1
|
Li S, Zhong J, Ma Y, Yue C, Lv W, Ye G, Tian X, Li X, Huang Y, Du L. Influences of chain length and conformation of guanidinylated linear synthetic polypeptides on nuclear delivery of siRNA with potential application in transcriptional gene silencing. Int J Biol Macromol 2025; 308:142743. [PMID: 40180092 DOI: 10.1016/j.ijbiomac.2025.142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Transcriptional gene silencing (TGS) mediated by siRNA holds promise for long-term silencing efficacy, determined by effective nuclear delivery of siRNA. However, non-viral vectors for this purpose are limited. In this work, we synthesized guanidinylated linear synthetic polypeptides (GLSPs) to explore how chain length and conformation impact siRNA delivery, especially nuclear entry. Results show that helical conformations, particularly right-handed ones, enhance siRNA loading and silencing efficiency compared to unordered structures. Increasing chain length also improves these aspects. The endocytic pathways of carrier/siRNA nanocomplexes (NCs) are mainly determined by conformation, regardless of length. Notably, some NCs derived from right-handed helices can enter cells via direct membrane penetration, like bioactivity of cell penetrating peptides (CPPs). When the peptide chain of GLSPs is long enough, all vectors can rapidly deliver siRNA to the nucleus, similar to bioactivity of nuclear localization signal peptides (NLSPs). Interestingly, helicity of the vectors aids endosomal escape of NCs. Moreover, delivering siRNA to the nucleus via GLSPs induces TGS associated with DNA promoter methylation or histone deacetylation. This study clarifies the structure-activity relationship of GLSPs in siRNA delivery, providing new insights for designing non-viral carriers for TGS.
Collapse
Affiliation(s)
- Suifei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Junyang Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yunxiao Ma
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengfeng Yue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenxia Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumei Tian
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lingran Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
2
|
Zhao Y, Chang D, Zheng Y, Zhang Y, Wang Y, Bao X, Sun G, Feng Y, Li Z, Liu X, Yang J. Comparative transcriptome analysis reveals differences in immune responses to copper ions in Sepia esculenta under high-temperature conditions. BMC Genomics 2025; 26:262. [PMID: 40097976 PMCID: PMC11917092 DOI: 10.1186/s12864-025-11418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Sepia esculenta is one of the most abundant extant squid populations in Southeast Asia and is of interest due to its rapid reproductive rate and high commercial value. In recent years, with the rapid development of industrialization, issues such as global warming and heavy metal pollution in the oceans have emerged, posing a serious threat to the life activities of marine organisms. In this study, we used transcriptomic techniques to investigate the differences in Cu exposure immune responses in S. esculenta larvae under different temperature conditions. The enrichment of solute carrier family (SLC) genes and genes related to DNA replication and damage was significantly higher in the CuT group than in the Cu group. Functional enrichment analysis revealed that the FcγR-mediated phagocytosis and autophagy pathways were enriched in the CuT group. Based on the analysis of differentially expressed genes (DEGs) and functional enrichment results, we can preliminarily infer that the CuT group caused more severe disruption of intercellular ion transport and DNA replication and repair in larvae compared to the Cu group. This may have further interfered with the normal physiological activities of S. esculenta larvae. Overall, at high temperatures, Cu exposure induces a more intense inflammatory response. The results of this study provide a theoretical foundation for researchers to further understand the effects of environmental factors on the immunity of S. esculenta larvae, as well as preliminary insights into the enhanced toxic effects of metallic copper on aquatic organisms under high-temperature conditions.
Collapse
Affiliation(s)
- Yancheng Zhao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Deyuan Chang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanxuan Zheng
- Rushan Marine and Fishery Monitoring and Hazard Mitigation Center, Rushan, 264500, China
| | - Yuwei Zhang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yongjie Wang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zan Li
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
3
|
Meng J, Zhou W, Mao X, Lei P, An X, Xue H, Qi Y, Yu F, Liu X. PRL1 interacts with and stabilizes RPA2A to regulate carbon deprivation-induced senescence in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:855-869. [PMID: 39229867 DOI: 10.1111/nph.20082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
Leaf senescence is a developmental program regulated by both endogenous and environmental cues. Abiotic stresses such as nutrient deprivation can induce premature leaf senescence, which profoundly impacts plant growth and crop yield. However, the molecular mechanisms underlying stress-induced senescence are not fully understood. In this work, employing a carbon deprivation (C-deprivation)-induced senescence assay in Arabidopsis seedlings, we identified PLEIOTROPIC REGULATORY LOCUS 1 (PRL1), a component of the NineTeen Complex, as a negative regulator of C-deprivation-induced senescence. Furthermore, we demonstrated that PRL1 directly interacts with the RPA2A subunit of the single-stranded DNA-binding Replication Protein A (RPA) complex. Consistently, the loss of RPA2A leads to premature senescence, while increased expression of RPA2A inhibits senescence. Moreover, overexpression of RPA2A reverses the accelerated senescence in prl1 mutants, and the interaction with PRL1 stabilizes RPA2A under C-deprivation. In summary, our findings reveal the involvement of the PRL1-RPA2A functional module in C-deprivation-induced plant senescence.
Collapse
Affiliation(s)
- Jingjing Meng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenhui Zhou
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinhao Mao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Olivier M, Hesketh A, Pouch-Pélissier MN, Pélissier T, Huang Y, Latrasse D, Benhamed M, Mathieu O. RTEL1 is required for silencing and epigenome stability. Nucleic Acids Res 2023; 51:8463-8479. [PMID: 37471026 PMCID: PMC10484728 DOI: 10.1093/nar/gkad610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.
