1
|
Kosek DM, Petzold K, Andersson ER. Mapping effective microRNA pairing beyond the seed using abasic modifications. Nucleic Acids Res 2025; 53:gkaf364. [PMID: 40298108 PMCID: PMC12038393 DOI: 10.1093/nar/gkaf364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by base-pairing to complementary sites in messenger RNAs (mRNAs). The primary element for site recognition is the seed region (nucleotides 2-8 in the miRNA), but for a minority of sites pairing outside the seed increases efficiency, with the supplementary region (nucleotides 13-16) typically having the greatest impact. However, the structural determinants of effective pairing outside the seed are not fully understood. Here, we use abasic modified nucleotides to disrupt pairing to residues 13 and 14 of miR-34a and measure the effect of this modification compared to wild-type miR-34a on the cellular transcriptome and proteome using RNA-seq and mass spectrometry. We find that a subset of sites with predicted supplementary pairing are affected by miRNA transfection, with up to two-fold decreases in site repression at the mRNA level. We show that miR-34a 3'-pairing is sensitive to GU wobble pairs in a position-specific manner and favors bulges in the miRNA over the target. These results were validated with luciferase reporter assays. Overall, this study demonstrates a novel methodological approach for elucidating the role of specific miRNA residues in target site selection, advancing our understanding of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre D9:3, Husargatan 3, 752 37 Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre D9:3, Husargatan 3, 752 37 Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Uppsala Biomedical Centre, Uppsala University, 75237 Uppsala, Sweden
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 75237 Uppsala, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 171 77Stockholm, Sweden
| |
Collapse
|
2
|
Ferrari PA, Salis CB, Macciò A. Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life (Basel) 2025; 15:683. [PMID: 40430112 PMCID: PMC12113289 DOI: 10.3390/life15050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Lung cancer, the leading cause of cancer-related mortality, has brought exhaled breath condensate (EBC) into focus as a promising non-invasive sample for detecting molecular biomarkers, particularly microRNAs, which regulate gene expression and contribute to tumorigenesis. Ten key studies encompassing approximately 866 subjects consistently demonstrated distinct patterns of miRNA dysregulation in lung cancer. Notably, several reported panels achieved diagnostic sensitivity and specificity exceeding 75% through the identification of distinct miRNA signatures in EBC, with oncogenic miRNAs (e.g., miR-21) upregulated and tumor-suppressor miRNAs (e.g., miR-486) downregulated in lung cancer patients. Analytical advancements, including next-generation sequencing (NGS), have improved miRNA detection sensitivity and specificity, addressing prior limitations of low yield and variability. NGS enabled the identification of novel miRNAs and proved especially effective in overcoming the low RNA yield associated with EBC samples. However, challenges persist regarding standardization of collection, sample dilution, and potential contamination. Moreover, the reproducibility of miRNA signatures across diverse patient populations remains a critical issue. Large-scale, multicenter validation studies are needed to establish robust diagnostic algorithms integrating EBC-derived miRNAs with existing clinical tools. The potential of EBC miRNA profiling to support current screening strategies could significantly improve early lung cancer detection and patient outcomes. Nevertheless, its clinical transition requires further methodological optimization and biomarker validation. This review critically evaluates current evidence on miRNA detection in EBC for lung cancer diagnosis.
Collapse
Affiliation(s)
- Paolo Albino Ferrari
- Division of Thoracic Surgery, Oncology Hospital “A. Businco”, Azienda di Rilievo Nazionale ed Alta Specializzazione “G. Brotzu”, Via Jenner Snc, 09121 Cagliari, Italy
| | - Cosimo Bruno Salis
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy;
| | - Antonio Macciò
- Department of Surgical Sciences, University of Cagliari, SS. 554, km 4500, 09042 Monserrato, Italy;
| |
Collapse
|
3
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Ma L, Zhang J, Dai Z, Liao P, Guan J, Luo Z. Top 100 most-cited articles on apoptosis of non-small cell lung cancer over the past two decades: a bibliometrics analysis. Front Immunol 2025; 15:1512349. [PMID: 39872524 PMCID: PMC11770037 DOI: 10.3389/fimmu.2024.1512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Background Recently there has been an increasing number of studies have explored apoptosis mechanisms in lung cancer (LC). However, no researchers have conducted a bibliometric analysis of the most cited articles in this field. Objective To examine the top 100 most influential and cited publications on apoptosis in non-small cell lung cancer (NSCLC) from 2004 to 2023, summarizing research trends and key focus areas. Methods This study utilized the Web of Science Core Database (WOSCC) to research NSCLC apoptosis from 2004 to 2023, using keyword selection and manual screening for article searches. Bibliometrix package of R software 4.3.1 was used to generate distribution statistics for the top ten institutions, journals and authors. Citespace6.2. R6 was used to create the visualization maps for keyword co-occurrence and clustering. VOSviewer1.6.19 was used to conduct cluster analysis of publishing countries (regions), with data exported to SCImago Graphica for geographic visualization and cooperation analysis. VOSviewer1.6.19 was used to produced co-citation maps of institutions, journals, authors, and references. Results From 2004 to 2023, 13316 articles were retrieved, and the top 100 most cited were chosen. These were authored by 934 individuals from 269 institutions across 18 countries and appeared in 45 journals. Citations ranged from 150 to 1,389, with a median of 209.5. The most influential articles appeared in 2005 and 2007 (n=13). The leading countries (regions), institutions, journals and authors were identified as the United States (n=60), Harvard University (n=64), CANCER RESEARCH (n=15), SUN M and YANG JS (n=6). The top five keywords were "expression", "activation", "apoptosis", "pathway" and "gefitinib". This study indicates that enhancing apoptosis through circular RNA regulation and targeting the Nrf2 signaling pathway could become a key research focus in recent years. Conclusion Apoptosis has been the subject of extensive research over many years, particularly in relation to its role in the pathogenesis, diagnosis, and treatment of NSCLC. This study aims to identify highly influential articles and forecast emerging research trends, thereby offering insights into novel therapeutic targets and strategies to overcome drug resistance. The findings are intended to serve as a valuable reference for scholars engaged in this field of study.
