and ovarian cancer stem cells. Here, we concisely describe multifaceted roles of PD2/PAF1 associated with oncogenic transformation and implicate PD2/PAF1 as an attractive target for therapeutic development to combat malignancy. Cancer Res; 78(2); 313-9. ©2018 AACR.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Parama Dey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arokia P Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
22
|
Gómez-Herreros F, Margaritis T, Rodríguez-Galán O, Pelechano V, Begley V, Millán-Zambrano G, Morillo-Huesca M, Muñoz-Centeno MC, Pérez-Ortín JE, de la Cruz J, Holstege FCP, Chávez S. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 2017. [PMID: 28637236 PMCID: PMC5737610 DOI: 10.1093/nar/gkx529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Thanasis Margaritis
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Macarena Morillo-Huesca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
23
|
Van Oss SB, Cucinotta CE, Arndt KM. Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. Trends Biochem Sci 2017; 42:788-798. [PMID: 28870425 PMCID: PMC5658044 DOI: 10.1016/j.tibs.2017.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
The conserved, multifunctional Polymerase-Associated Factor 1 complex (Paf1C) regulates all stages of the RNA polymerase (Pol) II transcription cycle. In this review, we examine a diverse set of recent studies from various organisms that build on foundational studies in budding yeast. These studies identify new roles for Paf1C in the control of gene expression and the regulation of chromatin structure. In exploring these advances, we find that various functions of Paf1C, such as the regulation of promoter-proximal pausing and development in higher eukaryotes, are complex and context dependent. As more becomes known about the role of Paf1C in human disease, interest in the molecular mechanisms underpinning Paf1C function will continue to increase.
Collapse
Affiliation(s)
- S Branden Van Oss
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christine E Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
24
|
Xu Y, Bernecky C, Lee CT, Maier KC, Schwalb B, Tegunov D, Plitzko JM, Urlaub H, Cramer P. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat Commun 2017; 8:15741. [PMID: 28585565 PMCID: PMC5467213 DOI: 10.1038/ncomms15741] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
The conserved polymerase-associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin.
Collapse
Affiliation(s)
- Youwei Xu
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Carrie Bernecky
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
25
|
Droscha CJ, Diegel CR, Ethen NJ, Burgers TA, McDonald MJ, Maupin KA, Naidu AS, Wang P, Teh BT, Williams BO. Osteoblast-specific deletion of Hrpt2/Cdc73 results in high bone mass and increased bone turnover. Bone 2017; 98:68-78. [PMID: 28384511 DOI: 10.1016/j.bone.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 10/19/2022]
Abstract
Inactivating mutations that lead to loss of heterozygosity within the HRPT2/Cdc73 gene are directly linked to the development of primary hyperparathyroidism, parathyroid adenomas, and ossifying fibromas of the jaw (HPT-JT). The protein product of the Cdc73 gene, parafibromin, is a core member of the polymerase-associated factors (PAF) complex, which coordinates epigenetic modifiers and transcriptional machinery to control gene expression. We conditionally deleted Cdc73 within mesenchymal progenitors or within mature osteoblasts and osteocytes to determine the consequences of parafibromin loss within the mesenchymal lineage. Homozygous deletion of Cdc73 via the Dermo1-Cre driver resulted in embryos which lacked mesenchymal organ development of internal organs, including the heart and fetal liver. Immunohistochemical detection of cleaved caspase-3 revealed extensive apoptosis within the progenitor pools of developing organs. Unexpectedly, when Cdc73 was homozygously deleted within mature osteoblasts and osteocytes (via the Ocn-Cre driver), the mice had a normal life span but increased cortical and trabecular bone. OCN-Cre;Cdc73flox/flox bones displayed large cortical pores actively undergoing bone remodeling. Additionally the cortical bone of OCN-Cre;Cdc73flox/flox femurs contained osteocytes with marked amounts of cytoplasmic RNA and a high rate of apoptosis. Transcriptional analysis via RNA-seq within OCN-Cre;Cdc73flox/flox osteoblasts showed that loss of Cdc73 led to a derepression of osteoblast-specific genes, specifically those for collagen and other bone matrix proteins. These results aid in our understanding of the role parafibromin plays within transcriptional regulation, terminal differentiation, and bone homeostasis.