Collapse
Affiliation(s)
- Margaux Olivier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Amy Hesketh
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Thierry Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, F-75006 Paris, France
- Institut Universitaire de France (IUF), France
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Wang L, Xue M, Zhang H, Ma L, Jiang D. TONSOKU is required for the maintenance of repressive chromatin modifications in Arabidopsis. Cell Rep 2023; 42:112738. [PMID: 37393621 DOI: 10.1016/j.celrep.2023.112738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023] Open
Abstract
The stability of eukaryotic genomes relies on the faithful transmission of DNA sequences and the maintenance of chromatin states through DNA replication. Plant TONSOKU (TSK) and its animal ortholog TONSOKU-like (TONSL) act as readers for newly synthesized histones and preserve DNA integrity via facilitating DNA repair at post-replicative chromatin. However, whether TSK/TONSL regulate the maintenance of chromatin states remains elusive. Here, we show that TSK is dispensable for global histone and nucleosome accumulation but necessary for maintaining repressive chromatin modifications, including H3K9me2, H2A.W, H3K27me3, and DNA methylation. TSK physically interacts with H3K9 methyltransferases and Polycomb proteins. Moreover, TSK mutation strongly enhances defects in Polycomb pathway mutants. TSK is intended to only associate with nascent chromatin until it starts to mature. We propose that TSK ensures the preservation of chromatin states by supporting the recruitment of chromatin modifiers to post-replicative chromatin in a critical short window of time following DNA replication.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang X, Li W, Liu Y, Li Y, Li Y, Yang W, Chen X, Pi L, Yang H. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2439-2453. [PMID: 35633113 DOI: 10.1111/nph.18279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
RPA2A is a subunit of the conserved heterotrimeric replication protein A (RPA) in Arabidopsis, which is an essential replisome component that binds to single-stranded DNA during DNA replication. RPA2A controls a set of developmental processes, but the underlying mechanism is largely unknown. Here we show that RPA2A represses key flowering genes including FLOWERING LOCUS T (FT), AGAMOUS (AG) and AGAMOUS LIKE 71 (AGL71) to suppress floral transition by cooperating with the PRC2 complex. RPA2A is vigorously expressed in dividing cells and required for correct DNA replication. Mutation of RPA2A leads to early flowering, which is dependent on ectopic expression of key flowering genes including FT molecularly and genetically. RPA2A and PRC2 have common target genes including FT, AG and AGL71 supported using genetic analysis, transcriptome profiling and H3K27me3 ChIP-seq analysis. Furthermore, RPA2A physically interacts with PRC2 components CLF, EMF2 and MSI1, which recruits CLF to the chromatin loci of FT, AG and AGL71. Together, our results show that the replication protein RPA2A recruits PRC2 to key flowering genes through physical protein interaction, thereby repressing the expression of these genes to suppress floral transition in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wandong Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
8
|
Lewandowska D, Orr J, Schreiber M, Colas I, Ramsay L, Zhang R, Waugh R. The proteome of developing barley anthers during meiotic prophase I. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1464-1482. [PMID: 34758083 PMCID: PMC8890616 DOI: 10.1093/jxb/erab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
9
|
Chowdhury S, Chowdhury AB, Kumar M, Chakraborty S. Revisiting regulatory roles of replication protein A in plant DNA metabolism. PLANTA 2021; 253:130. [PMID: 34047822 DOI: 10.1007/s00425-021-03641-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This review provides insight into the roles of heterotrimeric RPA protein complexes encompassing all aspects of DNA metabolism in plants along with specific function attributed by individual subunits. It highlights research gaps that need further attention. Replication protein A (RPA), a heterotrimeric protein complex partakes in almost every aspect of DNA metabolism in eukaryotes with its principle role being a single-stranded DNA-binding protein, thereby providing stability to single-stranded (ss) DNA. Although most of our knowledge of RPA structure and its role in DNA metabolism is based on studies in yeast and animal system, in recent years, plants have also been reported to have diverse repertoire of RPA complexes (formed by combination of different RPA subunit homologs arose during course of evolution), expected to be involved in plethora of DNA metabolic activities. Here, we have reviewed all studies regarding role of RPA in DNA metabolism in plants. As combination of plant RPA complexes may vary largely depending on number of homologs of each subunit, next step for plant biologists is to develop specific functional methods for detailed analysis of biological roles of these complexes, which we have tried to formulate in our review. Besides, complete absence of any study regarding regulatory role of posttranslational modification of RPA complexes in DNA metabolism in plants, prompts us to postulate a hypothetical model of same in light of information from animal system. With our review, we envisage to stimulate the RPA research in plants to shift its course from descriptive to functional studies, thereby bringing a new angle of studying dynamic DNA metabolism in plants.
Collapse
Affiliation(s)
- Supriyo Chowdhury
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arpita Basu Chowdhury
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Markus C, Pecinka A, Merotto A. Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. Int J Mol Sci 2021; 22:3314. [PMID: 33804990 PMCID: PMC8037345 DOI: 10.3390/ijms22073314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/24/2022] Open
Abstract
Herbicide resistance is broadly recognized as the adaptive evolution of weed populations to the intense selection pressure imposed by the herbicide applications. Here, we tested whether transcriptional gene silencing (TGS) and RNA-directed DNA Methylation (RdDM) pathways modulate resistance to commonly applied herbicides. Using Arabidopsis thaliana wild-type plants exposed to sublethal doses of glyphosate, imazethapyr, and 2,4-D, we found a partial loss of TGS and increased susceptibility to herbicides in six out of 11 tested TGS/RdDM mutants. Mutation in REPRESSOR OF SILENCING 1 (ROS1), that plays an important role in DNA demethylation, leading to strongly increased susceptibility to all applied herbicides, and imazethapyr in particular. Transcriptomic analysis of the imazethapyr-treated wild type and ros1 plants revealed a relation of the herbicide upregulated genes to chemical stimulus, secondary metabolism, stress condition, flavonoid biosynthesis, and epigenetic processes. Hypersensitivity to imazethapyr of the flavonoid biosynthesis component TRANSPARENT TESTA 4 (TT4) mutant plants strongly suggests that ROS1-dependent accumulation of flavonoids is an important mechanism for herbicide stress response in A. thaliana. In summary, our study shows that herbicide treatment affects transcriptional gene silencing pathways and that misregulation of these pathways makes Arabidopsis plants more sensitive to herbicide treatment.
Collapse
Affiliation(s)
- Catarine Markus
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Experimental Botany, Czech Academy Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil;
| |
Collapse
|
11
|
Bourguet P, López-González L, Gómez-Zambrano Á, Pélissier T, Hesketh A, Potok ME, Pouch-Pélissier MN, Perez M, Da Ines O, Latrasse D, White CI, Jacobsen SE, Benhamed M, Mathieu O. DNA polymerase epsilon is required for heterochromatin maintenance in Arabidopsis. Genome Biol 2020; 21:283. [PMID: 33234150 PMCID: PMC7687843 DOI: 10.1186/s13059-020-02190-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chromatin organizes DNA and regulates its transcriptional activity through epigenetic modifications. Heterochromatic regions of the genome are generally transcriptionally silent, while euchromatin is more prone to transcription. During DNA replication, both genetic information and chromatin modifications must be faithfully passed on to daughter strands. There is evidence that DNA polymerases play a role in transcriptional silencing, but the extent of their contribution and how it relates to heterochromatin maintenance is unclear. RESULTS We isolate a strong hypomorphic Arabidopsis thaliana mutant of the POL2A catalytic subunit of DNA polymerase epsilon and show that POL2A is required to stabilize heterochromatin silencing genome-wide, likely by preventing replicative stress. We reveal that POL2A inhibits DNA methylation and histone H3 lysine 9 methylation. Hence, the release of heterochromatin silencing in POL2A-deficient mutants paradoxically occurs in a chromatin context of increased levels of these two repressive epigenetic marks. At the nuclear level, the POL2A defect is associated with fragmentation of heterochromatin. CONCLUSION These results indicate that POL2A is critical to heterochromatin structure and function, and that unhindered replisome progression is required for the faithful propagation of DNA methylation throughout the cell cycle.