Collapse
Affiliation(s)
- Leshi Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi Dai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Liao
- Department of Oncology, Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Jieshan Guan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, Shenshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, China
| | - Zhijie Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Wittmann J. Overview of the Different Classes of Small RNAs During B-Cell Development. Methods Mol Biol 2025; 2883:1-29. [PMID: 39702702 DOI: 10.1007/978-1-0716-4290-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
B lymphocytes (B cells) are a type of white blood cell that play an essential role in the adaptive immune response. They are derived from pluripotent hematopoietic stem cells and undergo several developmental stages in the bone marrow and secondary lymphoid organs to become effector cells. B cells can act as antigen-presenting cells, secrete cytokines, generate immunological memory as memory B cells, and produce and secrete high-affinity antibodies as plasma B cells.B-cell development occurs in discontinuous steps within specific organs and niche environments, progressing through checkpoints controlled by the relative levels of numerous transcription factors, cytokines, and surface receptors. These complex interactions of distinct developmental programs operate through balanced control mechanisms rather than simple "on/off" signals.Over the past two decades, much has been learned about short non-coding RNA (ncRNA) molecules that play a critical role in fine-tuning gene expression by targeting specific messenger RNAs (mRNAs) for degradation or translational repression. In the intricate orchestration of B-cell development, ncRNAs contribute to the delicate balance between proliferation, differentiation, and apoptosis by influencing key checkpoints in the maturation process.Therefore, in this chapter, I will review the role of different classes of small ncRNAs, including microRNAs, glycoRNAs, tRNA-derived fragments, and ribosomal RNA-derived fragments, in modulating gene expression at the post-transcriptional level and their contribution to the intricate regulatory network that controls B-cell maturation.
Collapse
Affiliation(s)
- Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Hill M, Stapleton S, Nguyen PT, Sais D, Deutsch F, Gay VC, Marsh DJ, Tran N. The potential regulation of the miR-17-92a cluster by miR-21. Int J Biochem Cell Biol 2025; 178:106705. [PMID: 39615668 DOI: 10.1016/j.biocel.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
MicroRNAs (miRNA,miRs) are small noncoding RNAs that are ubiquitously expressed in all mammalian cells. Their primary function is the regulation of nascent RNA transcripts by direct binding to regions on the target. There is now exciting data to suggest that these miRNAs can bind to other miRNAs, and this may have a broader impact on gene regulation in disease states. The oncomiR miR-21 is one of the highest-expressing miRNAs in cancer cells, and in this study, we characterise which miRNAs could be potential targets of miR-21. In cancer cells delivered with a miR-21 mimic, there was an observable shift of the miRNA milieu. We demonstrate that the miR-17-92a cluster, which harbours six miRNA members, may be a target for miR-21 regulation. Additionally, the primary transcript of miR-17-92a was reduced in the presence of miR-21. In the broader context of miR:miR regulation, overexpression of miR-21 shifted the expression of more than 150 miRNAs, including those known to regulate genes in cancer pathways such as the MAPK signalling and FoxO pathways. This study expands upon our limited understanding of miR:miR regulatory network and reinforces the concept that miRNAs can regulate each other, thereby influencing broader gene networks.
Collapse
Affiliation(s)
- Meredith Hill
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Sarah Stapleton
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | | | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Fiona Deutsch
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Valerie C Gay
- School of Electrical and Data Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia.
| |
Collapse
|
7
|
Mm Yahya S, Elsayed GH. The role of MiRNA-34 family in different signaling pathways and its therapeutic options. Gene 2024; 931:148829. [PMID: 39154971 DOI: 10.1016/j.gene.2024.148829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types. This family is also important for obesity, the cardiovascular system, and glycolysis. It's interesting to note that the miRNA-34 family is known to play a role in major depressive disorder, schizophrenia, Parkinson's disease (PD), adverse childhood experiences or trauma, regulation of stress responses, Alzheimer's disease (AD), and stress-related psychatric conditions. In this review, the expected targets of the miRNA-34 family are presented alongside the well-established targets identified by pathway analysis. Furthermore, the therapeutic potential of this miRNA family will be discussed.
Collapse
Affiliation(s)
- Shaymaa Mm Yahya
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Xia J, Wang L, Lei F, Pan L, Liu L, Wan P. MicroRNA-34 disrupts border cell migration by targeting Eip74EF in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104724. [PMID: 39557284 DOI: 10.1016/j.jinsphys.2024.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Jingya Xia
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lina Wang
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fengyun Lei
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lu Pan
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lijun Liu
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ping Wan
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China.
| |
Collapse
|
9
|
Ehrmann AS, Zadro A, Tausch E, Schneider C, Stilgenbauer S, Mertens D. The NOTCH1 and miR-34a signaling network is affected by TP53 alterations in CLL. Leuk Lymphoma 2024; 65:1941-1953. [PMID: 39161195 DOI: 10.1080/10428194.2024.2392839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
In chronic lymphocytic leukemia (CLL), TP53 mutations or deletions on chromosome 17p lead to adverse prognosis and reduced levels of miR-34a, which targets NOTCH1. Also, hyperactivated NOTCH1 signaling is crucial for CLL progression. Here we explored the interaction between p53, miR-34a, and NOTCH1 in CLL. We investigated the effect of p53 and miR-34a on NOTCH1 signaling and expression in CLL cells with altered TP53. Our results indicate that miR-34a reduces NOTCH1 3' UTR activity but might not be a mediator between p53 signaling and NOTCH1. p53 activation increases miR-34a expression and NOTCH1 protein levels, correlating with decreased NOTCH1 and miR-34a levels in primary CLL cells with TP53 alterations. Some samples with high NOTCH1 levels presented increased BCL-2, suggesting an anti-apoptotic mechanism of a potentially direct p53-NOTCH1 relation in CLL. This study deepens the understanding of the p53-miR-34a-NOTCH1 signaling network, providing insights that could guide future therapeutic strategies for CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Signal Transduction
- Mutation
- Gene Expression Regulation, Leukemic
- 3' Untranslated Regions
- Cell Line, Tumor
- Apoptosis/genetics
- RNA Interference
Collapse
Affiliation(s)
- Alena Sophie Ehrmann
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zadro
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Daniel Mertens
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Naskar S, Mishra I, Srinath BS, Kumar RV, Veeraiyan D, Melgiri P, P S H, Sastry M, K V, Korlimarla A. Lower expressions of MIR34A and MIR31 in colo-rectal cancer are associated with an enriched immune microenvironment. Pathol Res Pract 2024; 263:155656. [PMID: 39437642 DOI: 10.1016/j.prp.2024.155656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION MicroRNAs (MIRs) play a crucial role in colorectal cancer (CRC) development and metastasis by regulating immune responses. Tumour-infiltrating lymphocytes (TILs) are an important predictive factor in many cancers, but, their association with microRNAs have not been studied well in colorectal cancer. Three microRNAs (MIR34A, MIR31 & MIR21), the roles of which in tumorigenesis is well-studied and which also possess immunomodulatory effect, were identified by extensive literature search. Of these, MIR34A acts as a tumour suppressor, MIR21 is considered an onco-MIR, and MIR31 displays both tumour-suppressing and oncogenic properties, making it ambiguous. This study examines the relationship between these three micro-RNAs and TILs in CRC. MATERIALS & METHODS Conducted over 18 months at a tertiary cancer care hospital in southern India, this unicentric observational study included 69 cases. These cases were analyzed for miR expression using q-RT-PCR, TILs density through hematoxylin & eosin(H&E) slide examination, and p53 and beta-catenin expression via immunohistochemistry (IHC). Correlations between non-parametric variables were assessed using Chi-square and Spearman correlation tests. RESULTS The study found significantly higher MIR34A expression in patients aged 60 years and less (26/41, p=0.024) and a higher prevalence of MIR21 in male patients (23/35, p=0.012). TILs at the tumour advancing front were categorized as low (≤10 %) or high (≥15 %). Among the 36 cases with low TILs, high MIR34A and high MIR31 expressions were observed in 24 cases (p=0.016) and 23 cases (p=0.03), respectively. Conversely, 21 of 33 cases with high TILs had low expressions of both MIR34A and MIR31. High TILs were more common in early-stage CRC (TNM stages I-IIIA), with 20 out of 28 cases, compared to 28 of 41 cases in later stages (IIIB-IVC) exhibiting low TILs (p=0.003). Aberrant p53 expression correlated with lower MIR34A levels, consistent with TCGA data. CONCLUSION Lower MIR34A and MIR31 levels are associated with higher TILs density in CRC. Unlike other cancers where MIR34A has anti-tumour effects, there was no statistically significant correlation between its expression and the pT or TNM stages in this study. Increased TILs being a good prognostic indicator, this suggests MIR34A and MIR31 may help CRC cells evade immune surveillance. Aberrant p53 expression downregulates MIR34A, underscoring the therapeutic potential of miRs.