Collapse
Affiliation(s)
- Casey J Droscha
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Cassandra R Diegel
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nicole J Ethen
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Travis A Burgers
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Mitchell J McDonald
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kevin A Maupin
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Agni S Naidu
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - PengFei Wang
- OB/GYN Department, Bronx-Lebanon Hospital Center, Bronx, NY, USA
| | - Bin T Teh
- National Cancer Center of Singapore and SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment, Grand Rapids, MI, USA; Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
26
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
27
|
Young CP, Hillyer C, Hokamp K, Fitzpatrick DJ, Konstantinov NK, Welty JS, Ness SA, Werner-Washburne M, Fleming AB, Osley MA. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics 2017; 18:107. [PMID: 28122508 PMCID: PMC5267397 DOI: 10.1186/s12864-017-3509-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Background Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Results Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. Conclusions The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3509-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Conor P Young
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Cory Hillyer
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Darren J Fitzpatrick
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Scott A Ness
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| | - Mary Ann Osley
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
28
|
Bedard LG, Dronamraju R, Kerschner JL, Hunter GO, Axley ED, Boyd AK, Strahl BD, Mosley AL. Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation. J Biol Chem 2016; 291:13410-20. [PMID: 27143358 DOI: 10.1074/jbc.m116.727735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Using affinity purification MS approaches, we have identified a novel role for casein kinase II (CKII) in the modification of the polymerase associated factor complex (PAF-C). Our data indicate that the facilitates chromatin transcription complex (FACT) interacts with CKII and may facilitate PAF complex phosphorylation. Posttranslational modification analysis of affinity-isolated PAF-C shows extensive CKII phosphorylation of all five subunits of PAF-C, although CKII subunits were not detected as interacting partners. Consistent with this, recombinant CKII or FACT-associated CKII isolated from cells can phosphorylate PAF-C in vitro, whereas no intrinsic kinase activity was detected in PAF-C samples. Significantly, PAF-C purifications combined with stable isotope labeling in cells (SILAC) quantitation for PAF-C phosphorylation from wild-type and CKII temperature-sensitive strains (cka1Δ cka2-8) showed that PAF-C phosphorylation at consensus CKII sites is significantly reduced in cka1Δ cka2-8 strains. Consistent with a role of CKII in FACT and PAF-C function, we show that decreased CKII function in vivo results in decreased levels of histone H2B lysine 123 monoubiquitylation, a modification dependent on FACT and PAF-C. Taken together, our results define a coordinated role of CKII and FACT in the regulation of RNA polymerase II transcription through chromatin via phosphorylation of PAF-C.
Collapse
Affiliation(s)
- Lynn Glowczewski Bedard
- From the Department of Biology, DePauw University, Greencastle, Indiana 46135, the Department of Biochemistry and Molecular Biology and
| | | | - Jenny L Kerschner
- the Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and
| | | | | | - Asha K Boyd
- From the Department of Biology, DePauw University, Greencastle, Indiana 46135, the Department of Biochemistry and Molecular Biology and
| | - Brian D Strahl
- the Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| |
Collapse
|
29
|
Mbogning J, Pagé V, Burston J, Schwenger E, Fisher RP, Schwer B, Shuman S, Tanny JC. Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification. Nucleic Acids Res 2015; 43:9766-75. [PMID: 26275777 PMCID: PMC4787787 DOI: 10.1093/nar/gkv837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/09/2015] [Indexed: 12/11/2022] Open
Abstract
Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD ‘code’ for co-transcriptional histone modifications.
