1
|
Klarevas-Irby JA, Nyaguthii B, Farine DR. Moving as a group imposes constraints on the energetic efficiency of movement. Proc Biol Sci 2025; 292:20242760. [PMID: 39968615 PMCID: PMC11836700 DOI: 10.1098/rspb.2024.2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
Movement is a key part of life for many species. In solitary animals, the energetic costs of movement can be mitigated through energetically efficient strategies that produce faster, straighter movements. However, little is known about whether moving as part of a collective enhances or limits the ability of individual group members to express such strategies. Drawing on 6 years of population-level, high-resolution (1 Hz) GPS tracking of group-living vulturine guineafowl (Acryllium vulturinum), we detected 886 events from 94 tagged individuals where their groups made large, range-shifting displacements in response to changing environmental conditions. We contrasted these movements with data from 94 similarly large displacement events by 19 lone, dispersing individuals. Our results suggest that individuals in groups can significantly reduce their energetic cost of transport when making large displacements (15.3% more efficient relative to their normal daily ranging) by increasing the speed and straightness of their movements. However, even during their most efficient movements, individuals in groups could not achieve or maintain comparable increases in speed to lone individuals, resulting in significantly limited efficiency gains (35.7% less efficient than solitary individuals). Overall, this study provides evidence for a substantial energetic cost arising from collective movement.
Collapse
Affiliation(s)
- James A. Klarevas-Irby
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
- Mpala Research Centre, Nanyuki, Kenya
| | - Brendah Nyaguthii
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
- Mpala Research Centre, Nanyuki, Kenya
- Department of Ornithology, National Museums of Kenya, Nairobi, Kenya
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
- Department of Ornithology, National Museums of Kenya, Nairobi, Kenya
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| |
Collapse
|
2
|
Dreyer T, Haluts A, Korman A, Gov N, Fonio E, Feinerman O. Comparing cooperative geometric puzzle solving in ants versus humans. Proc Natl Acad Sci U S A 2025; 122:e2414274121. [PMID: 39715438 PMCID: PMC11725855 DOI: 10.1073/pnas.2414274121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Biological ensembles use collective intelligence to tackle challenges together, but suboptimal coordination can undermine the effectiveness of group cognition. Testing whether collective cognition exceeds that of the individual is often impractical since different organizational scales tend to face disjoint problems. One exception is the problem of navigating large loads through complex environments and toward a given target. People and ants stand out in their ability to efficiently perform this task not just individually but also as a group. This provides a rare opportunity to empirically compare problem-solving skills and cognitive traits across species and group sizes. Here, we challenge people and ants with the same "piano-movers" load maneuvering puzzle and show that while ants perform more efficiently in larger groups, the opposite is true for humans. We find that although individual ants cannot grasp the global nature of the puzzle, their collective motion translates into emergent cognitive skills. They encode short-term memory in their internally ordered state and this allows for enhanced group performance. People comprehend the puzzle in a way that allows them to explore a reduced search space and, on average, outperform ants. However, when communication is restricted, groups of people resort to the most obvious maneuvers to facilitate consensus. This is reminiscent of ant behavior, and negatively impacts their performance. Our results exemplify how simple minds can easily enjoy scalability while complex brains require extensive communication to cooperate efficiently.
Collapse
Affiliation(s)
- Tabea Dreyer
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Amir Haluts
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Amos Korman
- Department of Computer Science, University of Haifa, 3303221Haifa, Israel
| | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Ehud Fonio
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001Rehovot, Israel
| |
Collapse
|
3
|
Daftari K, Mayo ML, Lemasson BH, Biedenbach JM, Pilkiewicz KR. Probing Asymmetric Interactions with Time-Separated Mutual Information: A Case Study Using Golden Shiners. ENTROPY (BASEL, SWITZERLAND) 2024; 26:775. [PMID: 39330108 PMCID: PMC11431621 DOI: 10.3390/e26090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Leader-follower modalities and other asymmetric interactions that drive the collective motion of organisms are often quantified using information theory metrics like transfer or causation entropy. These metrics are difficult to accurately evaluate without a much larger number of data than is typically available from a time series of animal trajectories collected in the field or from experiments. In this paper, we use a generalized leader-follower model to argue that the time-separated mutual information between two organism positions can serve as an alternative metric for capturing asymmetric correlations that is much less data intensive and more accurately estimated by popular k-nearest neighbor algorithms than transfer entropy. Our model predicts a local maximum of this mutual information at a time separation value corresponding to the fundamental reaction timescale of the follower organism. We confirm this prediction by analyzing time series trajectories recorded for a pair of golden shiner fish circling an annular tank.
Collapse
Affiliation(s)
- Katherine Daftari
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael L. Mayo
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (M.L.M.); (B.H.L.); (J.M.B.)
| | - Bertrand H. Lemasson
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (M.L.M.); (B.H.L.); (J.M.B.)
| | - James M. Biedenbach
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (M.L.M.); (B.H.L.); (J.M.B.)
| | - Kevin R. Pilkiewicz
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (M.L.M.); (B.H.L.); (J.M.B.)
| |
Collapse
|
4
|
Mann RP, Bailey JD, Codling EA. Accuracy, rationality and specialization in a generalized model of collective navigation. J R Soc Interface 2024; 21:20240207. [PMID: 39317330 PMCID: PMC11463233 DOI: 10.1098/rsif.2024.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Animal navigation is a key behavioural process, from localized foraging to global migration. Within groups, individuals may improve their navigational accuracy by following those with more experience or knowledge, by pooling information from many directional estimates ('many wrongs') or some combination of these strategies. Previous agent-based simulations have highlighted that homogeneous leaderless groups can improve their collective navigation accuracy when individuals preferentially copy the movement directions of their neighbours while giving a low weighting to their own navigational knowledge. Meanwhile, other studies have demonstrated how specialized leaders may emerge, and that a small number of such individuals can improve group-level navigation performance. However, in general, these earlier results either lack a full mathematical grounding or do not fully consider the effect of individual self-interest. Here we derive and analyse a mathematically tractable model of collective navigation. We demonstrate that collective navigation is compromised when individuals seek to optimize their own accuracy in both homogeneous groups and those with differing navigational abilities. We further demonstrate how heterogeneous navigational strategies (specialized leaders and followers) may evolve within the model. Our results thus unify different lines of research in collective navigation and highlight the importance of individual selection in determining group composition and performance.
Collapse
Affiliation(s)
- Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
| | - Joseph D. Bailey
- School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, UK
| | - Edward A. Codling
- School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, UK
| |
Collapse
|
5
|
Dalmaijer ES. Cumulative route improvements spontaneously emerge in artificial navigators even in the absence of sophisticated communication or thought. PLoS Biol 2024; 22:e3002644. [PMID: 38843108 PMCID: PMC11156315 DOI: 10.1371/journal.pbio.3002644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Homing pigeons (Columba livia) navigate by solar and magnetic compass, and fly home in idiosyncratic but stable routes when repeatedly released from the same location. However, when experienced pigeons fly alongside naive counterparts, their path is altered. Over several generations of turnover (pairs in which the most experienced individual is replaced with a naive one), pigeons show cumulative improvements in efficiency. Here, I show that such cumulative route improvements can occur in a much simpler system by using agent-based simulation. Artificial agents are in silico entities that navigate with a minimal cognitive architecture of goal-direction (they know roughly where the goal is), social proximity (they seek proximity to others and align headings), route memory (they recall landmarks with increasing precision), and continuity (they avoid erratic turns). Agents' behaviour qualitatively matched that of pigeons, and quantitatively fitted to pigeon data. My results indicate that naive agents benefitted from being paired with experienced agents by following their previously established route. Importantly, experienced agents also benefitted from being paired with naive agents due to regression to the goal: naive agents were more likely to err towards the goal from the perspective of experienced agents' memorised paths. This subtly biased pairs in the goal direction, resulting in intergenerational improvements of route efficiency. No cumulative improvements were evident in control studies in which agents' goal-direction, social proximity, or memory were lesioned. These 3 factors are thus necessary and sufficient for cumulative route improvements to emerge, even in the absence of sophisticated communication or thought.