Collapse
Affiliation(s)
- Sudipta Naskar
- Department of Pathology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Ipseet Mishra
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - B S Srinath
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Rekha V Kumar
- Department of Histopathology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Drugadevi Veeraiyan
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Pooja Melgiri
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Hari P S
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Manjunath Sastry
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Venkatachala K
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Aruna Korlimarla
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| |
Collapse
|
11
|
Wang Y, Wang S, Zang Z, Li B, Liu G, Huang H, Zhao X. Molecular and transcriptomic analysis of the ovary during laying and brooding stages in Zhedong white geese ( Anser cygnoides domesticus). Br Poult Sci 2024; 65:631-644. [PMID: 38916443 DOI: 10.1080/00071668.2024.2364351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
1. This study investigates the molecular mechanisms affecting brooding in Zhedong white geese by examining differences in reproductive endocrine levels, ovarian histology and transcriptomics.2. Twenty 18-month-old Zhedong white geese were selected to examine their ovaries using histological, biochemical, molecular biological, and high-throughput sequencing techniques during the laying and brooding periods.3. The results showed that the number of atretic follicles and apoptotic cells in the ovaries increased significantly (p < 0.05), the levels of follicle-stimulating hormone, luteinising hormone, gonadotropin-releasing hormone and oestradiol decreased significantly (p < 0.05), and the level of prolactin increased significantly (p < 0.01) during the brooding stage.4. In broody geese, the expression of CASP3, CASP9, P53, BAX, and Cyt-c were considerably higher (p < 0.05), but BCL2 expression was significantly lower (p < 0.05).5. In ovarian tissues, 260 differentially expressed lncRNAs, 13 differentially expressed miRNA and 60 differentially expressed mRNA were all discovered using transcriptome sequencing analysis. Functional enrichment analysis revealed that the differentially expressed mRNA and non-coding RNA target genes were primarily involved in ECM-receptor interaction, cell adhesion, cardiac muscle contraction, mTOR signalling, and the calcium signalling pathway.6. In conclusion, follicular atrophy and apoptosis occurred in the ovaries and serum reproductive hormone levels were significantly changed during the brooding period of Zhedong white geese. COL3A1, COL1A2, GRIA1, RNF152, miR-192, and miR-194 may be important candidates for the regulation of brooding behaviour, with the mTOR signalling pathway playing a key role.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - S Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Zang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - B Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - G Liu
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - H Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Zhao
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
12
|
Hassanin AAI, Ramos KS. Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers. Cells 2024; 13:1562. [PMID: 39329746 PMCID: PMC11430728 DOI: 10.3390/cells13181562] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
A growing number of studies have shown that microRNAs (miRNAs) can exert oncogenic or tumor suppressor activities in a variety of cancers, including lung cancer. Given their presence in exosome preparations, microRNA molecules may in fact participate in exosomal intercellular transfers and signaling. In the present study, we examined the profile of 25 circulating exosomal microRNAs in ostensibly healthy controls compared to patients with squamous cell lung cancers (SQCLC) or lung adenocarcinomas (LUAD). Eight miRNAs, namely, miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-7b-5p, miR-146a-5p, miR-222-3p, and miR-9-5p, were highly enriched in the cohort and selected for further analyses. All miRNAs were readily detected in non-small cell lung cancer (NSCLC) patients of both sexes at all cancer stages, and their levels in exosomes correlated with the clinicopathological characteristics of tumors. Thus, the presence of these miRNAs in circulating exosomes may contribute to the regulation of oncogenic activity in patients with NSCLC.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
| |
Collapse
|
13
|
Fekrirad Z, Gharedaghi M, Saadatpour F, Molabashi ZA, Rezayof A, Korourian A, Soleimani M, Arefian E. Combination of microRNA and suicide gene for targeting Glioblastoma: Inducing apoptosis and significantly suppressing tumor growth in vivo. Heliyon 2024; 10:e37041. [PMID: 39286083 PMCID: PMC11403485 DOI: 10.1016/j.heliyon.2024.e37041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GBM), a grade IV brain tumor, presents a severe challenge in treatment and eradication due to its high genetic variability and the existence of stem-like cells with self-renewal potential. Conventional therapies fall short of preventing recurrence and fail to extend the median survival of patients significantly. However, the emergence of gene therapy, which has recently obtained significant clinical outcomes, brings hope. It has the potential to be a suitable strategy for the treatment of GBM. Notably, microRNAs (miRNAs) have been noticed as critical players in the development and progress of GBM. The combined usage of hsa-miR-34a and Cytosine Deaminase (CD) suicide gene and 5-fluorocytosine (5FC) prodrug caused cytotoxicity against U87MG Glioma cells in vitro. The apoptosis and cell cycle arrest rates were measured by flow cytometry. The lentiviral vector generated overexpression of CD/miR-34a in the presence of 5FC significantly promoted apoptosis and caused cell cycle arrest in U87MG cells. The expression level of the BCL2, SOX2, and P53 genes, target genes of hsa-miR-34a, was examined by quantitative real-time PCR. The treatment led to a substantial downregulation of Bcl2 and SOX2 genes while elevating the expression levels of Caspase7 and P53 genes compared to the scrambled control. The hsa-miR-34a hindered the proliferation of GBM cancer cells and elevated apoptosis through the P53-miR-34a-Bcl2 axis. The CD suicide gene with 5FC treatment demonstrated similar results to miR-34a in the apoptosis, cell cycle, and real-time assays. The combination of CD and miR-34a produced a synergistic effect. In vivo, anti-GBM efficacy evaluation in rats bearing intracranial C6 Glioma cells revealed a remarkable induction of apoptosis and a significant inhibition of tumor growth compared with the scrambled control. The simultaneous use of CD/miR-34a with 5FC almost entirely suppressed tumor growth in rat models. The combined application of hsa-miR-34a and CD suicide gene against GBM tumors led to significant induction of apoptosis in U87MG cells and a considerable reduction in tumor growth in vivo.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Milad Gharedaghi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Asghari Molabashi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Korourian
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Yan X, Chen X, Zhang X, Qureshi A, Wang Y, Tang X, Hu T, Zhuang H, Ran X, Ma G, Luo P, Shen L. Proteomic analysis of the effects of Dictyophora polysaccharide on arsenic-induced hepatotoxicity in rats. Exp Mol Pathol 2024; 138:104910. [PMID: 38876078 DOI: 10.1016/j.yexmp.2024.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.