Collapse
Affiliation(s)
- Pierre Bourguet
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Leticia López-González
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Ángeles Gómez-Zambrano
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
- Present Address: Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Cartuja, Avda, Américo Vespucio, 49., 41092, Sevilla, Spain
| | - Thierry Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Amy Hesketh
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Magdalena E Potok
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Marie-Noëlle Pouch-Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Magali Perez
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Olivier Da Ines
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Charles I White
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Functional Diversification of Replication Protein A Paralogs and Telomere Length Maintenance in Arabidopsis. Genetics 2020; 215:989-1002. [PMID: 32532801 DOI: 10.1534/genetics.120.303222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Replication protein A (RPA) is essential for many facets of DNA metabolism. The RPA gene family expanded in Arabidopsis thaliana with five phylogenetically distinct RPA1 subunits (RPA1A-E), two RPA2 (RPA2A and B), and two RPA3 (RPA3A and B). RPA1 paralogs exhibit partial redundancy and functional specialization in DNA replication (RPA1B and RPA1D), repair (RPA1C and RPA1E), and meiotic recombination (RPA1A and RPA1C). Here, we show that RPA subunits also differentially impact telomere length set point. Loss of RPA1 resets bulk telomeres at a shorter length, with a functional hierarchy for replication group over repair and meiosis group RPA1 subunits. Plants lacking RPA2A, but not RPA2B, harbor short telomeres similar to the replication group. Telomere shortening does not correlate with decreased telomerase activity or deprotection of chromosome ends in rpa mutants. However, in vitro assays show that RPA1B2A3B unfolds telomeric G-quadruplexes known to inhibit replications fork progression. We also found that ATR deficiency can partially rescue short telomeres in rpa2a mutants, although plants exhibit defects in growth and development. Unexpectedly, the telomere shortening phenotype of rpa2a mutants is completely abolished in plants lacking the RTEL1 helicase. RTEL1 has been implicated in a variety of nucleic acid transactions, including suppression of homologous recombination. Thus, the lack of telomere shortening in rpa2a mutants upon RTEL1 deletion suggests that telomere replication defects incurred by loss of RPA may be bypassed by homologous recombination. Taken together, these findings provide new insight into how RPA cooperates with replication and recombination machinery to sustain telomeric DNA.
Collapse
|
13
|
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:68-84. [PMID: 31733119 DOI: 10.1111/tpj.14612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, PL-30 239, Krakow, Poland
| | - Barbara Tokarz
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31 425, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Klára Procházková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Ugur Ercan
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Igor Niezgodzki
- Biogeosystem Modelling Group, ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Krakow, Senacka 1, PL-31 002, Krakow, Poland
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, DE-06466, Gatersleben, OT, Germany
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| |
Collapse
|
14
|
Superinfection by PHYVV Alters the Recovery Process in PepGMV-Infected Pepper Plants. Viruses 2020; 12:v12030286. [PMID: 32151060 PMCID: PMC7150747 DOI: 10.3390/v12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Geminiviruses are important plant pathogens that affect crops around the world. In some geminivirus-host interactions, infected plants show recovery, a phenomenon characterized by symptom disappearance in newly emerging leaves. In pepper-Pepper golden mosaic virus (PepGMV) interaction, the host recovery process involves a silencing mechanism that includes both post-transcriptional (PTGS) and transcriptional (TGS) gene silencing pathways. Under field conditions, PepGMV is frequently found in mixed infections with Pepper huasteco yellow vein virus (PHYVV), another bipartite begomovirus. Mixed infected plants generally show a synergetic phenomenon and do not present recovery. Little is known about the molecular mechanism of this interaction. In the present study, we explored the effect of superinfection by PHYVV on a PepGMV-infected pepper plant showing recovery. Superinfection with PHYVV led to (a) the appearance of severe symptoms, (b) an increase of the levels of PepGMV DNA accumulation, (c) a decrease of the relative methylation levels of PepGMV DNA, and (d) an increase of chromatin activation marks present in viral minichromosomes. Finally, using heterologous expression and silencing suppression reporter systems, we found that PHYVV REn presents TGS silencing suppressor activity, whereas similar experiments suggest that Rep might be involved in suppressing PTGS.
Collapse
|
15
|
Vercruysse J, Van Bel M, Osuna‐Cruz CM, Kulkarni SR, Storme V, Nelissen H, Gonzalez N, Inzé D, Vandepoele K. Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:553-567. [PMID: 31361386 PMCID: PMC6953196 DOI: 10.1111/pbi.13223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
Leaf growth is a complex trait for which many similarities exist in different plant species, suggesting functional conservation of the underlying pathways. However, a global view of orthologous genes involved in leaf growth showing conserved expression in dicots and monocots is currently missing. Here, we present a genome-wide comparative transcriptome analysis between Arabidopsis and maize, identifying conserved biological processes and gene functions active during leaf growth. Despite the orthology complexity between these distantly related plants, 926 orthologous gene groups including 2829 Arabidopsis and 2974 maize genes with similar expression during leaf growth were found, indicating conservation of the underlying molecular networks. We found 65% of these genes to be involved in one-to-one orthology, whereas only 28.7% of the groups with divergent expression had one-to-one orthology. Within the pool of genes with conserved expression, 19 transcription factor families were identified, demonstrating expression conservation of regulators active during leaf growth. Additionally, 25 Arabidopsis and 25 maize putative targets of the TCP transcription factors with conserved expression were determined based on the presence of enriched transcription factor binding sites. Based on large-scale phenotypic data, we observed that genes with conserved expression have a higher probability to be involved in leaf growth and that leaf-related phenotypes are more frequently present for genes having orthologues between dicots and monocots than clade-specific genes. This study shows the power of integrating transcriptomic with orthology data to identify or select candidates for functional studies during leaf development in flowering plants.