Collapse
Affiliation(s)
- Edwin S. Dalmaijer
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Ni J, Yang J, Ma Y. Social bonding in groups of humans selectively increases inter-status information exchange and prefrontal neural synchronization. PLoS Biol 2024; 22:e3002545. [PMID: 38502637 PMCID: PMC10950240 DOI: 10.1371/journal.pbio.3002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Social groups in various social species are organized with hierarchical structures that shape group dynamics and the nature of within-group interactions. In-group social bonding, exemplified by grooming behaviors among animals and collective rituals and team-building activities in human societies, is recognized as a practical adaptive strategy to foster group harmony and stabilize hierarchical structures in both human and nonhuman animal groups. However, the neurocognitive mechanisms underlying the effects of social bonding on hierarchical groups remain largely unexplored. Here, we conducted simultaneous neural recordings on human participants engaged in-group communications within small hierarchical groups (n = 528, organized into 176 three-person groups) to investigate how social bonding influenced hierarchical interactions and neural synchronizations. We differentiated interpersonal interactions between individuals of different (inter-status) or same (intra-status) social status and observed distinct effects of social bonding on inter-status and intra-status interactions. Specifically, social bonding selectively increased frequent and rapid information exchange and prefrontal neural synchronization for inter-status dyads but not intra-status dyads. Furthermore, social bonding facilitated unidirectional neural alignment from group leader to followers, enabling group leaders to predictively align their prefrontal activity with that of followers. These findings provide insights into how social bonding influences hierarchical dynamics and neural synchronization while highlighting the role of social status in shaping the strength and nature of social bonding experiences in human groups.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
7
|
Papageorgiou D, Nyaguthii B, Farine DR. Compromise or choose: shared movement decisions in wild vulturine guineafowl. Commun Biol 2024; 7:95. [PMID: 38218910 PMCID: PMC10787764 DOI: 10.1038/s42003-024-05782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
Shared-decision making is beneficial for the maintenance of group-living. However, little is known about whether consensus decision-making follows similar processes across different species. Addressing this question requires robust quantification of how individuals move relative to each other. Here we use high-resolution GPS-tracking of two vulturine guineafowl (Acryllium vulturinum) groups to test the predictions from a classic theoretical model of collective motion. We show that, in both groups, all individuals can successfully initiate directional movements, although males are more likely to be followed than females. When multiple group members initiate simultaneously, follower decisions depend on directional agreement, with followers compromising directions if the difference between them is small or choosing the majority direction if the difference is large. By aligning with model predictions and replicating the findings of a previous field study on olive baboons (Papio anubis), our results suggest that a common process governs collective decision-making in moving animal groups.
Collapse
Affiliation(s)
- Danai Papageorgiou
- University of Zurich, Department of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Max Planck Institute of Animal Behavior, Department of Collective Behavior, Universitätsstraße 10, Konstanz, 78457, Germany.
- University of Konstanz, Department of Biology, Universitätsstraße 10, Konstanz, 78457, Germany.
- Kenya Wildlife Service, P.O. Box 40241-001000, Nairobi, Kenya.
- Wissenschaftskolleg zu Berlin, College for Life Sciences, Wallotstrasse 19, Berlin, 14193, Germany.
| | - Brendah Nyaguthii
- University of Eldoret, School of Natural Resource Management, Department of Wildlife, 1125-30100, Eldoret, Kenya
- Mpala Research Centre, P.O. Box 92, Nanyuki, 10400, Kenya
- National Museums of Kenya, Department of Ornithology, P.O. Box 40658-001000, Nairobi, Kenya
| | - Damien R Farine
- University of Zurich, Department of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Max Planck Institute of Animal Behavior, Department of Collective Behavior, Universitätsstraße 10, Konstanz, 78457, Germany.
- National Museums of Kenya, Department of Ornithology, P.O. Box 40658-001000, Nairobi, Kenya.
- Australian National University, Division of Ecology and Evolution, Research School of Biology, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia.
| |
Collapse
|
8
|
Tovah K, Janice Y, Grant D, Tricia S, Reuven D. The effect of experience on collective decision-making. Behav Processes 2023; 213:104962. [PMID: 39492432 DOI: 10.1016/j.beproc.2023.104962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Social groups repeatedly solving a complex task can improve their collective performance. To study the mechanisms of collective improvement, we tested the effect of experience on collective decision-making using acorn ants (Temnothorax ambiguus). During a six-emigration training phase, colonies in the choice treatment gained experience choosing to move into one of two nests varying in quality, while colonies in the no-choice treatment had only a single available nest. Both treatments were tested in a subsequent test with two nests of varying quality. We found that experience improved decision-making speed, regardless of treatment. We also found that colonies of the choice treatment were more proficient by carrying a larger proportion of individuals directly into the better-quality nest. However, there was no steady improvement in proficiency throughout their training. Using social network analysis, we quantified changes in group performance over successive emigrations. We found that network density, our measure for social connectedness, and the coefficient of variation of out-strength distribution, our measure for workload distribution, did not differ between treatments and remained stable over successive emigrations. We conclude that collective experience with decision-making may improve subsequent group performance, but the mechanisms of improvement remain unclear. Further research on decision-making in house-hunting ants will advance our understanding of the mechanisms underpinning collective improvement.
Collapse
Affiliation(s)
- Kashetsky Tovah
- Department of Psychology, Neuroscience and Behaviour, McMaster University.