Collapse
Affiliation(s)
- Xi Yan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaolu Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
15
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
17
|
Hong J, Sim D, Lee BH, Sarangthem V, Park RW. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J Nanobiotechnology 2024; 22:293. [PMID: 38802812 PMCID: PMC11131307 DOI: 10.1186/s12951-024-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.
Collapse
Affiliation(s)
- Jisan Hong
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
20
|
Vieira IA, Pezzi EH, Bandeira IC, Reis LB, de Araújo Rocha YM, Fernandes BV, Siebert M, Miyamoto KN, Siqueira MB, Achatz MI, Galvão HDCR, Garcia FADO, Campacci N, Carraro DM, Formiga MN, Vianna FSL, Palmero EI, Macedo GS, Ashton-Prolla P. Functional pri-miR-34b/c rs4938723 and KRAS 3'UTR rs61764370 SNPs: Novel phenotype modifiers in Li-Fraumeni Syndrome? Gene 2024; 898:148069. [PMID: 38070788 DOI: 10.1016/j.gene.2023.148069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Li-Fraumeni Syndrome (LFS) is a rare cancer predisposing condition caused by germline pathogenic TP53 variants, in which core tumors comprise sarcomas, breast, brain and adrenocortical neoplasms. Clinical manifestations are highly variable in carriers of the Brazilian germline founder variant TP53 p.R337H, possibly due to the influence of modifier genes such as miRNA genes involved in the regulation of the p53 pathway. Herein, we investigated the potential phenotypic effects of two miRNA-related functional SNPs, pri-miR-34b/c rs4938723 and 3'UTR KRAS rs61764370, in a cohort of 273 LFS patients from Southern and Southeastern Brazil. METHODS The genotyping of selected SNPs was performed by TaqMan® allelic discrimination and subsequently custom TaqMan® genotyping results were confirmed by Sanger sequencing in all SNP-positive LFS patients. RESULTS Although the KRAS SNP showed no effect as a phenotype modulator, the rs4938723 CC genotype was significantly associated with development of LFS non-core tumors (first tumor diagnosis) in p.R337H carriers (p = 0.039). Non-core tumors were also more frequently diagnosed in carriers of germline TP53 DNA binding domain variants harboring the rs4938723 C variant allele. Previous studies described pri-miR-34b/c rs4938723 C as a risk allele for sporadic occurrence of thyroid and prostate cancers (non-core tumors of the LFS spectrum). CONCLUSION With this study, we presented additional evidence about the importance of analyzing miRNA genes that could indirectly regulate p53 expression, and, therefore, may modulate the LFS phenotype, such as those of the miR-34 family.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil.
| | - Eduarda Heidrich Pezzi
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Larissa Brussa Reis
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Vieira Fernandes
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Siebert
- Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Monique Banik Siqueira
- Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil
| | - Maria I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Genomic Medicine Service from Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Gabriel S Macedo
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
22
|
Tao Q, Zhang L, Zhang Y, Liu M, Wang J, Zhang Q, Wu J, Wang A, Jin Y, Tang K. The miR-34b/MEK/ERK pathway is regulated by NR5A1 and promotes differentiation in primary bovine Sertoli cells. Theriogenology 2024; 215:224-233. [PMID: 38100994 DOI: 10.1016/j.theriogenology.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Sertoli cells play a key role in testicular development and spermatogenesis. It has been suggested that Sertoli cells differentiate after their proliferation ceases. Our previous study showed that miR-34b inhibits proliferation by targeting MAP2K1 mediated MEK/ERK signaling pathway in bovine immature Sertoli cells. Subsequent studies have revealed that the differentiation marker androgen receptor is upregulated during this process. However, the effect of the miR-34b/MEK/ERK pathway on immature bovine Sertoli cell differentiation and the underlying molecular mechanisms are yet to be explored. In this study, we determined that the miR-34b/MEK/ERK pathway was involved in the differentiation of primary Sertoli cells (PSCs) in response to retinoic acid. Transfection of an miR-34b mimic into PSCs promoted cell differentiation, whereas transfection of an miR-34b inhibitor into PSCs delayed it. Pharmacological inhibition of MEK/ERK signaling by AZD6244 promoted PSCs differentiation. Mechanistically, miR-34b promoted PSCs differentiation by inhibiting the MEK/ERK signaling pathway. Through a combination of bioinformatics analysis, dual-luciferase reporter assay, quantitative real-time PCR, and western blotting, nuclear receptor subfamily 5 group A member 1 (NR5A1) was identified as an upstream negative transcription factor of miR-34b. Furthermore, NR5A1 knockdown promoted Sertoli cell differentiation, whereas NR5A1 overexpression had the opposite effect. Together, this study revealed a new NR5A1/miR-34b/MEK/ERK axis that plays a significant role in Sertoli cell differentiation and provides a theoretical and experimental framework for further clarifying the regulation of cell differentiation in bovine PSCs.