Collapse
Affiliation(s)
- Jean Mbogning
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Jillian Burston
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emily Schwenger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
30
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
31
|
Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma. Oncogene 2015; 34:5095-104. [PMID: 25597408 PMCID: PMC4506915 DOI: 10.1038/onc.2014.438] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Identification of key drivers and new therapeutic targets is important given the poor prognosis for hepatocellular carcinoma (HCC) patients, particularly those ineligible for surgical resection or liver transplant. However, the approach to identify such driver genes is facing significant challenges due to the genomically heterogenous nature of HCC. Here, we tested whether the integrative genomic profiling of a well-defined HCC subset that is classified by an extreme EpCAM+ AFP+ gene expression signature and associated with poor prognosis, all attributes of a stem cell-like phenotype, could uncover survival-related driver genes in HCC. Following transcriptomic analysis of the well-defined HCC cases, a Gene Set Enrichment Analysis (GSEA) coupled with genomic copy number alteration assessment revealed that YY1-associated protein 1 (YY1AP1) is a critical oncoprotein specifically activated in EpCAM+ AFP+ HCC. YY1AP1 silencing eliminates oncogene addiction by altering the chromatin landscape and triggering massive apoptosis in vitro and tumor suppression in vivo. YY1AP1 expression promotes HCC proliferation and is required for the maintenance of stem cell features. We revealed that YY1AP1 cooperates with YY1 to alter the chromatin landscape and activate transcription of stemness regulators. Thus, YY1AP1 may serve as a key molecular target for EpCAM+ AFP+ HCC subtype. Our results demonstrate the feasibility and power of a new strategy by utilizing well-defined patient samples and integrative genomics to uncover critical pathways linked to HCC subtypes with prognostic impact.
Collapse
|
32
|
Abstract
Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function.
Collapse
Affiliation(s)
- Jason C Tanny
- a Department of Pharmacology and Therapeutics ; McGill University ; Montreal , Canada
| |
Collapse
|
33
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
34
|
Abstract
CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.
Collapse
|
35
|
Deshpande SM, Sadhale PP, Vijayraghavan U. Involvement of S. cerevisiae Rpb4 in subset of pathways related to transcription elongation. Gene 2014; 545:126-31. [DOI: 10.1016/j.gene.2014.04.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 11/28/2022]
|
36
|
Dey P, Rachagani S, Vaz AP, Ponnusamy MP, Batra SK. PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia. Oncotarget 2014; 5:4480-91. [PMID: 24947474 PMCID: PMC4147339 DOI: 10.18632/oncotarget.2041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/28/2014] [Indexed: 01/29/2023] Open
Abstract
Pancreatic differentiation 2 (PD2), a PAF (RNA Polymerase II Associated Factor) complex subunit, is overexpressed in pancreatic cancer cells and has demonstrated potential oncogenic property. Here, we report that PD2/Paf1 expression was restricted to acinar cells in the normal murine pancreas, but its expression increased in the ductal cells of KrasG12D/Pdx1Cre (KC) mouse model of pancreatic cancer with increasing age, showing highest expression in neoplastic ductal cells of 50 weeks old mice. PD2/Paf1 was specifically expressed in amylase and CK19 double positive metaplastic ducts, representing intermediate structures during pancreatic acinar-to-ductal metaplasia (ADM). Similar PD2/Paf1 expression was observed in murine pancreas that exhibited ADM-like histology upon cerulein challenge. In normal mice, cerulein-mediated inflammation induced a decrease in PD2/Paf1 expression, which was later restored upon recovery of the pancreatic parenchyma. In KC mice, however, PD2/Paf1 mRNA level continued to decrease with progressive dysplasia and subsequent neoplastic transformation. Additionally, knockdown of PD2/Paf1 in pancreatic acinar cells resulted in the abrogation of Amylase, Elastase and Lipase (acinar marker) mRNA levels with simultaneous increase in CK19 and CAII (ductal marker) transcripts. In conclusion, our studies indicate loss of PD2/Paf1 expression during acinar transdifferentiation in pancreatic cancer initiation and PD2/Paf1 mediated regulation of lineage specific markers.