| | - Yan Janice
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Doering Grant
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Skelton Tricia
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Dukas Reuven
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| |
Collapse
|
9
|
Nagy M, Naik H, Kano F, Carlson NV, Koblitz JC, Wikelski M, Couzin ID. SMART-BARN: Scalable multimodal arena for real-time tracking behavior of animals in large numbers. SCIENCE ADVANCES 2023; 9:eadf8068. [PMID: 37656798 PMCID: PMC10854427 DOI: 10.1126/sciadv.adf8068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- MTA-ELTE Lendület Collective Behavior Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Hemal Naik
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max-Planck Institute of Animal Behavior, Konstanz, Germany
| | - Fumihiro Kano
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nora V. Carlson
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Zoology, Faculty of Science/Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jens C. Koblitz
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Iain D. Couzin
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Papadopoulou M, Fürtbauer I, O'Bryan LR, Garnier S, Georgopoulou DG, Bracken AM, Christensen C, King AJ. Dynamics of collective motion across time and species. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220068. [PMID: 36802781 PMCID: PMC9939269 DOI: 10.1098/rstb.2022.0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 02/21/2023] Open
Abstract
Most studies of collective animal behaviour rely on short-term observations, and comparisons of collective behaviour across different species and contexts are rare. We therefore have a limited understanding of intra- and interspecific variation in collective behaviour over time, which is crucial if we are to understand the ecological and evolutionary processes that shape collective behaviour. Here, we study the collective motion of four species: shoals of stickleback fish (Gasterosteus aculeatus), flocks of homing pigeons (Columba livia), a herd of goats (Capra aegagrus hircus) and a troop of chacma baboons (Papio ursinus). First, we describe how local patterns (inter-neighbour distances and positions), and group patterns (group shape, speed and polarization) during collective motion differ across each system. Based on these, we place data from each species within a 'swarm space', affording comparisons and generating predictions about the collective motion across species and contexts. We encourage researchers to add their own data to update the 'swarm space' for future comparative work. Second, we investigate intraspecific variation in collective motion over time and provide guidance for researchers on when observations made over different time scales can result in confident inferences regarding species collective motion. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Ines Fürtbauer
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Lisa R. O'Bryan
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Dimitra G. Georgopoulou
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- Institute of Marine Biology, Biotechnology & Aquaculture, HCMR, 71500 Hersonissos, Crete, Greece
| | - Anna M. Bracken
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Charlotte Christensen
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Andrew J. King
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| |
Collapse
|
11
|
Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour: from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220059. [PMID: 36802782 PMCID: PMC9939272 DOI: 10.1098/rstb.2022.0059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2023] Open
Abstract
Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Ogino M, Strauss ED, Farine DR. Challenges of mismatching timescales in longitudinal studies of collective behaviour. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220064. [PMID: 36802775 PMCID: PMC9939264 DOI: 10.1098/rstb.2022.0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/11/2022] [Indexed: 02/21/2023] Open
Abstract
How individuals' prior experience and population evolutionary history shape emergent patterns in animal collectives remains a major gap in the study of collective behaviour. One reason for this is that the processes that can shape individual contributions to collective actions can happen over very different timescales from each other and from the collective actions themselves, resulting in mismatched timescales. For example, a preference to move towards a specific patch might arise from phenotype, memory or physiological state. Although providing critical context to collective actions, bridging different timescales remains conceptually and methodologically challenging. Here, we briefly outline some of these challenges, and discuss existing approaches that have already generated insights into the factors shaping individual contributions in animal collectives. We then explore a case study of mismatching timescales-defining relevant group membership-by combining fine-scaled GPS tracking data and daily field census data from a wild population of vulturine guineafowl (Acryllium vulturinum). We show that applying different temporal definitions can produce different assignments of individuals into groups. These assignments can then have consequences when determining individuals' social history, and thus the conclusions we might draw on the impacts of the social environment on collective actions. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Mina Ogino
- Department of Evolutionary and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Eli D. Strauss
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitatsstrasse 10, 78464 Konstanz, Germany
- Department of Integrative Biology, Michigan State University, 104 Natural Science Building, East Lansing, MI 48824-1115, East Lansing, MI 48824, USA
| | - Damien R. Farine
- Department of Evolutionary and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2600, Australia
| |
Collapse
|
13
|
Rands SA, Ioannou CC. Personality variation is eroded by simple social behaviours in collective foragers. PLoS Comput Biol 2023; 19:e1010908. [PMID: 36862622 PMCID: PMC9980820 DOI: 10.1371/journal.pcbi.1010908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The movement of groups can be heavily influenced by 'leader' individuals who differ from the others in some way. A major source of differences between individuals is the repeatability and consistency of their behaviour, commonly considered as their 'personality', which can influence both position within a group as well as the tendency to lead. However, links between personality and behaviour may also depend upon the immediate social environment of the individual; individuals who behave consistently in one way when alone may not express the same behaviour socially, when they may be conforming with the behaviour of others. Experimental evidence shows that personality differences can be eroded in social situations, but there is currently a lack of theory to identify the conditions where we would expect personality to be suppressed. Here, we develop a simple individual-based framework considering a small group of individuals with differing tendencies to perform risky behaviours when travelling away from a safe home site towards a foraging site, and compare the group behaviours when the individuals follow differing rules for aggregation behaviour determining how much attention they pay to the actions of their fellow group-members. We find that if individuals pay attention to the other members of the group, the group will tend to remain at the safe site for longer, but then travel faster towards the foraging site. This demonstrates that simple social behaviours can result in the repression of consistent inter-individual differences in behaviour, giving the first theoretical consideration of the social mechanisms behind personality suppression.
Collapse
Affiliation(s)
- Sean A. Rands
- School of Biological Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
14
|
Neural networks reveal emergent properties of collective learning in democratic but not despotic groups. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Granger J, Johnsen S. Collective movement as a solution to noisy navigation and its vulnerability to population loss. Proc Biol Sci 2022; 289:20221910. [PMID: 36382526 PMCID: PMC9667355 DOI: 10.1098/rspb.2022.1910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
Many animals use the geomagnetic field to migrate long distances with high accuracy; however, research has shown that individual responses to magnetic cues can be highly variable. Thus, it has been hypothesized that magnetoreception alone is insufficient for accurate migrations and animals must either switch to a more accurate sensory cue or integrate their magnetic sense over time. Here we suggest that magnetoreceptive migrators could also use collective navigation strategies. Using agent-based models, we compare agents utilizing collective navigation to both the use of a secondary sensory system and time-integration. Our models demonstrate that collective navigation allows for 70% success rates for noisy navigators. To reach the same success rates, a secondary sensory system must provide perfect navigation for over 73% of the migratory route, and time integration must integrate over 50 time-steps, indicating that magnetoreceptive animals could benefit from using collective navigation. Finally, we explore the impact of population loss on animals relying on collective navigation. We show that as population density decreases, a greater proportion of individuals fail to reach their destination and that a 50% population reduction can result in up to a 37% decrease in the proportion of individuals completing their migration.
Collapse
Affiliation(s)
- Jesse Granger
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Sasaki T, Masuda N, Mann RP, Biro D. Empirical test of the many-wrongs hypothesis reveals weighted averaging of individual routes in pigeon flocks. iScience 2022; 25:105076. [PMID: 36147962 PMCID: PMC9485075 DOI: 10.1016/j.isci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/26/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The 'many-wrongs hypothesis' predicts that groups improve their decision-making performance by aggregating members' diverse opinions. Although this has been considered one of the major benefits of collective movement and migration, whether and how multiple inputs are in fact aggregated for superior directional accuracy has not been empirically verified in non-human animals. Here we showed that larger homing pigeon flocks had significantly more efficient (i.e. shorter) homing routes than smaller flocks, consistent with previous findings and with the predictions of the many-wrongs hypothesis. However, detailed analysis showed that flock routes were not simply averages of individual routes, but instead that pigeons that more faithfully recapitulated their routes during individual flights had a proportionally greater influence on their flocks' routes. We discuss the implications of our results for possible mechanisms of collective learning as well as for the definition of leadership in animals solving navigational tasks collectively.