Collapse
Affiliation(s)
- Jasmien Vercruysse
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Cristina M. Osuna‐Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Shubhada R. Kulkarni
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Véronique Storme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
- INRAUMR1332 Biologie du fruit et PathologieINRA Bordeaux AquitaineVillenave d'Ornon CedexFrance
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- Center for Plant Systems BiologyVIBGentBelgium
| |
Collapse
|
16
|
Zhang HF, Liu SY, Ma JH, Wang XK, Haq SU, Meng YC, Zhang YM, Chen RG. CaDHN4, a Salt and Cold Stress-Responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis. Int J Mol Sci 2019; 21:ijms21010026. [PMID: 31861623 PMCID: PMC6981442 DOI: 10.3390/ijms21010026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ru-gang Chen
- Correspondence: ; Tel.: +86-29-8708-2613; Fax: +86-29-8708-2613
| |
Collapse
|
17
|
Kim JH. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int J Mol Sci 2019; 20:ijms20174093. [PMID: 31443358 PMCID: PMC6747262 DOI: 10.3390/ijms20174093] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage response (DDR) in eukaryotic cells is initiated in the chromatin context. DNA damage and repair depend on or have influence on the chromatin dynamics associated with genome stability. Epigenetic modifiers, such as chromatin remodelers, histone modifiers, DNA (de-)methylation enzymes, and noncoding RNAs regulate DDR signaling and DNA repair by affecting chromatin dynamics. In recent years, significant progress has been made in the understanding of plant DDR and DNA repair. SUPPRESSOR OF GAMMA RESPONSE1, RETINOBLASTOMA RELATED1 (RBR1)/E2FA, and NAC103 have been proven to be key players in the mediation of DDR signaling in plants, while plant-specific chromatin remodelers, such as DECREASED DNA METHYLATION1, contribute to chromatin dynamics for DNA repair. There is accumulating evidence that plant epigenetic modifiers are involved in DDR and DNA repair. In this review, I examine how DDR and DNA repair machineries are concertedly regulated in Arabidopsis thaliana by a variety of epigenetic modifiers directing chromatin remodeling and epigenetic modification. This review will aid in updating our knowledge on DDR and DNA repair in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
18
|
A conserved but plant-specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division. Proc Natl Acad Sci U S A 2019; 116:18126-18131. [PMID: 31431532 DOI: 10.1073/pnas.1819345116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The R2R3-MYB transcription factor FOUR LIPS (FLP) controls the stomatal terminal division through transcriptional repression of the cell cycle genes CYCLIN-DEPENDENT KINASE (CDK) B1s (CDKB1s), CDKA;1, and CYCLIN A2s (CYCA2s). We mutagenized the weak mutant allele flp-1 seeds with ethylmethane sulfonate and screened out a flp-1 suppressor 1 (fsp1) that suppressed the flp-1 stomatal cluster phenotype. FSP1 encodes RPA2a subunit of Replication Protein A (RPA) complexes that play important roles in DNA replication, recombination, and repair. Here, we show that FSP1/RPA2a functions together with CDKB1s and CYCA2s in restricting stomatal precursor proliferation, ensuring the stomatal terminal division and maintaining a normal guard-cell size and DNA content. Furthermore, we provide direct evidence for the existence of an evolutionarily conserved, but plant-specific, CDK-mediated RPA regulatory pathway. Serine-11 and Serine-21 at the N terminus of RPA2a are CDK phosphorylation target residues. The expression of the phosphorylation-mimic variant RPA2a S11,21/D partially complemented the defective cell division and DNA damage hypersensitivity in cdkb1;1 1;2 mutants. Thus, our study provides a mechanistic understanding of the CDK-mediated phosphorylation of RPA in the precise control of cell cycle and DNA repair in plants.
Collapse
|
19
|
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, Indrischek H, Chintalapati M, Lohse K, Doose G, Overmann J, Bunk B, Bleidorn C, Grimm-Seyfarth A, Henle K, Nowick K, Faria R, Stadler PF, Schlegel M. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019; 8:giy160. [PMID: 30535196 PMCID: PMC6381762 DOI: 10.1093/gigascience/giy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Amin Saffari
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Maria Beatriz Walter Costa
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Embrapa Agroenergia, Parque Estacaeo Biologica (PqEB), Asa Norte, Brasilia/DF, 70770-901, Brazil
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
- Max Planck Institute for Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01397 Dresden, Germany
| | - Manjusha Chintalapati
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Gero Doose
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Jörg Overmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, 28006, Spain
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, Potsdam, 14476, Germany
| | - Klaus Henle
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Katja Nowick
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Rui Faria
- Department of Animal and Plant Sciences, Alfred Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, Leipzig, 04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
- Fraunhofer Institut Für Zelltherapie Und Immunologie, Perlickstrasse 1, Leipzig, 04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger strasse 17, Wien, 1090, Austria
- Center for non-Coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, Frederiksberg C, 1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| |
Collapse
|
20
|
Bourguet P, de Bossoreille S, López-González L, Pouch-Pélissier MN, Gómez-Zambrano Á, Devert A, Pélissier T, Pogorelcnik R, Vaillant I, Mathieu O. A role for MED14 and UVH6 in heterochromatin transcription upon destabilization of silencing. Life Sci Alliance 2018; 1:e201800197. [PMID: 30574575 PMCID: PMC6291795 DOI: 10.26508/lsa.201800197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023] Open
Abstract
The TFIIH component UVH6 and the mediator subunit MED14 are differentially required for the release of heterochromatin silencing, and MED14 regulates non-CG DNA methylation in Arabidopsis. Constitutive heterochromatin is associated with repressive epigenetic modifications of histones and DNA which silence transcription. Yet, particular mutations or environmental changes can destabilize heterochromatin-associated silencing without noticeable changes in repressive epigenetic marks. Factors allowing transcription in this nonpermissive chromatin context remain poorly known. Here, we show that the transcription factor IIH component UVH6 and the mediator subunit MED14 are both required for heat stress–induced transcriptional changes and release of heterochromatin transcriptional silencing in Arabidopsis thaliana. We find that MED14, but not UVH6, is required for transcription when heterochromatin silencing is destabilized in the absence of stress through mutating the MOM1 silencing factor. In this case, our results raise the possibility that transcription dependency over MED14 might require intact patterns of repressive epigenetic marks. We also uncover that MED14 regulates DNA methylation in non-CG contexts at a subset of RNA-directed DNA methylation target loci. These findings provide insight into the control of heterochromatin transcription upon silencing destabilization and identify MED14 as a regulator of DNA methylation.