Collapse
Affiliation(s)
- Parama Dey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Arokia P. Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
- Fred & Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, U.S.A
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| |
Collapse
|
37
|
Bonnet J, Devys D, Tora L. Histone H2B ubiquitination: signaling not scrapping. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e19-e27. [PMID: 25027370 DOI: 10.1016/j.ddtec.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monoubiquitination of histone H2B has emerged as an important chromatin modification with roles not only in transcription but also in cell differentiation, DNA repair or mRNA processing. Recently, the genome-wide distribution of histone H2B ubiquitination in different organisms has been reported. In this review we discuss the mechanisms regulating H2B ubiquitination and its downstream effectors as well as the suggested functions for this mark in light of these recent studies.:
Collapse
Affiliation(s)
- Jacques Bonnet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| |
Collapse
|
38
|
Wu L, Li L, Zhou B, Qin Z, Dou Y. H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 2014; 54:920-931. [PMID: 24837678 DOI: 10.1016/j.molcel.2014.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
Histone H2B ubiquitination plays an important role in transcription regulation. It has been shown that H2B ubiquitination is regulated by multiple upstream events associated with elongating RNA polymerase. Here we demonstrate that H2B K34 ubiquitylation by the MOF-MSL complex is part of the protein networks involved in early steps of transcription elongation. Knocking down MSL2 in the MOF-MSL complex affects not only global H2BK34ub, but also multiple cotranscriptionally regulated histone modifications. More importantly, we show that the MSL, PAF1, and RNF20/40 complexes are recruited and stabilized at active gene promoters by direct binary interactions. The stabilized complexes serve to regulate chromatin association of pTEFb through a positive feedback loop and facilitate Pol II transition during early transcription elongation. Results from our biochemical studies are underscored by genome-wide analyses that show high RNA Pol II processivity and transcription activity at MSL target genes.
Collapse
Affiliation(s)
- Lipeng Wu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Mbogning J, Nagy S, Pagé V, Schwer B, Shuman S, Fisher RP, Tanny JC. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS Genet 2013; 9:e1004029. [PMID: 24385927 PMCID: PMC3873232 DOI: 10.1371/journal.pgen.1004029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.
Collapse
Affiliation(s)
- Jean Mbogning
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Stephen Nagy
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
40
|
DNA methylation pattern as important epigenetic criterion in cancer. GENETICS RESEARCH INTERNATIONAL 2013; 2013:317569. [PMID: 24455281 PMCID: PMC3884803 DOI: 10.1155/2013/317569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes' epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments.
Collapse
|
41
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
42
|
Hajheidari M, Koncz C, Eick D. Emerging roles for RNA polymerase II CTD in Arabidopsis. TRENDS IN PLANT SCIENCE 2013; 18:633-43. [PMID: 23910452 DOI: 10.1016/j.tplants.2013.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
43
|
Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 2013; 42:870-81. [PMID: 24163256 PMCID: PMC3902893 DOI: 10.1093/nar/gkt1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II is sequentially modified for recruitment of numerous accessory factors during transcription. One such factor is Spt6, which couples transcription elongation with histone chaperone activity and the regulation of H3 lysine 36 methylation. Here, we show that CTD association of Spt6 is required for Ser2 CTD phosphorylation and for the protein stability of Ctk1 (the major Ser2 CTD kinase). We also find that Spt6 associates with Ctk1, and, unexpectedly, Ctk1 and Ser2 CTD phosphorylation are required for the stability of Spt6-thus revealing a Spt6-Ctk1 feed-forward loop that robustly maintains Ser2 phosphorylation during transcription. In addition, we find that the BUR kinase and the polymerase associated factor transcription complex function upstream of the Spt6-Ctk1 loop, most likely by recruiting Spt6 to the CTD at the onset of transcription. Consistent with requirement of Spt6 in histone gene expression and nucleosome deposition, mutation or deletion of members of the Spt6-Ctk1 loop leads to global loss of histone H3 and sensitivity to hydroxyurea. In sum, these results elucidate a new control mechanism for the regulation of RNAPII CTD phosphorylation during transcription elongation that is likely to be highly conserved.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
44
|
Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc Natl Acad Sci U S A 2013; 110:17290-5. [PMID: 24101474 DOI: 10.1073/pnas.1314754110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerase associated factor 1 complex (Paf1C) broadly influences gene expression by regulating chromatin structure and the recruitment of RNA-processing factors during transcription elongation. The Plus3 domain of the Rtf1 subunit mediates Paf1C recruitment to genes by binding a repeating domain within the elongation factor Spt5 (suppressor of Ty). Here we provide a molecular description of this interaction by reporting the structure of human Rtf1 Plus3 in complex with a phosphorylated Spt5 repeat. We find that Spt5 binding is mediated by an extended surface containing phosphothreonine recognition and hydrophobic interfaces that interact with residues outside the Spt5 motif. Changes within these interfaces diminish binding of Spt5 in vitro and chromatin localization of Rtf1 in vivo. The structure reveals the basis for recognition of the repeat motif of Spt5, a key player in the recruitment of gene regulatory factors to RNA polymerase II.