Collapse
Affiliation(s)
- Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Corresponding author
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Computational and Data-Enabled Science and Engineer Program, University of Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Richard P. Mann
- Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
17
|
Falgueras-Cano J, Falgueras-Cano JA, Moya A. Aggregated Distribution as an Explanation for the Paradox of Plankton and Collective Animal Behavior. BIOLOGY 2022; 11:1477. [PMID: 36290382 PMCID: PMC9598300 DOI: 10.3390/biology11101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
This work analyzes the evolutionary consequences of different aggregation levels of species distribution with an Evolutionary Cellular Automaton (ECA). We have found that in habitats with the same carrying capacity, aggregated distributions preserve smaller populations than do uniform distributions, i.e., they are less efficient. Nonetheless, we have also found that aggregated distributions, among other factors, can help the evolutionary stability of some biological interactions, such as predator-prey interactions, despite their granting less individual fitness. Besides, the competitive exclusion principle does not usually stand in populations with aggregated distribution. We have applied ECA to study the effects of aggregated distribution in two notorious cases: in the so-called paradox of the plankton and in gregarious animals. In doing so, we intend to ratify long-established ecological knowledge explaining these phenomena from a new perspective. In the first case, due to aggregate distribution, large aggregations of digital organisms mimicking very abundant planktonic species, leave large patches or oceanic areas free for other less competitive organisms, which mimic rare species, to prosper. In this case, we can see how effects, such as ecological drift and the small portion, act simultaneously. In the second case of aggregation, the aggregate distribution of gregarious animals could be explained under specialized predator-prey interactions and interdemic competition. Thus, digital organisms that imitate predators reduce the competitive capacity of their prey, destabilizing their competitiveness against other species. The specialized predator also goes extinct if the prey goes extinct by natural selection. Predators that have an aggregate distribution compensate the prey and thus avoid exclusion. This way there are more predator-free patches in which the prey can prosper. However, by granting greater colonization capacity to its prey, the predator loses competitiveness. Therefore, it is a multilevel selection event in which group adaptation grows to the detriment of the predator as an individual.
Collapse
Affiliation(s)
- Javier Falgueras-Cano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
| | | | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), 46020 Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
18
|
Balaban-Feld J, Vijayan S, Mitchell WA, Kotler BP, Badichi S, Abramsky Z. High risk of predation suppresses behavioural differences among bold and shy social prey individuals. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Prey animals must attempt to optimize foraging success while reducing the probability of being captured. Within social prey groups, intrinsic differences in bold-shy personality among individuals influence their respective risk-taking tendencies. We examined the foraging and refuge use behaviour of mixed groups of goldfish (Carassius auratus) containing half bold individuals and half shy individuals under variable levels of predation risk from a live avian predator (Egretta garzetta). At the group level, the fish groups significantly decreased their foraging time by spending more time under the refuge when the predator spent more time at the focal pool. As expected, the bold fish tended to be the first to leave the refuge, and foraged outside the refuge more often than shy fish under control conditions and at lower risk levels. However, the behavioural differences between bold and shy fish disappeared under higher risk conditions. In terms of mortality, the predator captured significantly more bold fish than shy fish. Our study illustrates how bold individuals in social groups often take greater risks to achieve foraging success, but demonstrates that innate differences in boldness can be diminished in times of elevated predation risk.
Collapse
Affiliation(s)
- Jesse Balaban-Feld
- Department of Biology, University of Saint Joseph, West Hartford, CT 06117, USA
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Sundararaj Vijayan
- Cesar Kleberg Wildlife Research Institute, Texas A&M University, Kingsville, TX 78363, USA
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - William A. Mitchell
- Department of Life Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | - Burt P. Kotler
- The Jacob Blaustein Institute for Desert Research, Mitriani Department of Desert Ecology, Ben-Gurion University, Sde Boker 84990, Israel
| | - Shamir Badichi
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Zvika Abramsky
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| |
Collapse
|
19
|
Fernández Velasco P. Group navigation and procedural metacognition. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2062316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Papadopoulou M, Hildenbrandt H, Sankey DWE, Portugal SJ, Hemelrijk CK. Emergence of splits and collective turns in pigeon flocks under predation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211898. [PMID: 35223068 PMCID: PMC8864349 DOI: 10.1098/rsos.211898] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 05/03/2023]
Abstract
Complex patterns of collective behaviour may emerge through self-organization, from local interactions among individuals in a group. To understand what behavioural rules underlie these patterns, computational models are often necessary. These rules have not yet been systematically studied for bird flocks under predation. Here, we study airborne flocks of homing pigeons attacked by a robotic falcon, combining empirical data with a species-specific computational model of collective escape. By analysing GPS trajectories of flocking individuals, we identify two new patterns of collective escape: early splits and collective turns, occurring even at large distances from the predator. To examine their formation, we extend an agent-based model of pigeons with a 'discrete' escape manoeuvre by a single initiator, namely a sudden turn interrupting the continuous coordinated motion of the group. Both splits and collective turns emerge from this rule. Their relative frequency depends on the angular velocity and position of the initiator in the flock: sharp turns by individuals at the periphery lead to more splits than collective turns. We confirm this association in the empirical data. Our study highlights the importance of discrete and uncoordinated manoeuvres in the collective escape of bird flocks and advocates the systematic study of their patterns across species.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, UK
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Whiten A, Biro D, Bredeche N, Garland EC, Kirby S. The emergence of collective knowledge and cumulative culture in animals, humans and machines. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200306. [PMID: 34894738 PMCID: PMC8666904 DOI: 10.1098/rstb.2020.0306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Nicolas Bredeche
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, 75005 Paris, France
| | - Ellen C. Garland
- Centre for Social Learning and Cognitive Evolution, and Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Simon Kirby
- Centre for Language Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Papadopoulou M, Hildenbrandt H, Sankey DWE, Portugal SJ, Hemelrijk CK. Self-organization of collective escape in pigeon flocks. PLoS Comput Biol 2022; 18:e1009772. [PMID: 35007287 PMCID: PMC8782486 DOI: 10.1371/journal.pcbi.1009772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/21/2022] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Daniel W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Valentini G, Pavlic TP, Walker SI, Pratt SC, Biro D, Sasaki T. Naïve individuals promote collective exploration in homing pigeons. eLife 2021; 10:e68653. [PMID: 34928230 PMCID: PMC8687659 DOI: 10.7554/elife.68653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Group-living animals that rely on stable foraging or migratory routes can develop behavioural traditions to pass route information down to inexperienced individuals. Striking a balance between exploitation of social information and exploration for better alternatives is essential to prevent the spread of maladaptive traditions. We investigated this balance during cumulative route development in the homing pigeon Columba livia. We quantified information transfer within pairs of birds in a transmission-chain experiment and determined how birds with different levels of experience contributed to the exploration-exploitation trade-off. Newly introduced naïve individuals were initially more likely to initiate exploration than experienced birds, but the pair soon settled into a pattern of alternating leadership with both birds contributing equally. Experimental pairs showed an oscillating pattern of exploration over generations that might facilitate the discovery of more efficient routes. Our results introduce a new perspective on the roles of leadership and information pooling in the context of collective learning.