Collapse
Affiliation(s)
- Pierre Bourguet
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stève de Bossoreille
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Leticia López-González
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ángeles Gómez-Zambrano
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anthony Devert
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry Pélissier
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Romain Pogorelcnik
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Vaillant
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Mathieu
- Génétique Reproduction et Développement, Centre National de la Recherche Scientifique (CNRS), Inserm, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
21
|
Gutierrez C, Desvoyes B, Vergara Z, Otero S, Sequeira-Mendes J. Links of genome replication, transcriptional silencing and chromatin dynamics. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:92-99. [PMID: 27816819 DOI: 10.1016/j.pbi.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Genome replication in multicellular organisms involves duplication of both the genetic material and the epigenetic information stored in DNA and histones. In some cases, the DNA replication process provides a window of opportunity for resetting chromatin marks in the genome of the future daughter cells instead of transferring them identical copies. This crucial step of genome replication depends on the correct function of DNA replication factors and the coordination between replication and transcription in proliferating cells. In fact, the histone composition and modification status appears to be intimately associated with the proliferation potential of cells within developing organs. Here we discuss these topics in the light of recent advances in our understanding of how genome replication, transcriptional silencing and chromatin dynamics are coordinated in proliferating cells.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Sofía Otero
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Zhang J, Xie S, Zhu JK, Gong Z. Requirement for flap endonuclease 1 (FEN1) to maintain genomic stability and transcriptional gene silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:629-40. [PMID: 27231839 PMCID: PMC5508578 DOI: 10.1111/tpj.13224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 05/02/2023]
Abstract
As a central component in the maturation of Okazaki fragments, flap endonuclease 1 (FEN1) removes the 5'-flap and maintains genomic stability. Here, FEN1 was cloned as a suppressor of transcriptional gene silencing (TGS) from a forward genetic screen. FEN1 is abundant in the root and shoot apical meristems and FEN1-GFP shows a nucleolus-localized signal in tobacco cells. The Arabidopsis fen1-1 mutant is hypersensitive to methyl methanesulfonate and shows reduced telomere length. Interestingly, genome-wide chromatin immunoprecipitation and RNA sequencing results demonstrate that FEN1 mutation leads to a decrease in the level of H3K27me3 and an increase in the expression of a subset of genes marked with H3K27me3. Overall, these results uncover a role for FEN1 in mediating TGS as well as maintaining genome stability in Arabidopsis.
Collapse
Affiliation(s)
- Jixiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaojun Xie
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47906, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47906, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Basenko EY, Kamei M, Ji L, Schmitz RJ, Lewis ZA. The LSH/DDM1 Homolog MUS-30 Is Required for Genome Stability, but Not for DNA Methylation in Neurospora crassa. PLoS Genet 2016; 12:e1005790. [PMID: 26771905 PMCID: PMC4714748 DOI: 10.1371/journal.pgen.1005790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes.
Collapse
Affiliation(s)
- Evelina Y. Basenko
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Xu W, Wang T, Xu S, Xu S, Wu L, Wu Y, Bian P. Radiation-induced epigenetic bystander effects demonstrated in Arabidopsis thaliana. Radiat Res 2015; 183:511-24. [PMID: 25938771 DOI: 10.1667/rr13909.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effects (RIBE) in vivo in the higher plant Arabidopsis thaliana ( A. thaliana ) have been well demonstrated in terms of effects on development and genetics. However, there is not yet robust evidence regarding RIBE-mediated epigenetic changes in plants. To address this, in the current work the roots of A. thaliana seedlings were locally irradiated with 10 Gy of α particles, after which DNA methylation in bystander aerial plants were detected using the methylation-sensitive amplification polymorphism (MSAP) and bisulfite sequencing PCR (BSP). Results showed that irradiation of the roots led to long-distance changes in DNA methylation patterns at some CCGG sites over the whole genome, specifically from hemi-methylation to non-methylation, and the methylation ratios, mainly at CG sites, strongly indicating the existence of RIBE-mediated epigenetic changes in higher plants. Root irradiation also influenced expressions of DNA methylation-related MET1, DRM2 and SUVH4 genes and demethylation-related DML3 gene in bystander aerial plants, suggesting a modulation of RIBE to the methylation machinery in plants. In addition, the multicopy P35S:GUS in A. thaliana line L5-1, which is silenced epigenetically by DNA methylation and histone modification, was transcriptionally activated through the RIBE. The transcriptional activation could be significantly inhibited by the treatment with reactive oxygen species (ROS) scavenger dimethyl sulfoxide (DMSO), indicative of a pivotal role of ROS in RIBE-mediated epigenetic changes. Time course analyses showed that the bystander signaling molecule(s) for transcriptional activation of multicopy P35S:GUS, although of unknown chemical nature, were generated in the root cells within 24 h postirradiation.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P.R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang LC, Wu JR, Hsu YJ, Wu SJ. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress. THE NEW PHYTOLOGIST 2015; 205:544-54. [PMID: 25329561 DOI: 10.1111/nph.13088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/22/2014] [Indexed: 05/23/2023]
Abstract
Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized.
Collapse
Affiliation(s)
- Lian-Chin Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li City, Taoyuan County, 32001, Taiwan
| | | | | | | |
Collapse
|
26
|
Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol 2014; 35:662-74. [PMID: 25487573 PMCID: PMC4301722 DOI: 10.1128/mcb.01102-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.
Collapse
|
27
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
28
|
Eschbach V, Kobbe D. Different replication protein A complexes of Arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition. PLANT & CELL PHYSIOLOGY 2014; 55:1460-1472. [PMID: 24880780 DOI: 10.1093/pcp/pcu076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The heterotrimeric RPA (replication protein A) protein complex has single-stranded DNA-binding functions that are important for all DNA processing pathways in eukaryotic cells. In Arabidopsis thaliana, which has five homologs of the RPA1 subunit and two homologs each of RPA2 and RPA3, in theory 20 RPA complexes could form. Using Escherichia coli as a heterologous expression system and analysing the results of the co-purification of the different subunits, we conclude that AtRPA1a interacts with the AtRPA2b subunit, and AtRPA1b interacts with AtRPA2a. Additionally either AtRPA3a or AtRPA3b is part of the complexes. As shown by electrophoretic mobility shift assays, all of the purified AtRPA complexes bind single-stranded DNA, but differences in DNA binding, especially with respect to modified DNA, could be revealed for all four of the analyzed RPA complexes. Thus, the RPA3 subunits influence the DNA-binding properties of the complexes differently despite their high degree of similarity of 82%. The data support the idea that in plants a subfunctionalization of RPA homologs has occurred and that different complexes act preferentially in different pathways.
Collapse
Affiliation(s)
- Verena Eschbach
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Butt H, Graner S, Luschnig C. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1217-27. [PMID: 24574485 PMCID: PMC3935573 DOI: 10.1093/jxb/ert480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins.
Collapse
Affiliation(s)
- Haroon Butt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Sonja Graner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
30
|
Baubec T, Finke A, Mittelsten Scheid O, Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep 2014; 15:446-52. [PMID: 24562611 DOI: 10.1002/embr.201337915] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In plants, transposable elements (TEs) are kept inactive by transcriptional gene silencing (TGS). TGS is established and perpetuated by RNA-directed DNA methylation (RdDM) and maintenance methylation pathways, respectively. Here, we describe a novel RdDM function specific for shoot apical meristems that reinforces silencing of TEs during early vegetative growth. In meristems, RdDM counteracts drug-induced interference with TGS maintenance and consequently prevents TE activation. Simultaneous disturbance of both TGS pathways leads to transcriptionally active states of repetitive sequences that are inherited by somatic tissues and partially by the progeny. This apical meristem-specific mechanism is mediated by increased levels of TGS factors and provides a checkpoint for correct epigenetic inheritance during the transition from vegetative to reproductive phase and to the next generation.