Collapse
Affiliation(s)
- Qibing Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Linlin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiancheng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
23
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
24
|
Rai D, Pattnaik B, Bangaru S, Tak J, Kumari J, Verma U, Vadala R, Yadav G, Dhaliwal RS, Kumar S, Kumar R, Jain D, Luthra K, Chosdol K, Palanichamy JK, Khan MA, Surendranath A, Mittal S, Tiwari P, Hadda V, Madan K, Agrawal A, Guleria R, Mohan A. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: a concise review. Breathe (Sheff) 2023; 19:230125. [PMID: 38351949 PMCID: PMC10862127 DOI: 10.1183/20734735.0125-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is one of the common cancers globally with high mortality and poor prognosis. Most cases of lung cancer are diagnosed at an advanced stage due to limited diagnostic resources. Screening modalities, such as sputum cytology and annual chest radiographs, have not proved sensitive enough to impact mortality. In recent years, annual low-dose computed tomography has emerged as a potential screening tool for early lung cancer detection, but it may not be a feasible option for developing countries. In this context, exhaled breath condensate (EBC) analysis has been evaluated recently as a noninvasive tool for lung cancer diagnosis. The breath biomarkers also have the advantage of differentiating various types and stages of lung cancer. Recent studies have focused more on microRNAs (miRNAs) as they play a key role in tumourigenesis by regulating the cell cycle, metastasis and angiogenesis. In this review, we have consolidated the current published literature suggesting the utility of miRNAs in EBC for the detection of lung cancer.
Collapse
Affiliation(s)
- Divyanjali Rai
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Pattnaik
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Bangaru
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jaya Tak
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Kumari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Umashankar Verma
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Vadala
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Yadav
- Indian Council of Medical Research, New Delhi, India
| | | | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Addagalla Surendranath
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Tiwari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Hadda
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Randeep Guleria
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
26
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
27
|
Li Q, Zhang Q. MiR-34a and endothelial biology. Life Sci 2023; 330:121976. [PMID: 37495076 DOI: 10.1016/j.lfs.2023.121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
MicroRNAs (miRNAs) are endogenous ∼22 nt long RNAs that play important gene-regulatory roles in cells by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. Many miRNAs have been identified in endothelial cells and play important roles in endothelial biology. miR-34a is relatively early identified in endothelial cells and has been involved in regulating endothelial functions, angiogenesis, differentiation, senescence, inflammatory response, responses to shear stress, and mitochondrial function. This review outlines the current understanding of miR-34a in endothelial biology and discusses its potential as a therapeutic target to treat vascular diseases.
Collapse
Affiliation(s)
- Qiuxia Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Quanjiang Zhang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Safdar M, Ozaslan M, Mustafa RM, Smail SW, Khan SS, Khan MS, Akhtar MA, Ali HK, Younas U, Saeed M, Siddique F, Naveed M, Rehman S. The severity of COVID-19 in hypertensive patients is associated with mirSNPs in the 3' UTR of ACE2 that associate with miR-3658: In silico and in vitro studies. J Taibah Univ Med Sci 2023; 18:1030-1047. [PMID: 36926053 PMCID: PMC9981452 DOI: 10.1016/j.jtumed.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/16/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
The SARS-CoV-2 virus targets the antigen converting enzyme 2 (ACE2) receptor, thus resulting in elevated morbidity and an increased risk of severe and fatal COVID-19 infection in individuals with hypertension and diabetes mellitus. Objectives This study aimed to identify the association between increased susceptibility and severity in order to evaluate their impact in hypertensive COVID-19 patients using in vitro and in silico models. Methods We identified 80 miRNA binding sites on ACE2 (for different miRNAs) as well as various 30 SNPs in the miRNA binding sites of the 3' untranslated region (3' UTR) in the ACE2 gene using different online software and tools. From August 2020 to August 2021, a total of 200 nasopharyngeal/mouth swabs samples were collected from Multan, Pakistan. In order to quantify the cDNA of ACE2 and miR-3658 genes, we used Rotor Gene qRT-PCR on hypertensive patients with COVID-19 as well as healthy controls. Results Interestingly, the binding site of miR-3658 corresponding to the 3' UTR of ACE2 featured three SNPs (rs1457913029, C>T; rs960535757, A>C, G; rs1423809569, C>T), and its genomic sequence featured a single SNP (rs1024225815, C>T) with the same nucleotide variation (rs1457913029, C>T) which potentially increases the severity of COVID-19. Similarly, three other SNPs (rs1557852115, C>G; rs770335293, A>G; rs1024225815, C>T) were also found on the first binding site positions of miR-3658. Our in vitro study found that ACE2 gene expression had an effect on miR-3658 in COVID-19 patients who also had hypertension. In both cases, our analysis demonstrated that the in silico model captured the same biological mechanisms as the in vitro system. Conclusion The identified SNPs could represent potential informative signatures owing to their position in the splicing site of the ACE2 gene.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, Gaziantep, Turkey
| | - Rebaz M Mustafa
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq
- Volumetric Apparatus and Instrumental Analysis, Modern Surveying Calibration & Testing Labs, Erbil, Kurdistan, Iraq
| | - Shukur W Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Samiha S Khan
- University Medical and Dental College Faisalabad, Pakistan
| | | | - Muhammad Asad Akhtar
- Cardiovascular Research Group, Dept. Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hafiz Khawar Ali
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Umair Younas
- Department of Livestock Management, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saeed
- Department of Poultry Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Faisal Siddique
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, P.R China
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - SaifUr Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources of Guangxi University, Nanning, China
| |
Collapse
|
29
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
30
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
31
|
Frydrychowicz M, Kuszel Ł, Dworacki G, Budna-Tukan J. MicroRNA in lung cancer-a novel potential way for early diagnosis and therapy. J Appl Genet 2023; 64:459-477. [PMID: 36821071 PMCID: PMC10457410 DOI: 10.1007/s13353-023-00750-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Lung cancer is the most common cause of cancer-related deaths in the world. One of the reasons of poor prognosis and high mortality of lung cancer patients is the diagnosis of the disease in its advanced stage. Despite innovative diagnostic methods and multiple completed and ongoing clinical trials aiming at therapy improvement, no significant increase in patients' long-term survival has been noted over last decades. Patients would certainly benefit from early detection of lung cancer. Therefore, it is crucial to find new biomarkers that can help predict outcomes and tumor responses in order to maximize therapy effectiveness and avoid over- or under-treating patients with lung cancer. Nowadays, scientists' attention is mainly dedicated to so-called liquid biopsy, which is fully non-invasive and easily available method based on simple blood draw. Among common liquid biopsy elements, circulating tumor nucleic acids are worth mentioning. Epigenetic biomarkers, particularly miRNA expression, have several distinct features that make them promising prognostic markers. In this review, we described miRNA's involvement in tumorigenesis and present it as a predictor of cancer development and progression, potential indicator of treatment efficacy, and most importantly promising therapeutic target.