Collapse
|
45
|
The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mol Cell Biol 2013; 33:3259-73. [PMID: 23775116 DOI: 10.1128/mcb.00270-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription elongation factors associate with RNA polymerase II and aid its translocation through chromatin. One such factor is the conserved Paf1 complex (Paf1C), which regulates gene expression through several mechanisms, including the stimulation of cotranscriptional histone modifications. Previous studies revealed a prominent role for the Rtf1 subunit in tethering Paf1C to the RNA polymerase II elongation machinery. Here, we investigated the mechanism by which Rtf1 couples Paf1C to active chromatin. We show that a highly conserved domain of Rtf1 is necessary and sufficient for mediating a physical interaction between Rtf1 and the essential transcription elongation factor Spt5. Mutations that alter this Rtf1 domain or delete the Spt5 C-terminal repeat domain (CTR) disrupt the interaction between Rtf1 and Spt5 and release Paf1C from chromatin. When expressed in cells as the only source of Rtf1, the Spt5-interacting domain of Rtf1 can associate independently with active genes in a pattern similar to that of full-length Rtf1 and in a manner dependent on the Spt5 CTR. In vitro experiments indicate that the interaction between the Rtf1 Spt5-interacting domain and the Spt5 CTR is direct. Collectively, our results provide molecular insight into a key attachment point between Paf1C and the RNA polymerase II elongation machinery.
Collapse
|
46
|
Jia Y, Takeda K, Han J, Joetham A, Marcus RA, Lucas JJ, O'Connor BP, Gelfand EW. Stepwise epigenetic and phenotypic alterations poise CD8+ T cells to mediate airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4056-65. [PMID: 23509358 DOI: 10.4049/jimmunol.1202640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional plasticity of CD8(+) T cells in an atopic environment, encompassing a spectrum from IFN-γ- to IL-13-producing cells, is pivotal in the development of allergic airway hyperresponsiveness and inflammation, and yet remains mechanistically undefined. We demonstrate that CD8(+) T cell IL-13 induction proceeded through a series of distinct IL-4/GATA3-regulated stages characterized by gene expression and epigenetic changes. In vivo, CD8(+) T cells exposed to an environment rich in IL-4 displayed epigenetic changes at the GATA3 and IL-13 promoter indicative of transcriptional activation and IL-13 production. In vitro, IL-4 triggered the stepwise molecular conversion of CD8(+) T cells from IFN-γ to IL-13 production. During the initial stage, IL-4 suppressed T-bet and induced GATA3 expression, characterized by enhanced activating histone modifications and RNA polymerase II (Pol II) recruitment to the GATA3 locus. Notably, recruitment of GATA3 and RNA Pol II to the IL-13 promoter was also detected at this initial stage. However, enhanced IL-13 transcription only occurred at a later stage after TCR stimulation, indicating that IL-4-induced GATA3 recruitment poises the IL-13 locus for TCR-mediated transcription. Thus, both in vivo and in vitro, an atopic (IL-4) environment poises CD8(+) T cells via stepwise epigenetic and phenotypic mechanisms for pathogenic conversion to IL-13 production, which is ultimately triggered via an allergen-mediated TCR stimulus.