Collapse
Affiliation(s)
- Tuncay Baubec
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Roy S. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability. FRONTIERS IN PLANT SCIENCE 2014; 5:487. [PMID: 25295048 PMCID: PMC4172009 DOI: 10.3389/fpls.2014.00487] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/03/2014] [Indexed: 05/19/2023]
Abstract
Plant cells are subject to high levels of DNA damage resulting from plant's obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury, and other air and soil pollutants including heavy metals and metabolic by-products from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction, and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.
Collapse
Affiliation(s)
- Sujit Roy
- *Correspondence: Sujit Roy, Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India e-mail:
| |
Collapse
|
32
|
Atwood SE, O'Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. Replication protein A subunit 3 and the iron efficiency response in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:213-34. [PMID: 23742135 DOI: 10.1111/pce.12147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/28/2013] [Indexed: 05/20/2023]
Abstract
In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.
Collapse
Affiliation(s)
- Sarah E Atwood
- Interdepartmental Genetics Program, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aklilu BB, Soderquist RS, Culligan KM. Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res 2013; 42:3104-18. [PMID: 24335281 PMCID: PMC3950690 DOI: 10.1093/nar/gkt1292] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division.
Collapse
Affiliation(s)
- Behailu B Aklilu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA and Program in Genetics, University of New Hampshire, Durham NH 03824, USA
| | | | | |
Collapse
|
34
|
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. THE PLANT CELL 2013; 25:2444-63. [PMID: 23903317 PMCID: PMC3753376 DOI: 10.1105/tpc.113.109538] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.
Collapse
Affiliation(s)
- Marie-Christine Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Fabienne Granier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Olivier Pichon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Jean-Pierre Renou
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Valérie Gaudin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Yves Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
35
|
Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. THE NEW PHYTOLOGIST 2013; 199:464-475. [PMID: 23614786 DOI: 10.1111/nph.12286] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/13/2013] [Indexed: 05/17/2023]
Abstract
Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses.
Collapse
Affiliation(s)
- Edgar Rodríguez-Negrete
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| | - Rosa Lozano-Durán
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| | - Alvaro Piedra-Aguilera
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| | - Lucia Cruzado
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| | - Eduardo R Bejarano
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| | - Araceli G Castillo
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, 29071, Málaga, Spain
| |
Collapse
|
36
|
Wang LC, Wu JR, Chang WL, Yeh CH, Ke YT, Lu CA, Wu SJ. Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1689-701. [PMID: 23408827 DOI: 10.1093/jxb/ert030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis mutant heat-intolerant 4-1 (hit4-1) was isolated from an ethyl methanesulphonate-mutagenized M2 population on the basis of its inability to withstand prolonged heat stress (4 days at 37°C). Further characterization indicated that hit4-1 was impaired specifically in terms of basal but not acquired thermotolerance. Map-based cloning revealed that the HIT4 gene encoded a plant-specific protein for which the molecular function has yet to be studied. To investigate the cellular role of HIT4 and hence elucidate better its protective function in heat tolerance in plants, a GFP-HIT4 reporter construct was created for a protoplast transient expression assay. Results showed that fluorescently tagged HIT4 was localized to the chromocentre, a condensed heterochromatin domain that harbours repetitive elements for which transcription is normally suppressed by transcriptional gene silencing (TGS). DAPI-staining analysis and FISH with a probe that targeted centromeric repeats showed that heat-induced chromocentre decondensation was inhibited in nuclei of hit4-1 subjected to direct heat treatment, but not in those that were allowed to acquire thermotolerance. Moreover, heat reactivation of various TGS loci, regardless of whether they were endogenous or transgenic, or existed as a single copy or as repeats, was found to be attenuated in hit4-1. Meanwhile, the levels of transcripts of heat shock protein genes in response to heat stress were similar in both hit4-1 and wild-type plants. Collectively, these results demonstrated that HIT4 defines a new TGS regulator that acts at the level of heterochromatin organization and is essential for basal thermotolerance in plants.
Collapse
Affiliation(s)
- Lian-Chin Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li City, Taoyuan County 32001, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Shin JH, Wang HLV, Lee J, Dinwiddie BL, Belostotsky DA, Chekanova JA. The role of the Arabidopsis Exosome in siRNA-independent silencing of heterochromatic loci. PLoS Genet 2013; 9:e1003411. [PMID: 23555312 PMCID: PMC3610620 DOI: 10.1371/journal.pgen.1003411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
The exosome functions throughout eukaryotic RNA metabolism and has a prominent role in gene silencing in yeast. In Arabidopsis, exosome regulates expression of a "hidden" transcriptome layer from centromeric, pericentromeric, and other heterochromatic loci that are also controlled by small (sm)RNA-based de novo DNA methylation (RdDM). However, the relationship between exosome and smRNAs in gene silencing in Arabidopsis remains unexplored. To investigate whether exosome interacts with RdDM, we profiled Arabidopsis smRNAs by deep sequencing in exosome and RdDM mutants and also analyzed RdDM-controlled loci. We found that exosome loss had a very minor effect on global smRNA populations, suggesting that, in contrast to fission yeast, in Arabidopsis the exosome does not control the spurious entry of RNAs into smRNA pathways. Exosome defects resulted in decreased histone H3K9 dimethylation at RdDM-controlled loci, without affecting smRNAs or DNA methylation. Exosome also exhibits a strong genetic interaction with RNA Pol V, but not Pol IV, and physically associates with transcripts produced from the scaffold RNAs generating region. We also show that two Arabidopsis rrp6 homologues act in gene silencing. Our data suggest that Arabidopsis exosome may act in parallel with RdDM in gene silencing, by epigenetic effects on chromatin structure, not through siRNAs or DNA methylation.