Collapse
Affiliation(s)
- Magdalena Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| |
Collapse
|
32
|
Mortezagholi B, Nasiri K, Movahed E, Dadgar E, Nejati ST, Hassani P, Esfahaniani M, Rafieyan S. MiR-34 by targeting p53 induces apoptosis and DNA damage in paclitaxel-resistant human oral squamous carcinoma cells. Chem Biol Drug Des 2023; 102:285-291. [PMID: 37060268 DOI: 10.1111/cbdd.14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/16/2023]
Abstract
MicroRNA-34 (miR-34) is one the most important tumor suppressor miRNAs involving in the various aspects of oral cancer. The present study aimed to evaluate the effects of miR-34 restoration in OECM-1 oral cancer resistant to paclitaxel (OECM-1/PTX) and its underlying mechanisms through p53-mediated DNA damage and apoptosis. OECM-1 and OECM-1/PTX were transfected with miR-34 mimic and inhibitor. Cellular proliferation and apoptosis were evaluated through MTT assay and flow cytometry, respectively. The mRNA and protein expression levels of p53, p-glycoprotein (P-gp), ATM, ATR, CHK1, and CHK2 were assessed through qRT-PCR and western blotting. Rhodamin123 uptake assay was used to measure the P-gp activities. P53 expression was also suppressed by sing a siRNA transfection of cells. The expression levels of miR-34 were downregulated in OECM-1/PTX. Restoration of miR-34 led to increase in cytotoxic effects of paclitaxel in cells. In addition, the expression levels and activities of P-gp were reduced following miR-34 transfection. miR-34 transfection upregulated the p53, ATM, ATR, CHK1, and CHK2 expression levels in OECM-1/PTX cells. Furthermore, cells transfected with miR-34 showed higher levels of apoptosis. miR-34 restoration reverses paclitaxel resistance in OECM-1 oral cancer. The chemosensitive effects of miR-34 is mediated through increasing DNA damage and apoptosis in a p53 depended manner.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Dental Research Center, Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pardis Hassani
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sona Rafieyan
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
33
|
Guo QR, Zhou WM, Zhang GB, Deng ZF, Chen XZ, Sun FY, Lei XP, Yan YY, Zhang JY. Jaceosidin inhibits the progression and metastasis of NSCLC by regulating miR-34c-3p/Integrin α2β1 axis. Heliyon 2023; 9:e16158. [PMID: 37215793 PMCID: PMC10199265 DOI: 10.1016/j.heliyon.2023.e16158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2β1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.
Collapse
Affiliation(s)
- Qiao-ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guo-bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuo-fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang-yun Sun
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, 712082, China
| | - Xue-ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yan-yan Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- School of Medicine, Shanxi Datong University, Datong, 037009, PR China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
34
|
Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol 2023; 90:15-28. [PMID: 36773819 DOI: 10.1016/j.semcancer.2023.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Stem cells have self-renewal capacities and the ability to give rise to differentiated cells thereby sustaining tissues during homeostasis and injury. This structural hierarchy extends to tumours which harbor stem-like cells deemed cancer stem cells that propagate the tumour and drive metastasis and relapse. The process of epithelial-to-mesenchymal transition (EMT), which plays an important role in development and cancer cell migration, was shown to be correlated with stemness in both homeostasis and cancer indicating that stemness can be acquired and is not necessarily an intrinsic trait. Nowadays it is experimentally proven that the activation of an EMT program does not necessarily drive cells towards a fully mesenchymal phenotype but rather to hybrid E/M states. This review offers the latest advances in connecting the EMT status and stem-cell state of both non-transformed and cancer cells. Recent literature clearly shows that hybrid EMT states have a higher probability of acquiring stem cell traits. The position of a cell along the EMT-axis which coincides with a stem cell-like state is known as the stemness window. We show how the original EMT-state of a cell dictates the EMT/MET inducing programmes required to reach stemness. Lastly we present the mechanism of stemness regulation and the regulatory feedback loops which position cells at a certain EMT state along the EMT axis.
Collapse
Affiliation(s)
- Jeroen Verstappe
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
35
|
miR-34a regulates silent synapse and synaptic plasticity in mature hippocampus. Prog Neurobiol 2023; 222:102404. [PMID: 36642095 DOI: 10.1016/j.pneurobio.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
AMPAR-lacking silent synapses are prevailed and essential for synaptic refinement and synaptic plasticity in developing brains. In mature brain, they are sparse but could be induced under several pathological conditions. How they are regulated molecularly is far from clear. miR-34a is a highly conserved and brain-enriched microRNA with age-dependent upregulated expression profile. Its neuronal function in mature brain remains to be revealed. Here by analyzing synaptic properties of the heterozygous miR-34a knock out mice (34a_ht), we have discovered that mature but not juvenile 34a_ht mice have more silent synapses in the hippocampus accompanied with enhanced synaptic NMDAR but not AMPAR function and increased spine density. As a result, 34a_ht mice display enhanced long-term potentiation (LTP) in the Schaffer collateral synapses and better spatial learning and memory. We further found that Creb1 is a direct target of miR-34a, whose upregulation and activation may mediate the silent synapse increment in 34a_ht mice. Hence, we reveal a novel physiological role of miR-34a in mature brains and provide a molecular mechanism underlying silent synapse regulation.
Collapse
|
36
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 340] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
37
|
Hu J, Ji Y, Miao T, Zheng S, Cui X, Hu J, Yang L, Li F. HPV 16 E6 promotes growth and metastasis of esophageal squamous cell carcinoma cells in vitro. Mol Biol Rep 2023; 50:1181-1190. [PMID: 36435921 DOI: 10.1007/s11033-022-07952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies worldwide. Increasing evidence suggests that human papillomavirus (HPV) infection may be associated with the etiology of ESCC. However, the precise role of HPV in ESCC remains unclear. METHODS AND RESULTS Proliferation and apoptosis of ESCC cells upon infection with HPV16 E6 were detected using CCK-8 assays and Western blot analyses. The migration rate was measured with a wound healing assay, and a Transwell Matrigel invasion assay was used to detect the invasive ability. RT-qPCR was performed to detect the expression of E6AP, p53, and miR-34a. The proliferation rates were significantly higher in HPV16E6-transfected cell groups compared with the negative control groups. Bax protein expression was downregulated in HPV16E6-treated groups compared to the controls. The wound healing and Transwell Matrigel invasion assays indicated that HPV16 E6 infection could increase ESCC cell migration and invasion. Furthermore, E6AP, p53 and miR-34a expression were decreased in HPV16 E6-transfected cell lines. CONCLUSION Our results not only provide evidence that HPV16 E6 promotes cell proliferation, migration, and invasion in ESCC, but also suggests a correlation between HPV infection and E6AP, p53 and miR-34a expression. Consequently, HPV16 E6 may play an important role in ESCC development.
Collapse
Affiliation(s)
- JiaoJiao Hu
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Yu Ji
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Pathology Department, Jiangmen Maternity and Child Health Care Hospital, Guangdong, 529000, Jiangmen, People's Republic of China
| | - TingTing Miao
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
| | - ShiYao Zheng
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - XiaoBin Cui
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - JianMing Hu
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - Lan Yang
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China.