Collapse
Affiliation(s)
- Gabriele Valentini
- Arizona State University, School of Earth and Space Exploration, Tempe, United States
- Arizona State University, School of Life Sciences, Tempe, United States
| | - Theodore P Pavlic
- Arizona State University, School of Life Sciences, Tempe, United States
- Arizona State University, Beyond Center for Fundamental Concepts in Science, Tempe, United States
- Arizona State University, School of Computing and Augmented Intelligence, Tempe, United States
- Arizona State University, School of Sustainability, Athens, United States
- Arizona State University, School of Complex Adaptive Systems, Tempe, United States
- Arizona State University, ASU-SFI Center for Biosocial Complex Systems, Tempe, United States
| | - Sara Imari Walker
- Arizona State University, School of Earth and Space Exploration, Tempe, United States
- Arizona State University, School of Computing and Augmented Intelligence, Tempe, United States
- Santa Fe Institute, Santa Fe, United States
| | - Stephen C Pratt
- Arizona State University, Beyond Center for Fundamental Concepts in Science, Tempe, United States
| | - Dora Biro
- University of Oxford, Department of Zoology, Oxford, United States
- University of Rochester, Department of Brain and Cognitive Sciences, Rochester, United States
| | - Takao Sasaki
- University of Georgia, Odum School of Ecology, Athens, United States
| |
Collapse
|
24
|
The geometry of decision-making in individuals and collectives. Proc Natl Acad Sci U S A 2021; 118:2102157118. [PMID: 34880130 PMCID: PMC8685676 DOI: 10.1073/pnas.2102157118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Almost all animals must make decisions on the move. Here, employing an approach that integrates theory and high-throughput experiments (using state-of-the-art virtual reality), we reveal that there exist fundamental geometrical principles that result from the inherent interplay between movement and organisms’ internal representation of space. Specifically, we find that animals spontaneously reduce the world into a series of sequential binary decisions, a response that facilitates effective decision-making and is robust both to the number of options available and to context, such as whether options are static (e.g., refuges) or mobile (e.g., other animals). We present evidence that these same principles, hitherto overlooked, apply across scales of biological organization, from individual to collective decision-making. Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges to choosing with whom to associate. Using an integrated theoretical and experimental approach (employing immersive virtual reality), we consider the interplay between movement and vectorial integration during decision-making regarding two, or more, options in space. In computational models of this process, we reveal the occurrence of spontaneous and abrupt “critical” transitions (associated with specific geometrical relationships) whereby organisms spontaneously switch from averaging vectorial information among, to suddenly excluding one among, the remaining options. This bifurcation process repeats until only one option—the one ultimately selected—remains. Thus, we predict that the brain repeatedly breaks multichoice decisions into a series of binary decisions in space–time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that they exhibit these same bifurcations, demonstrating that across taxa and ecological contexts, there exist fundamental geometric principles that are essential to explain how, and why, animals move the way they do.
Collapse
|
25
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
26
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
27
|
Spontaneous emergence of leadership patterns drives synchronization in complex human networks. Sci Rep 2021; 11:18379. [PMID: 34526559 PMCID: PMC8443630 DOI: 10.1038/s41598-021-97656-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Synchronization of human networks is fundamental in many aspects of human endeavour. Recently, much research effort has been spent on analyzing how motor coordination emerges in human groups (from rocking chairs to violin players) and how it is affected by coupling structure and strength. Here we uncover the spontaneous emergence of leadership (based on physical signaling during group interaction) as a crucial factor steering the occurrence of synchronization in complex human networks where individuals perform a joint motor task. In two experiments engaging participants in an arm movement synchronization task, in the physical world as well as in the digital world, we found that specific patterns of leadership emerged and increased synchronization performance. Precisely, three patterns were found, involving a subtle interaction between phase of the motion and amount of influence. Such patterns were independent of the presence or absence of physical interaction, and persisted across manipulated spatial configurations. Our results shed light on the mechanisms that drive coordination and leadership in human groups, and are consequential for the design of interactions with artificial agents, avatars or robots, where social roles can be determinant for a successful interaction.
Collapse
|
28
|
Absence of "selfish herd" dynamics in bird flocks under threat. Curr Biol 2021; 31:3192-3198.e7. [PMID: 34089647 DOI: 10.1016/j.cub.2021.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The "selfish herd" hypothesis1 provides a potential mechanism to explain a ubiquitous phenomenon in nature: that of non-kin aggregations. Individuals in selfish herds are thought to benefit by reducing their own risk at the expense of conspecifics by attracting toward their neighbors' positions1,2 or central locations in the aggregation.3-5 Alternatively, increased alignment with their neighbors' orientation could reduce the chance of predation through information sharing6-8 or collective escape.6 Using both small and large flocks of homing pigeons (Columba livia; n = 8-10 or n = 27-34 individuals) tagged with 5-Hz GPS loggers and a GPS-tagged, remote-controlled model peregrine falcon (Falco peregrinus), we tested whether individuals increase their use of attraction over alignment when under perceived threat. We conducted n = 27 flights in treatment conditions, chased by the robotic "predator," and n = 16 flights in control conditions (not chased). Despite responding strongly to the RobotFalcon-by turning away from its flight direction-individuals in treatment flocks demonstrated no increased attraction compared with control flocks, and this result held across both flock sizes. We suggest that mutualistic alignment is more advantageous than selfish attraction in groups with a high coincidence of individual and collective interests (adaptive hypothesis). However, we also explore alternative explanations, such as high cognitive demand under threat and collision avoidance (mechanistic hypotheses). We conclude that selfish herd may not be an appropriate paradigm for understanding the function of highly synchronous collective motion, as observed in bird flocks and perhaps also fish shoals and highly aligned mammal aggregations, such as moving herds.
Collapse
|
29
|
Tuliozi B, Camerlenghi E, Griggio M. Dyadic leader–follower dynamics change across situations in captive house sparrows. Behav Ecol 2021. [DOI: 10.1093/beheco/araa148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Individuals can behave as either leaders or followers in many taxa of collectively moving animals. Leaders initiate movements and may incur predation risks, while followers are thought to be more risk-averse. As a group encounters different challenges and ecological situations, individuals in the group may change their social role. We investigated leader and follower roles using dyads of captive house sparrow (Passer domesticus) during both exploration of a novel environment and a simulation of predator attack. During the exploration of a novel environment, individuals behaved consistently either as leaders or followers. However, in the simulated attack tests, individuals in the dyads switched their roles, with “followers” leading the escape flights and “leaders” following them. Our study provides evidence of 1) consistent differences between individuals in behavior during social escape and 2) a relationship between social roles across different situations. We suggest that such relationship hinges on individual risk-taking tendencies, which manifest through different social roles across different ecological situations. We further speculate that risk-taking individuals might gain benefits by following risk-averse individuals during an escape flight.
Collapse
Affiliation(s)
- Beniamino Tuliozi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova,Italy
| | - Ettore Camerlenghi
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria,Australia
| | - Matteo Griggio
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova,Italy
| |
Collapse
|
30
|
Mann RP. Optimal use of simplified social information in sequential decision-making. J R Soc Interface 2021; 18:20210082. [PMID: 34062101 DOI: 10.1098/rsif.2021.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social animals can improve their decisions by attending to those made by others. The benefit of this social information must be balanced against the costs of obtaining and processing it. Previous work has focused on rational agents that respond optimally to a sequence of prior decisions. However, full decision sequences are potentially costly to perceive and process. As such, animals may rely on simpler social information, which will affect the social behaviour they exhibit. Here, I derive the optimal policy for agents responding to simplified forms of social information. I show how the behaviour of agents attending to the aggregate number of previous choices differs from those attending to just the most recent prior decision, and I propose a hybrid strategy that provides a highly accurate approximation to the optimal policy with the full sequence. Finally, I analyse the evolutionary stability of each strategy, showing that the hybrid strategy dominates when cognitive costs are low but non-zero, while attending to the most recent decision is dominant when costs are high. These results show that agents can employ highly effective social decision-making rules without requiring unrealistic cognitive capacities, and indicate likely ecological variation in the social information different animals attend to.