Collapse
Affiliation(s)
- Jun-Hye Shin
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Hsiao-Lin V. Wang
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Jinwon Lee
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Dinwiddie
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Dmitry A. Belostotsky
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Julia A. Chekanova
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Moreno-Romero J, Armengot L, Mar Marquès-Bueno M, Britt A, Carmen Martínez M. CK2-defective Arabidopsis plants exhibit enhanced double-strand break repair rates and reduced survival after exposure to ionizing radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:627-638. [PMID: 22487192 DOI: 10.1111/j.1365-313x.2012.05019.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The multifunctional protein kinase CK2 is involved in several aspects of the DNA damage response (DDR) in mammals. To gain insight into the role of CK2 in plant genome maintenance, we studied the response to genotoxic agents of an Arabidopsis CK2 dominant-negative mutant (CK2mut plants). CK2mut plants were hypersensitive to a wide range of genotoxins that produce a variety of DNA lesions. However, they were able to activate the DDR after exposure to γ irradiation, as shown by accumulation of phosphorylated histone H2AX and up-regulation of sets of radio-modulated genes. Moreover, functional assays showed that mutant plants quickly repair the DNA damage produced by genotoxins, and that they exhibit preferential use of non-conservative mechanisms, which may explain plant lethality. The chromatin of CK2mut plants was more sensitive to digestion with micrococcal nuclease, suggesting compaction changes that agreed with the transcriptional changes detected for a number of genes involved in chromatin structure. Furthermore, CK2mut plants were prone to transcriptional gene silencing release upon genotoxic stress. Our results suggest that CK2 is required in the maintenance and control of genomic stability and chromatin structure in plants, and that this process affects several functions, including the DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Baradaran-Heravi A, Cho KS, Tolhuis B, Sanyal M, Morozova O, Morimoto M, Elizondo LI, Bridgewater D, Lubieniecka J, Beirnes K, Myung C, Leung D, Fam HK, Choi K, Huang Y, Dionis KY, Zonana J, Keller K, Stenzel P, Mayfield C, Lücke T, Bokenkamp A, Marra MA, van Lohuizen M, Lewis DB, Shaw C, Boerkoel CF. Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression. Hum Mol Genet 2012; 21:2572-87. [PMID: 22378147 PMCID: PMC3349428 DOI: 10.1093/hmg/dds083] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/07/2012] [Accepted: 02/24/2012] [Indexed: 01/21/2023] Open
Abstract
Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pecinka A, Mittelsten Scheid O. Stress-induced chromatin changes: a critical view on their heritability. PLANT & CELL PHYSIOLOGY 2012; 53:801-8. [PMID: 22457398 PMCID: PMC3345370 DOI: 10.1093/pcp/pcs044] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/17/2012] [Indexed: 05/19/2023]
Abstract
The investigation of stress responses has been a focus of plant research, breeding and biotechnology for a long time. Insight into stress perception, signaling and genetic determinants of resistance has recently been complemented by growing evidence for substantial stress-induced changes at the chromatin level. These affect specific sequences or occur genome-wide and are often correlated with transcriptional regulation. The majority of these changes only occur during stress exposure, and both expression and chromatin states typically revert to the pre-stress state shortly thereafter. Other changes result in the maintenance of new chromatin states and modified gene expression for a longer time after stress exposure, preparing an individual for developmental decisions or more effective defence. Beyond this, there are claims for stress-induced heritable chromatin modifications that are transmitted to progeny, thereby improving their characteristics. These effects resemble the concept of Lamarckian inheritance of acquired characters and represent a challenge to the uniqueness of DNA sequence-based inheritance. However, with the growing insight into epigenetic regulation and transmission of chromatin states, it is worth investigating these phenomena carefully. While genetic changes (mainly transposon mobility) in response to stress-induced interference with chromatin are well documented and heritable, in our view there is no unambiguous evidence for transmission of exclusively chromatin-controlled stress effects to progeny. We propose a set of criteria that should be applied to substantiate the data for stress-induced, chromatin-encoded new traits. Well-controlled stress treatments, thorough phenotyping and application of refined genome-wide epigenetic analysis tools should be helpful in moving from interesting observations towards robust evidence.
Collapse
Affiliation(s)
- Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | |
Collapse
|
42
|
Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1. PLoS Genet 2012; 8:e1002484. [PMID: 22346760 PMCID: PMC3276543 DOI: 10.1371/journal.pgen.1002484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/30/2011] [Indexed: 11/20/2022] Open
Abstract
Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA–independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation. Epigenetic shifts in transcriptional activities are usually correlated with changes in chromatin properties and covalent modification of DNA and/or histones. There are, however, exceptional regulators that are able to switch epigenetic states without the apparent involvement of changes in chromatin or DNA modifications. MOM1 protein, derived from CHD3 chromatin remodelers, belongs to this group. Here we defined a very small domain of MOM1 (less than 5% of its total sequence) that is sufficient for epigenetic regulation. We solved the structure of this domain and found that it forms a dimer with each monomer consisting of unusual consecutive 11 amino-acid hendecad repeats folding into an antiparallel coiled-coil. In vivo experiments demonstrated that the formation of this coiled-coil is essential for silencing activity; however, it is effective only at loci co-silenced by MOM1 and small RNAs. At loci not controlled by small RNAs, the entire MOM1 protein is required. Our results demonstrate that a single epigenetic regulator is able to differentially use its domains to control diverse chromosomal targets. The acquisition of the coiled-coil domain of MOM1 reflects a neofunctionalization of CHD3 proteins, which allowed MOM1 to broaden its activity and to provide input into multiple epigenetic pathways.
Collapse
|
43
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
44
|
Foerster AM, Dinh HQ, Sedman L, Wohlrab B, Mittelsten Scheid O. Genetic rearrangements can modify chromatin features at epialleles. PLoS Genet 2011; 7:e1002331. [PMID: 22028669 PMCID: PMC3197671 DOI: 10.1371/journal.pgen.1002331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022] Open
Abstract
Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3' regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles.
Collapse
Affiliation(s)
- Andrea M. Foerster
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Huy Q. Dinh
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories (MFPL), Vienna, Austria
| | - Laura Sedman
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Bonnie Wohlrab
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
45
|
To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T, Kimura H, Yokoyama S, Shinozaki K, Seki M. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 2011; 7:e1002055. [PMID: 21552333 PMCID: PMC3084210 DOI: 10.1371/journal.pgen.1002055] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/12/2011] [Indexed: 02/01/2023] Open
Abstract
Heterochromatin silencing is pivotal for genome stability in eukaryotes. In
Arabidopsis, a plant-specific mechanism called
RNA–directed DNA methylation (RdDM) is involved in heterochromatin
silencing. Histone deacetylase HDA6 has been identified as a component of such
machineries; however, its endogenous targets and the silencing mechanisms have
not been analyzed globally. In this study, we investigated the silencing
mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the
loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent
24-nt siRNAs, however their transcript levels were mostly unaffected in the
rdr2 mutant. Strikingly, we observed significant overlap of
genes silenced by HDA6 to those by the CG DNA methyltransferase MET1.
Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted
in loss of heterochromatic epigenetic marks and aberrant enrichment for
euchromatic marks at HDA6 direct targets, along with ectopic expression of these
loci. Acetylation levels increased significantly in the hda6
mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16.