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China.
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China.
| |
Collapse
|
38
|
Conflitti AC, Cicolani G, Buonacquisto A, Pallotti F, Faja F, Bianchini S, Blaconà G, Bruno SM, Linari A, Lucarelli M, Montanino D, Muzii L, Lenzi A, Lombardo F, Paoli D. Sperm DNA Fragmentation and Sperm-Borne miRNAs: Molecular Biomarkers of Embryo Development? Int J Mol Sci 2023; 24:ijms24021007. [PMID: 36674527 PMCID: PMC9864861 DOI: 10.3390/ijms24021007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The evaluation of morpho-functional sperm characteristics alone is not enough to explain infertility or to predict the outcome of Assisted Reproductive Technologies (ART): more sensitive diagnostic tools are needed in clinical practice. The aim of the present study was to analyze Sperm DNA Fragmentation (SDF) and sperm-borne miR-34c-5p and miR-449b-5p levels in men of couples undergoing ART, in order to investigate any correlations with fertilization rate, embryo quality and development. Male partners (n = 106) were recruited. Semen analysis, SDF evaluation and molecular profiling analysis of miR-34c-5p and miR-449b-5p (in 38 subjects) were performed. Sperm DNA Fragmentation evaluation- a positive correlation between SDF post sperm selection and the percentage of low-quality embryos and a negative correlation with viable embryo were found. SDF > 2.9% increased the risk of obtaining a non-viable embryo by almost 4-fold. Sperm miRNAs profile—we found an association with both miRNAs and sperm concentration, while miR-449b-5p is positively associated with SDF. Moreover, the two miRNAs are positively correlated. Higher levels of miR-34c-5p compared to miR-449b-5p increases by 14-fold the probability of obtaining viable embryos. This study shows that SDF, sperm miR-34c-5p, and miR-449b-5p have a promising role as biomarkers of semen quality and ART outcome.
Collapse
Affiliation(s)
- Anna Chiara Conflitti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Gaia Cicolani
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandra Buonacquisto
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Pallotti
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Fabiana Faja
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Antonella Linari
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, 00161 Rome, Italy
| | - Diletta Montanino
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Ludovico Muzii
- Department of Maternal Infantile and Urological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Francesco Lombardo
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology–Sperm Bank “Loredana Gandini”, Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
39
|
Shahiwala AF, Khan GA. Potential Phytochemicals for Prevention of Familial Breast Cancer with BRCA Mutations. Curr Drug Targets 2023; 24:521-531. [PMID: 36918779 DOI: 10.2174/1389450124666230314110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
Breast cancer has remained a global challenge and the second leading cause of cancer mortality in women and family history. Hereditary factors are some of the major risk factors associated with breast cancer. Out of total breast cancer cases, 5-10% account only for familial breast cancer, and nearly 50% of all hereditary breast cancer are due to BRCA1/BRCA2 germline mutations. BRCA1/2 mutations play an important role not only in determining the clinical prognosis of breast cancer but also in the survival curves. Since this risk factor is known, a significant amount of the healthcare burden can be reduced by taking preventive measures among people with a known history of familial breast cancer. There is increasing evidence that phytochemicals of nutrients and supplements help in the prevention and cure of BRCA-related cancers by different mechanisms such as limiting DNA damage, altering estrogen metabolism, or upregulating expression of the normal BRCA allele, and ultimately enhancing DNA repair. This manuscript reviews different approaches used to identify potential phytochemicals to mitigate the risk of familial breast cancer with BRCA mutations. The findings of this review can be extended for the prevention and cure of any BRCAmutated cancer after proper experimental and clinical validation of the data.
Collapse
Affiliation(s)
| | - Gazala Afreen Khan
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
40
|
Magnuson JT, Leads RR, McGruer V, Qian L, Tanabe P, Roberts AP, Schlenk D. Transcriptomic profiling of miR-203a inhibitor and miR-34b-injected zebrafish (Danio rerio) validates oil-induced neurological, cardiovascular and eye toxicity response pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106356. [PMID: 36423467 DOI: 10.1016/j.aquatox.2022.106356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The global sequencing of microRNA (miRNA; miR) and integration to downstream mRNA expression profiles in early life stages (ELS) of fish following exposure to crude oil determined consistently dysregulated miRNAs regardless of the oil source or fish species. The overlay of differentially expressed miRNAs and mRNAs into in silico software determined that the key roles of these miRNAs were predicted to be involved in cardiovascular, neurological and visually-mediated pathways. Of these, altered expression of miRNAs, miR-203a and miR-34b were predicted to be primary targets of crude oil. To better characterize the effect of these miRNAs to downstream transcript changes, zebrafish embryos were microinjected at 1 h post fertilization (hpf) with either a miR-203a inhibitor or miR-34b. Since both miRs have been shown to be associated with aryl hydrocarbon receptor (AhR) function, benzo(a)pyrene (BaP), a potent AhR agonist, was used as a potential positive control. Transcriptomic profiling was conducted on injected and exposed larvae at 7 and 72 hpf, and eye morphology assessed following exposure at 72 hpf. The top predicted physiological system disease and functions between differentially expressed genes (DEGs) shared with miR-203a inhibitor-injected and miR-34b-injected embryos were involved in brain formation, and the development of the central nervous system and neurons. When DEGs of miR-203a inhibitor-injected embryos were compared with BaP-exposed DEGs, alterations in nervous system development and function, and abnormal morphology of the neurosensory retina, eye and nervous tissue were predicted, consistent with both AhR and non-AhR pathways. When assessed morphologically, the eye area of miR-203a inhibitor and miR-34b-injected and BaP-exposed embryos were significantly reduced. These results suggest that miR-203a inhibition and miR-34b overexpression contribute to neurological, cardiovascular and eye toxicity responses that are caused by oil and PAH exposure in ELS fish, and are likely mediated through both AhR and non-AhR pathways.