Collapse
Affiliation(s)
- Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Garde B, Wilson RP, Lempidakis E, Börger L, Portugal SJ, Hedenström A, Dell'Omo G, Quetting M, Wikelski M, Shepard ELC. Fine-scale changes in speed and altitude suggest protean movements in homing pigeon flights. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210130. [PMID: 34017602 PMCID: PMC8131938 DOI: 10.1098/rsos.210130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
The power curve provides a basis for predicting adjustments that animals make in flight speed, for example in relation to wind, distance, habitat foraging quality and objective. However, relatively few studies have examined how animals respond to the landscape below them, which could affect speed and power allocation through modifications in climb rate and perceived predation risk. We equipped homing pigeons (Columba livia) with high-frequency loggers to examine how flight speed, and hence effort, varies in relation to topography and land cover. Pigeons showed mixed evidence for an energy-saving strategy, as they minimized climb rates by starting their ascent ahead of hills, but selected rapid speeds in their ascents. Birds did not modify their speed substantially in relation to land cover, but used higher speeds during descending flight, highlighting the importance of considering the rate of change in altitude before estimating power use from speed. Finally, we document an unexpected variability in speed and altitude over fine scales; a source of substantial energetic inefficiency. We suggest this may be a form of protean behaviour adopted to reduce predation risk when flocking is not an option, and that such a strategy could be widespread.
Collapse
Affiliation(s)
- Baptiste Garde
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Rory P. Wilson
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Emmanouil Lempidakis
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Luca Börger
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| | - Steven J. Portugal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Anders Hedenström
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | | | - Michael Quetting
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Emily L. C. Shepard
- Biosciences, College of Science, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
32
|
Hansen M, Burns A, Monk C, Schutz C, Lizier J, Ramnarine I, Ward A, Krause J. The effect of predation risk on group behaviour and information flow during repeated collective decisions. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Mavrodiev P, Fleischmann D, Kerth G, Schweitzer F. Quantifying individual influence in leading-following behavior of Bechstein's bats. Sci Rep 2021; 11:2691. [PMID: 33514763 PMCID: PMC7846810 DOI: 10.1038/s41598-020-80946-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Leading-following behavior as a way of transferring information about the location of resources is wide-spread in many animal societies. It represents active information transfer that allows a given social species to reach collective decisions in the presence of limited information. Although leading-following behavior has received much scientific interest in the form of field studies, there is a need for systematic methods to quantify and study the individual contributions in this information transfer, which would eventually lead us to hypotheses about the individual mechanisms underlying this behaviour. In this paper we propose a general methodology that allows us to (a) infer individual leading-following behaviour from discrete observational data and (b) quantify individual influence based on methods from social network analysis. To demonstrate our methodology, we analyze longitudinal data of the roosting behavior of two different colonies of Bechstein's bats in different years. Regarding (a) we show how the inference of leading-following events can be calibrated from data making it a general approach when only discrete observations are available. This allows us to address (b) by constructing social networks in which nodes represent individual bats and directed and weighted links-the leading-following events. We then show how social network theory can be used to define and quantify individual influence in a way that reflects the dynamics of the specific social network. We find that individuals can be consistently ranked regarding their influence in the information transfer. Moreover, we identify a small set of individuals that play a central role in leading other bats to roosts. In the case of Bechstein's bats this finding can direct future studies on the individual-level mechanisms that result in such collective pattern. More generally, we posit that our data-driven methodology can be used to quantify leading-following behavior and individual impact in other animal systems, solely based on discrete observational data.
Collapse
Affiliation(s)
- Pavlin Mavrodiev
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, 8092, Zurich, Switzerland
| | - Daniela Fleischmann
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| | - Frank Schweitzer
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, 8092, Zurich, Switzerland.
| |
Collapse
|
34
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
36
|
Abstract
Collective decisions can emerge from individual-level interactions between members of a group. These interactions are often seen as social feedback rules, whereby individuals copy the decisions they observe others making, creating a coherent group decision. The benefit of these behavioral rules to the individual agent can be understood as a transfer of information, whereby a focal individual learns about the world by gaining access to the information possessed by others. Previous studies have analyzed this exchange of information by assuming that all agents share common goals. While differences in information and differences in preferences have often been conflated, little is known about how differences between agents' underlying preferences affect the use and efficacy of social information. In this paper, I develop a model of social information use by rational agents with differing preferences, and demonstrate that the resulting collective behavior is strongly dependent on the structure of preference sharing within the group, as well as the quality of information in the environment. In particular, I show that strong social responses are expected by individuals that are habituated to noisy, uncertain environments where private information about the world is relatively weak. Furthermore, by investigating heterogeneous group structures, I demonstrate a potential influence of cryptic minority subgroups that may illuminate the empirical link between personality and leadership.
Collapse
Affiliation(s)
- Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom;
- The Alan Turing Institute, London NW1 2DB, United Kingdom
| |
Collapse
|
37
|
Portugal SJ. Bird flocks. Curr Biol 2020; 30:R206-R210. [PMID: 32155419 DOI: 10.1016/j.cub.2020.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steven Portugal introduces the behavioral and aerodynamic underpinnings of aerial flocking in birds.
Collapse
Affiliation(s)
- Steven J Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
38
|
Krietsch J, Valcu M, Kempenaers B. Wind conditions influence breeding season movements in a nomadic polygynous shorebird. Proc Biol Sci 2020; 287:20192789. [PMID: 32075527 PMCID: PMC7031675 DOI: 10.1098/rspb.2019.2789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nomadism is a behaviour where individuals respond to environmental variability with movements that seem unpredictable in timing and direction. In contrast to migration, the mechanisms underlying nomadic movements remain largely unknown. Here, we focus on a form of apparent nomadism in a polygynous shorebird, the pectoral sandpiper (Calidris melanotos). Local mating opportunities are unpredictable and most males sampled multiple sites across a considerable part of their breeding range. We test the hypothesis that individuals decided which part of the breeding range to sample in a given season based on the prevailing wind conditions. Using movement data from 80 males in combination with wind data from a global reanalysis model, we show that male pectoral sandpipers flew with wind support more often than expected by chance. Stronger wind support led to increased ground speed and was associated with a longer flight range. Long detours (loop-like flights) can be explained by individuals flying initially with the wind. Individuals did not fly westwards into the Russian Arctic without wind support, but occasionally flew eastwards into the North American Arctic against strong headwinds. Wind support might be less important for individuals flying eastwards, because their autumn migration journey will be shorter. Our study suggests that individuals of a species with low site fidelity choose their breeding site opportunistically based on the prevailing wind conditions.