Collapse
Affiliation(s)
- Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Venkatesh S, Workman JL. Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:685-700. [PMID: 24014454 DOI: 10.1002/wdev.109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Set2 is a RNA polymerase II (RNAPII) associated histone methyltransferase involved in the cotranscriptional methylation of the H3 K36 residue (H3K36me). It is responsible for multiple degrees of methylation (mono-, di-, and trimethylation), each of which has a distinct functional consequence. The extent of methylation and its genomic distribution is determined by different factors that coordinate to achieve a functional outcome. In yeast, the Set2-mediated H3K36me is involved in suppressing histone exchange, preventing hyperacetylation and promoting maintenance of well-spaced chromatin structure over the coding regions. In metazoans, separation of this enzymatic activity affords greater functional diversity extending beyond the control of transcription elongation to developmental gene regulation. This review focuses on the molecular aspects of the Set2 distribution and function, and discusses the role played by H3 K36 methyl mark in organismal development.
Collapse
|
48
|
The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol 2012; 33:785-99. [PMID: 23230273 DOI: 10.1128/mcb.00947-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies have revealed a close relationship between transcription, histone modification, and RNA processing. In fact, genome-wide analyses that correlate histone marks with RNA processing signals raise the possibility that specific RNA processing factors may modulate transcription and help to "write" chromatin marks. Here we show that the nuclear cap binding complex (CBC) directs recruitment of transcription elongation factors and establishes proper histone marks during active transcription. A directed genetic screen revealed that deletion of either subunit of the CBC confers a synthetic growth defect when combined with deletion of genes encoding either Ctk2 or Bur2, a component of the Saccharomyces cerevisiae ortholog of P-TEFb. The CBC physically associates with these complexes to recruit them during transcription and mediates phosphorylation at Ser-2 of the C-terminal domain (CTD) of RNA polymerase II. To understand how these interactions influence downstream events, histone H3K36me3 was examined, and we demonstrate that CBCΔ affects proper Set2-dependent H3K36me3. Consistent with this, the CBC and Set2 have similar effects on the ability to rapidly induce and sustain activated gene expression, and these effects are distinct from other histone methyltransferases. This work provides evidence for an emerging model that RNA processing factors can modulate the recruitment of transcription factors and influence histone modification during elongation.
Collapse
|
49
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
50
|
Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol Cell Biol 2012; 33:170-82. [PMID: 23109428 DOI: 10.1128/mcb.01233-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Across diverse eukaryotes, the Paf1 complex (Paf1C) plays critical roles in RNA polymerase II transcription elongation and regulation of histone modifications. Beyond these roles, the human and Saccharomyces cerevisiae Paf1 complexes also interact with RNA 3'-end processing components to affect transcript 3'-end formation. Specifically, the Saccharomyces cerevisiae Paf1C functions with the RNA binding proteins Nrd1 and Nab3 to regulate the termination of at least two small nucleolar RNAs (snoRNAs). To determine how Paf1C-dependent functions regulate snoRNA formation, we used high-density tiling arrays to analyze transcripts in paf1Δ cells and uncover new snoRNA targets of Paf1. Detailed examination of Paf1-regulated snoRNA genes revealed locus-specific requirements for Paf1-dependent posttranslational histone modifications. We also discovered roles for the transcriptional regulators Bur1-Bur2, Rad6, and Set2 in snoRNA 3'-end formation. Surprisingly, at some snoRNAs, this function of Rad6 appears to be primarily independent of its role in histone H2B monoubiquitylation. Cumulatively, our work reveals a broad requirement for the Paf1C in snoRNA 3'-end formation in S. cerevisiae, implicates the participation of transcriptional proteins and histone modifications in this process, and suggests that the Paf1C contributes to the fine tuning of nuanced levels of regulation that exist at individual loci.
Collapse
|