Collapse
Affiliation(s)
- Jason T Magnuson
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America.
| | - Rachel R Leads
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Victoria McGruer
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Le Qian
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Philip Tanabe
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Daniel Schlenk
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang, University, Hangzhou, China
| |
Collapse
|
41
|
miR-34a Regulates Lipid Droplet Deposition in 3T3-L1 and C2C12 Cells by Targeting LEF1. Cells 2022; 12:cells12010167. [PMID: 36611960 PMCID: PMC9818453 DOI: 10.3390/cells12010167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Intramuscular fat (IMF) content plays a key role in improving the flavor and palatability of pork. The IMF content varies between species, breeds, and individuals of the same breed. Hence, it is necessary to elucidate the mechanisms of IMF deposition to improve pork quality. Herein, the IMF content in the longissimus dorsi muscles of 29 Laiwu pigs was detected and divided into two groups, the H group (IMF > 12%) and the L group (IMF < 5%). RNA sequencing analysis showed 24 differentially expressed (DE) miRNA, and GO and KEGG analysis demonstrated that the DE miRNAs were significantly enriched in lipid metabolic process, lipid storage, Wnt, mTOR, and PPAR signaling pathways. miR-34a was found to be increased in the H group and 3T3-L1-derived adipocytes, while Lef1 was decreased. Luciferase reporter assays demonstrated that Lef1 was a potential target of miR-34a. Mechanism analysis revealed that miR-34a could increase lipid droplet deposition in 3T3-L1 and C2C12 cells by dampening the suppressive function of Lef1 on the transcription of adipogenic markers (i.e., Pparg, Cebpa, Fabp4, and Plin1). Moreover, overexpression of miR-34a could enhance the lipid deposition in the co-culture system of 3T3-L1 and C2C12 cells as well as in C2C12 cells cultured with conditioned medium from the progress of adipocyte differentiation. Taken together, our study indicated that miR-34a was an important positive modulator in the regulation of fatty metabolism and fat deposition by inhibiting the suppressive function of Lef1. These results might provide insight for the exploration of potential strategies to promote intramuscular fat deposition in livestock.
Collapse
|
42
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Rokavec M, Huang Z, Hermeking H. Meta-analysis of miR-34 target mRNAs using an integrative online application. Comput Struct Biotechnol J 2022; 21:267-274. [PMID: 36582442 PMCID: PMC9764205 DOI: 10.1016/j.csbj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the microRNA-34/miR-34 family are induced by the p53 tumor suppressor and themselves possess tumor suppressive properties, as they inhibit the translation of mRNAs that encode proteins involved in processes, such as proliferation, migration, invasion, and metastasis. Here we performed a comprehensive integrative meta-analysis of multiple computational and experimental miR-34 related datasets and developed tools to identify and characterize novel miR-34 targets. A miR-34 target probability score was generated for every mRNA to estimate the likelihood of representing a miR-34 target. Experimentally validated miR-34 targets were strongly enriched among mRNAs with the highest scores providing a proof of principle for our analysis. We integrated the results from the meta-analysis in a user-friendly METAmiR34TARGET website (www.metamir34target.com/) that allows to graphically represent the meta-analysis results for every mRNA. Moreover, the website harbors a screen function, which allows to select multiple miR-34-related criteria/analyses and cut-off values to facilitate the stringent and comprehensive prediction of relevant miR-34 targets in expression data obtained from cell lines and tumors/tissues. Furthermore, information on more than 200 miR-34 target mRNAs, that have been experimentally validated so far, has been integrated in the web-tool. The website and datasets provided here should facilitate further investigation into the mechanisms of tumor suppression by the p53/miR-34 connection and identification of potential cancer drug targets.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| | - Zekai Huang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| |
Collapse
|
44
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
45
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
46
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
48
|
Zhao X, Wu Y, Li H, Li J, Yao Y, Cao Y, Mei Z. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and miRNA of Yili geese ovary at different egg-laying stages. BMC Genomics 2022; 23:607. [PMID: 35986230 PMCID: PMC9392330 DOI: 10.1186/s12864-022-08774-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The development of the ovaries is an important factor that affects egg production performance in geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The transcriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis for screening and identifying key genes regulating ovarian development. Results In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period (CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, steroid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed. Conclusions Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be regarded as a key regulatory pathway of ovarian development in Yili geese. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08774-4.
Collapse
|
49
|
Guan YJ, Yu CQ, Li LP, You ZH, Ren ZH, Pan J, Li YC. BNEMDI: A Novel MicroRNA–Drug Interaction Prediction Model Based on Multi-Source Information With a Large-Scale Biological Network. Front Genet 2022; 13:919264. [PMID: 35910223 PMCID: PMC9334674 DOI: 10.3389/fgene.2022.919264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
As a novel target in pharmacy, microRNA (miRNA) can regulate gene expression under specific disease conditions to produce specific proteins. To date, many researchers leveraged miRNA to reveal drug efficacy and pathogenesis at the molecular level. As we all know that conventional wet experiments suffer from many problems, including time-consuming, labor-intensity, and high cost. Thus, there is an urgent need to develop a novel computational model to facilitate the identification of miRNA–drug interactions (MDIs). In this work, we propose a novel bipartite network embedding-based method called BNEMDI to predict MDIs. First, the Bipartite Network Embedding (BiNE) algorithm is employed to learn the topological features from the network. Then, the inherent attributes of drugs and miRNAs are expressed as attribute features by MACCS fingerprints and k-mers. Finally, we feed these features into deep neural network (DNN) for training the prediction model. To validate the prediction ability of the BNEMDI model, we apply it to five different benchmark datasets under five-fold cross-validation, and the proposed model obtained excellent AUC values of 0.9568, 0.9420, 0.8489, 0.8774, and 0.9005 in ncDR, RNAInter, SM2miR1, SM2miR2, and SM2miR MDI datasets, respectively. To further verify the prediction performance of the BNEMDI model, we compare it with some existing powerful methods. We also compare the BiNE algorithm with several different network embedding methods. Furthermore, we carry out a case study on a common drug named 5-fluorouracil. Among the top 50 miRNAs predicted by the proposed model, there were 38 verified by the experimental literature. The comprehensive experiment results demonstrated that our method is effective and robust for predicting MDIs. In the future work, we hope that the BNEMDI model can be a reliable supplement method for the development of pharmacology and miRNA therapeutics.
Collapse
Affiliation(s)
- Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Jie Pan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, China
| | - Yue-Chao Li
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
50
|
Singh G, Sharma SK, Singh SK. miR-34a negatively regulates cell cycle factor Cdt2/DTL in HPV infected cervical cancer cells. BMC Cancer 2022; 22:777. [PMID: 35840896 PMCID: PMC9288023 DOI: 10.1186/s12885-022-09879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell. The viral proteins also stabilize many oncogenic factors, including an essential cell cycle regulator Cdt2/DTL which in turn promotes cell transformation and proliferation. In this study, we report that a micro-RNA, miR-34a by suppressing HPV E6 protein, destabilizes Cdt2/DTL protein level in HPV infected cervical cancer cell lines. Destabilization of Cdt2 stabilizes pro-apoptotic and onco-suppressor proteins like p21 and Set8 and suppresses cell proliferation, invasion and migration capabilities of the HPV positive cervical cancer cells. Overexpression of either HPV E6 or Cdt2 genes along with miR-34a restored back the suppressed proliferation rate. This study is the first-ever report to show that miR-34a regulates cell cycle factor Cdt2 by suppressing viral E6 protein level, thus opening up the possibility of exploring miR-34a as a specific therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India.
| |
Collapse
|