Collapse
Affiliation(s)
- Johannes Krietsch
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
39
|
Davison CW, Chapman PM, Wearn OR, Bernard H, Ewers RM. Shifts in the demographics and behavior of bearded pigs (
Sus barbatus
) across a land‐use gradient. Biotropica 2019. [DOI: 10.1111/btp.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles W. Davison
- Department of Life Sciences Imperial College London Berkshire UK
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | | | | | - Henry Bernard
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Robert M. Ewers
- Department of Life Sciences Imperial College London Berkshire UK
| |
Collapse
|
40
|
|
41
|
Sankey DWE, Portugal SJ. When flocking is costly: reduced cluster-flock density over long-duration flight in pigeons. Naturwissenschaften 2019; 106:47. [PMID: 31309338 DOI: 10.1007/s00114-019-1641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/14/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Birds which fly in coordinated cluster-flocks can benefit through the formation of group-level structures and patterns which can deter predators by visual confusion. Though unlike V-formation flight, cluster-flocking increases the energetic cost of flight, particularly in denser flocks. Cluster formations therefore provide a unique opportunity to investigate trade-offs between increased work rate (e.g. higher flap frequency) and other benefits of flocking. As part of a routine 9-km training flight release, a flock of six homing pigeons (Columba livia) with 5 Hz GPS and 200 Hz accelerometer biologgers attached flew an alternative trajectory totalling 177 km and 256 min of flight. We provide the first evidence that during a long-duration flight, pigeons' pairwise and group-level distances increased (i.e. group structure changed), while flap frequency decreased over time. This implies that as birds tire during long-duration flight, the ultimate functions of cluster-flocking-primarily anti-predator benefits-are overridden by the proximate costs of flying close to conspecifics.
Collapse
Affiliation(s)
- Daniel W E Sankey
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Steven J Portugal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| |
Collapse
|
42
|
Taylor LA, Taylor GK, Lambert B, Walker JA, Biro D, Portugal SJ. Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together. PLoS Biol 2019; 17:e3000299. [PMID: 31211769 PMCID: PMC6581236 DOI: 10.1371/journal.pbio.3000299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/15/2019] [Indexed: 11/19/2022] Open
Abstract
Flapping flight is the most energetically demanding form of sustained forwards locomotion that vertebrates perform. Flock dynamics therefore have significant implications for energy expenditure. Despite this, no studies have quantified the biomechanical consequences of flying in a cluster flock or pair relative to flying solo. Here, we compared the flight characteristics of homing pigeons (Columba livia) flying solo and in pairs released from a site 7 km from home, using high-precision 5 Hz global positioning system (GPS) and 200 Hz tri-axial accelerometer bio-loggers. As expected, paired individuals benefitted from improved homing route accuracy, which reduced flight distance by 7% and time by 9%. However, realising these navigational gains involved substantial changes in flight kinematics and energetics. Both individuals in a pair increased their wingbeat frequency by 18% by decreasing the duration of their upstroke. This sharp increase in wingbeat frequency caused just a 3% increase in airspeed but reduced the oscillatory displacement of the body by 22%, which we hypothesise relates to an increased requirement for visual stability and manoeuvrability when flying in a flock or pair. The combination of the increase in airspeed and a higher wingbeat frequency would result in a minimum 2.2% increase in the total aerodynamic power requirements if the wingbeats were fully optimised. Overall, the enhanced navigational performance will offset any additional energetic costs as long as the metabolic power requirements are not increased above 9%. Our results demonstrate that the increases in wingbeat frequency when flying together have previously been underestimated by an order of magnitude and force reinterpretation of their mechanistic origin. We show that, for pigeons flying in pairs, two heads are better than one but keeping a steady head necessitates energetically costly kinematics.
Collapse
Affiliation(s)
- Lucy A. Taylor
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Graham K. Taylor
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ben Lambert
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - James A. Walker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Steven J. Portugal
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
43
|
Nair GG, Senthilnathan A, Iyer SK, Guttal V. Fission-fusion dynamics and group-size-dependent composition in heterogeneous populations. Phys Rev E 2019; 99:032412. [PMID: 30999543 DOI: 10.1103/physreve.99.032412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 11/07/2022]
Abstract
Many animal groups are heterogeneous and may even consist of individuals of different species, called mixed-species flocks. Mathematical and computational models of collective animal movement behavior, however, typically assume that groups and populations consist of identical individuals. In this paper, using the mathematical framework of the coagulation-fragmentation process, we develop and analyze a model of merge and split group dynamics, also called fission-fusion dynamics, for heterogeneous populations that contain two types (or species) of individuals. We assume that more heterogeneous groups experience higher split rates than homogeneous groups, forming two daughter groups whose compositions are drawn uniformly from all possible partitions. We analytically derive a master equation for group size and compositions and find mean-field steady-state solutions. We predict that there is a critical group size below which groups are more likely to be homogeneous and contain the abundant type or species. Despite the propensity of heterogeneous groups to split at higher rates, we find that groups are more likely to be heterogeneous but only above the critical group size. Monte Carlo simulation of the model show excellent agreement with these analytical model results. Thus, our model makes a testable prediction that composition of flocks are group-size-dependent and do not merely reflect the population level heterogeneity. We discuss the implications of our results to empirical studies on flocking systems.
Collapse
Affiliation(s)
- Gokul G Nair
- Department of Physics, Indian Institute of Science, Bengaluru, 560 012, India.,Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA
| | - Athmanathan Senthilnathan
- Department of Mathematics, Indian Institute of Science, Bengaluru, 560 012, India.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Srikanth K Iyer
- Department of Mathematics, Indian Institute of Science, Bengaluru, 560 012, India
| | - Vishwesha Guttal
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560 012, India
| |
Collapse
|
44
|
Sasaki T, Mann RP, Warren KN, Herbert T, Wilson T, Biro D. Personality and the collective: bold homing pigeons occupy higher leadership ranks in flocks. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0038. [PMID: 29581403 DOI: 10.1098/rstb.2017.0038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
While collective movement is ecologically widespread and conveys numerous benefits on individuals, it also poses a coordination problem: who controls the group's movements? The role that animal 'personalities' play in this question has recently become a focus of research interest. Although many animal groups have distributed leadership (i.e. multiple individuals influence collective decisions), studies linking personality and leadership have focused predominantly on the group's single most influential individual. In this study, we investigate the relationship between personality and the influence of multiple leaders on collective movement using homing pigeons, Columba livia, a species known to display complex multilevel leadership hierarchies during flock flights. Our results show that more exploratory (i.e. 'bold') birds are more likely to occupy higher ranks in the leadership hierarchy and thus have more influence on the direction of collective movement than less exploratory (i.e. 'shy') birds during both free flights around their lofts and homing flights from a distant site. Our data also show that bold pigeons fly faster than shy birds during solo flights. We discuss our results in light of theories about the evolution of personality, with specific reference to the adaptive value of heterogeneity in animal groups.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Takao Sasaki
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Richard P Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine N Warren
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tristian Herbert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tara Wilson
- University College London, Gower Street, London WC1E 6BT, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
45
|
Berdahl AM, Kao AB, Flack A, Westley PAH, Codling EA, Couzin ID, Dell AI, Biro D. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0009. [PMID: 29581394 PMCID: PMC5882979 DOI: 10.1098/rstb.2017.0009] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture. This article is part of the theme issue ‘Collective movement ecology’.