Interestingly, we observed two different CG methylation statuses in the
hda6 mutant. CG methylation was sustained in the
hda6 mutant at some HDA6 target loci that were surrounded
by flanking DNA–methylated regions. In contrast, complete loss of CG
methylation occurred in the hda6 mutant at the HDA6 target loci
that were isolated from flanking DNA methylation. Regardless of CG methylation
status, CHG and CHH methylation were lost and transcriptional derepression
occurred in the hda6 mutant. Furthermore, we show that HDA6
binds only to its target loci, not the flanking methylated DNA, indicating the
profound target specificity of HDA6. We propose that HDA6 regulates
locus-directed heterochromatin silencing in cooperation with MET1, possibly
recruiting MET1 to specific loci, thus forming the foundation of silent
chromatin structure for subsequent non-CG methylation. Eukaryotes are defended from potentially harmful DNA elements, such as
transposons, by forming inactive genomic structure. Chromatin, which consists of
DNA and histone proteins, is densely packed in the silent structure, and
chromatin chemical modifications such as DNA methylation and histone
modifications are known to be essential for this packing. In plants, small RNA
molecules have been thought to trigger DNA methylation and resulting silent
chromatin formation. We revealed that elimination of specific histone
modifications concomitant with DNA methylation is pivotal for the silent
chromatin. Furthermore, the histone deacetylase was shown to have more profound
target specificity than the DNA methyltransferase and is required for
locus-directed DNA methylation, implying the involvement of the histone
deacetylase for targeting the DNA methyltransferase to specific places on the
genome. These proteins and their functions for gene silencing are evolutionarily
conserved in higher eukaryotes, and several proteins involved in small RNA
production are plant-specific. Thus, we present a hypothesis that the plant
genome may build the protecting foundation by the conserved genome surveillance
in eukaryotes, and the reinforcing machinery involving small RNAs could be
evolutionarily added to the plant heterochromatin silencing system.
Collapse
Affiliation(s)
- Taiko Kim To
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
- Graduate School of Science, The University of
Tokyo, Tokyo, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Yukio Kurihara
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Taeko Morosawa
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
| | - Takaho Endo
- Bioinformatics and Systems Engineering
Division, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National
Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tetsuro Toyoda
- Bioinformatics and Systems Engineering
Division, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka
University, Suita, Osaka, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant
Science Center, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN
Plant Science Center, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research,
Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
46
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:459-68. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
47
|
Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1625-38. [PMID: 21467580 PMCID: PMC3101545 DOI: 10.1105/tpc.110.082305] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.
Collapse
Affiliation(s)
- Xian-Bing Wang
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Juan Jovel
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Petchthai Udomporn
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ying Wang
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Qingfa Wu
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Wan-Xiang Li
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Virginie Gasciolli
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Herve Vaucheret
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
- Address correspondence to
| |
Collapse
|
48
|
Zhou Y, Zhang J, Lin H, Guo G, Guo Y. MORPHEUS' MOLECULE1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1272-80. [PMID: 20826701 PMCID: PMC2971605 DOI: 10.1104/pp.110.162131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/31/2010] [Indexed: 05/24/2023]
Abstract
Several pathways function to remove aberrant mRNA in eukaryotic cells; however, the exact mechanisms underlying the restriction of aberrant mRNA transcription are poorly understood. In this study, we found that MORPHEUS' MOLECULE1 (MOM1) is a key component of this regulatory machinery. The Arabidopsis (Arabidopsis thaliana) mom1-44 mutation was identified by luciferase imaging in transgenic plants harboring a cauliflower mosaic virus 35S promoter-LUCIFERASE transgene lacking the 3'-untranslated region. In the mom1-44 mutant, transcriptional read-though occurred in genes with an aberrant RNA structure. Analysis of an RNA-dependent RNA polymerase2 mom1 double mutant revealed that the RNA-directed DNA methylation pathway is not involved in this regulatory process. Moreover, the prevention of aberrant mRNA transcriptional read-through by MOM1 is gene locus and transgene copy number independent.
Collapse
Affiliation(s)
| | | | | | | | - Yan Guo
- Corresponding author; e-mail
| |
Collapse
|
49
|
Stress-induced activation of heterochromatic transcription. PLoS Genet 2010; 6:e1001175. [PMID: 21060865 PMCID: PMC2965753 DOI: 10.1371/journal.pgen.1001175] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/21/2010] [Indexed: 12/16/2022] Open
Abstract
Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved. In eukaryotic cells, DNA is packaged into chromatin that is present in two different forms named euchromatin and heterochromatin. Gene-rich euchromatin is relaxed and permissive to transcription compared with heterochromatin that essentially contains transcriptionally inert non-coding repeated DNA. The silent state associated with heterochromatin correlates with the presence of distinctive repressive epigenetic modifications. Mutations in genes required for maintenance of these epigenetic marks reactivate heterochromatin transcription, which is otherwise maintained silent in a highly stable manner. In this paper, we defined a specific temperature stress that leads to genome-wide transcriptional activation of sequences located within heterochromatin of Arabidopsis thaliana. Unexpectedly, release of silencing occurs in spite of conservation of the repressive epigenetic marks and independently of common epigenetic regulators. In addition, we provide evidence that stress-induced transcriptional activation is mostly transient, and silencing is rapidly restored upon return to optimal growth conditions. These results are important in that they disclose the dynamics of silencing associated with heterochromatin as well as the existence of a new level of transcriptional control that might play a role in plant acclimation to changing environmental conditions.
Collapse
|
50
|
Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. THE PLANT CELL 2010; 22:3118-29. [PMID: 20876829 PMCID: PMC2965555 DOI: 10.1105/tpc.110.078493] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 09/06/2010] [Indexed: 05/18/2023]
Abstract
Epigenetic factors determine responses to internal and external stimuli in eukaryotic organisms. Whether and how environmental conditions feed back to the epigenetic landscape is more a matter of suggestion than of substantiation. Plants are suitable organisms with which to address this question due to their sessile lifestyle and diversification of epigenetic regulators. We show that several repetitive elements of Arabidopsis thaliana that are under epigenetic regulation by transcriptional gene silencing at ambient temperatures and upon short term heat exposure become activated by prolonged heat stress. Activation can occur without loss of DNA methylation and with only minor changes to histone modifications but is accompanied by loss of nucleosomes and by heterochromatin decondensation. Whereas decondensation persists, nucleosome loading and transcriptional silencing are restored upon recovery from heat stress but are delayed in mutants with impaired chromatin assembly functions. The results provide evidence that environmental conditions can override epigenetic regulation, at least transiently, which might open a window for more permanent epigenetic changes.
Collapse
Affiliation(s)
- Ales Pecinka
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Huy Q. Dinh
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, University of Veterinary Medicine Vienna, 1030 Vienna, Austria
| | - Tuncay Baubec
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Marisa Rosa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|