Collapse
Affiliation(s)
- Andrew M Berdahl
- Santa Fe Institute, Santa Fe, NM 87501, USA .,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Albert B Kao
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrea Flack
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Peter A H Westley
- Department of Fisheries, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Edward A Codling
- Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Iain D Couzin
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Anthony I Dell
- National Great Rivers Research and Education Center, Alton, IL 62024, USA.,Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
46
|
Torney CJ, Hopcraft JGC, Morrison TA, Couzin ID, Levin SA. From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0012. [PMID: 29581397 DOI: 10.1098/rstb.2017.0012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Colin J Torney
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, UK
| | - J Grant C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78464 Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
47
|
Richardson TO, Mullon C, Marshall JAR, Franks NR, Schlegel T. The influence of the few: a stable 'oligarchy' controls information flow in house-hunting ants. Proc Biol Sci 2019; 285:rspb.2017.2726. [PMID: 29445021 PMCID: PMC5829206 DOI: 10.1098/rspb.2017.2726] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 11/12/2022] Open
Abstract
Animals that live together in groups often face difficult choices, such as which food resource to exploit, or which direction to flee in response to a predator. When there are costs associated with deadlock or group fragmentation, it is essential that the group achieves a consensus decision. Here, we study consensus formation in emigrating ant colonies faced with a binary choice between two identical nest-sites. By individually tagging each ant with a unique radio-frequency identification microchip, and then recording all ant-to-ant 'tandem runs'-stereotyped physical interactions that communicate information about potential nest-sites-we assembled the networks that trace the spread of consensus throughout the colony. Through repeated emigrations, we show that both the order in which these networks are assembled and the position of each individual within them are consistent from emigration to emigration. We demonstrate that the formation of the consensus is delegated to an influential but exclusive minority of highly active individuals-an 'oligarchy'-which is further divided into two subgroups, each specialized upon a different tandem running role. Finally, we show that communication primarily occurs between subgroups not within them, and further, that such between-group communication is more efficient than within-group communication.
Collapse
Affiliation(s)
- Thomas O Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland .,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - James A R Marshall
- Department of Computer Science and Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Nigel R Franks
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Thomas Schlegel
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Kano F, Walker J, Sasaki T, Biro D. Head-mounted sensors reveal visual attention of free-flying homing pigeons. ACTA ACUST UNITED AC 2018; 221:221/17/jeb183475. [PMID: 30190414 DOI: 10.1242/jeb.183475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Gaze behavior offers valuable insights into attention and cognition. However, technological limitations have prevented the examination of animals' gaze behavior in natural, information-rich contexts; for example, during navigation through complex environments. Therefore, we developed a lightweight custom-made logger equipped with an inertial measurement unit (IMU) and GPS to simultaneously track the head movements and flight trajectories of free-flying homing pigeons. Pigeons have a limited range of eye movement, and their eye moves in coordination with their head in a saccadic manner (similar to primate eye saccades). This allows head movement to act as a proxy for visual scanning behavior. Our IMU sensor recorded the 3D movement of the birds' heads in high resolution, allowing us to reliably detect distinct saccade signals. The birds moved their head far more than necessary for maneuvering flight, suggesting that they actively scanned the environment. This movement was predominantly horizontal (yaw) and sideways (roll), allowing them to scan the environment with their lateral visual field. They decreased their head movement when they flew solo over prominent landmarks (major roads and a railway line) and also when they flew in pairs (especially when flying side by side, with the partner maintained in their lateral visual field). Thus, a decrease in head movement indicates a change in birds' focus of attention. We conclude that pigeons use their head gaze in a task-related manner and that tracking flying birds' head movement is a promising method for examining their visual attention during natural tasks.
Collapse
Affiliation(s)
- Fumihiro Kano
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uki, Kumamoto, Japan .,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - James Walker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Takao Sasaki
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
49
|
Pinkoviezky I, Couzin ID, Gov NS. Collective conflict resolution in groups on the move. Phys Rev E 2018; 97:032304. [PMID: 29776127 DOI: 10.1103/physreve.97.032304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 11/07/2022]
Abstract
Collective decision-making regarding direction of travel is observed during natural motion of animal and cellular groups. This phenomenon is exemplified, in the simplest case, by a group that contains two informed subgroups that hold conflicting preferred directions of motion. Under such circumstances, simulations, subsequently supported by experimental data with birds and primates, have demonstrated that the resulting motion is either towards a compromise direction or towards one of the preferred targets (even when the two subgroups are equal in size). However, the nature of this transition is not well understood. We present a theoretical study that combines simulations and a spin model for mobile animal groups, the latter providing an equilibrium representation, and exact solution in the thermodynamic limit. This allows us to identify the nature of this transition at a critical angular difference between the two preferred directions: in both flocking and spin models the transition coincides with the change in the group dynamics from Brownian to persistent collective motion. The groups undergo this transition as the number of uninformed individuals (those in the group that do not exhibit a directional preference) increases, which acts as an inverse of the temperature (noise) of the spin model. When the two informed subgroups are not equal in size, there is a tendency for the group to reach the target preferred by the larger subgroup. We find that the spin model captures effectively the essence of the collective decision-making transition and allows us to reveal a noise-dependent trade-off between the decision-making speed and the ability to achieve majority (democratic) consensus.
Collapse
Affiliation(s)
- Itai Pinkoviezky
- Departments of Physics and Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78457 Konstanz, Germany and Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
50
|
Del Mar Delgado M, Miranda M, Alvarez SJ, Gurarie E, Fagan WF, Penteriani V, di Virgilio A, Morales JM. The importance of individual variation in the dynamics of animal collective movements. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170008. [PMID: 29581393 PMCID: PMC5882978 DOI: 10.1098/rstb.2017.0008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 11/12/2022] Open
Abstract
Animal collective movements are a key example of a system that links two clearly defined levels of organization: the individual and the group. Most models investigating collective movements have generated coherent collective behaviours without the inclusion of individual variability. However, new individual-based models, together with emerging empirical information, emphasize that within-group heterogeneity may strongly influence collective movement behaviour. Here we (i) review the empirical evidence for individual variation in animal collective movements, (ii) explore how theoretical investigations have represented individual heterogeneity when modelling collective movements and (iii) present a model to show how within-group heterogeneity influences the collective properties of a group. Our review underscores the need to consider variability at the level of the individual to improve our understanding of how individual decision rules lead to emergent movement patterns, and also to yield better quantitative predictions of collective behaviour.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Maria Del Mar Delgado
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, Campus Mieres, 33600 Mieres, Spain
| | - Maria Miranda
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, Campus Mieres, 33600 Mieres, Spain
| | - Silvia J Alvarez
- Department of Biology, University of Maryland, 1210 Biology-Psychology Building, College Park, MD 20742, USA
- Wildlife Conservation Society, Carrera 7 No. 82-66, Bogota, Colombia
| | - Eliezer Gurarie
- Department of Biology, University of Maryland, 1210 Biology-Psychology Building, College Park, MD 20742, USA
| | - William F Fagan
- Department of Biology, University of Maryland, 1210 Biology-Psychology Building, College Park, MD 20742, USA
| | - Vincenzo Penteriani
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, Campus Mieres, 33600 Mieres, Spain
- Pyrenean Institute of Ecology (IPE), CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Agustina di Virgilio
- Ecotono, INIBIOMA-CONICET, Universidad Nacional del Camahue, Quintral 1250, Bariloche 8400, Argentina
| | - Juan Manuel Morales
- Ecotono, INIBIOMA-CONICET, Universidad Nacional del Camahue, Quintral 1250, Bariloche 8400, Argentina
| |
Collapse
|