1
|
Day CA, Langfald A, Lukes T, Middlebrook H, Vaughan KT, Daniels D, Hinchcliffe EH. Commitment to cytokinetic furrowing requires the coordinate activity of microtubules and Plk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612913. [PMID: 39345392 PMCID: PMC11429772 DOI: 10.1101/2024.09.16.612913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later. The maintenance of the RhoA/anillin scaffold initially requires continuous signaling from the spindle; loss of either MTs or polo-like kinase 1 (Plk1) activity prevents proper RhoA/anillin localization to the equator, thereby disrupting furrowing. However, we find that at ∼6 min post-anaphase, the cortex becomes "committed to furrowing"; loss of either MTs or Plk1 after this stage does not prevent eventual furrowing, even though at this point the contractile apparatus has not fully matured. Also at this stage, the RhoA/anillin scaffold at the equator becomes permanent. Surprisingly, concurrent loss of both MTs and Plk1 activity following the "commitment to furrowing" stage results in persistent, asymmetric "half-furrows", with only one cortical hemisphere retaining RhoA/anillin, and undergoing ingression. This phenotype is reminiscent of asymmetric furrows caused by a physical block between spindle and cortex [7-9], or by acentric spindle positioning [10-12]. The formation of these persistent "half-furrows" suggests a potential feedback mechanism between the spindle and the cortex that maintains cortical competency along the presumptive equatorial region prior to the "commitment to furrowing" stage of cytokinesis, thereby ensuring the eventual ingression of a symmetric cleavage furrow.
Collapse
|
2
|
Lin L, Ye Y, Fu H, Gu W, Zhao M, Sun J, Cao Z, Huang G, Xie Y, Liu F, Li L, Li Q, Mao J, Hu L. Effects of a novel ANLN E841K mutation associated with SRNS on podocytes and its mechanism. Cell Commun Signal 2023; 21:324. [PMID: 37957688 PMCID: PMC10644598 DOI: 10.1186/s12964-023-01218-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/09/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is characterized by unrelieved proteinuria after an initial 4-8 weeks of glucocorticoid therapy. Genes in podocytes play an important role in causing SRNS. OBJECTIVE This study aimed to report a pathogenic mutation in SRNS patients and investigate its effects on podocytes, as well as the pathogenic mechanism. METHODS We screened out a novel mutation by using whole-exon sequencing in the SRNS cohort and verified it via Sanger sequencing. Conservative analysis and bioinformatic analysis were used to predict the pathogenicity of the mutation. In vitro, stable podocyte cell lines were constructed to detect the effect of the mutation on the function of the podocyte. Moreover, an in vivo mouse model of podocyte ANLN gene knockout (ANLNpodKO) was used to confirm clinical manifestations. Transcriptome analysis was performed to identify differential gene expression and related signaling pathways. RESULTS ANLN E841K was screened from three unrelated families. ANLN E841K occurred in the functional domain and was predicted to be harmful. The pathological type of A-II-1 renal biopsy was minimal change disease, and the expression of ANLN was decreased. Cells in the mutation group showed disordered cytoskeleton, faster cell migration, decreased adhesion, increased endocytosis, slower proliferation, increased apoptosis, and weakened interaction with CD2 association protein. ANLNpodKO mice exhibited more obvious proteinuria, more severe mesangial proliferation, glomerular atrophy, foot process fusion, and increased tissue apoptosis levels than ANLNflox/flox mice after tail vein injection of adriamycin. Upregulated differentially expressed genes in cells of the mutation group were mainly enriched in the PI3K-AKT pathway. CONCLUSION The novel mutation known as ANLN E841K affected the function of the ANLN protein by activating the PI3K/AKT/mTOR/apoptosis pathway, thus resulting in structural and functional changes in podocytes. Our study indicated that ANLN played a vital role in maintaining the normal function of podocytes. Video Abstract.
Collapse
Affiliation(s)
- Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Yuhong Ye
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310003, China
| | - Manli Zhao
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310003, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Guoping Huang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Lu Li
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Qiuyu Li
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
3
|
Warecki B, Tao L. Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis. Sci Signal 2023; 16:eadh0601. [PMID: 37402224 PMCID: PMC10501416 DOI: 10.1126/scisignal.adh0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz; Santa Cruz, CA 95064, USA
| | - Li Tao
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
| |
Collapse
|
4
|
Carim SC, Hickson GR. The Rho1 GTPase controls anillo-septin assembly to facilitate contractile ring closure during cytokinesis. iScience 2023; 26:106903. [PMID: 37378349 PMCID: PMC10291328 DOI: 10.1016/j.isci.2023.106903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gilles R.X. Hickson
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Yang S, Johnson AN. The serine/threonine kinase Back seat driver prevents cell fusion to maintain cell identity. Dev Biol 2023; 495:35-41. [PMID: 36528051 PMCID: PMC11088746 DOI: 10.1016/j.ydbio.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cell fate specification is essential for every major event of embryogenesis, and subsequent cell maturation ensures individual cell types acquire specialized functions. The mechanisms that regulate cell fate specification have been studied exhaustively, and each technological advance in developmental biology ushers in a new era of studies aimed at uncovering the most fundamental processes by which cells acquire unique identities. What is less appreciated is that mechanisms are in place to ensure cell identity is maintained throughout the life of the organism. The body wall musculature in the Drosophila embryo is a well-established model to study cell fate specification, as each hemisegment in the embryo generates and maintains thirty muscles with distinct identities. Once specified, the thirty body wall muscles fuse with mononucleate muscle precursors that lack a specific identity to form multinucleate striated muscles. Multinucleate body wall muscles do not fuse with each other, which maintains a diversification of muscle cell identities. Here we show the serine/threonine kinase Back seat driver (Bsd) prevents inappropriate muscle fusion to maintain cell identity. Thus, the regulation of cell fusion is one mechanism that maintains cell identity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology Washington University School of Medicine St. Louis, MO 63110
| | - Aaron N. Johnson
- Department of Developmental Biology Washington University School of Medicine St. Louis, MO 63110
| |
Collapse
|
6
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
7
|
Yang S, McAdow J, Du Y, Trigg J, Taghert PH, Johnson AN. Spatiotemporal expression of regulatory kinases directs the transition from mitosis to cellular morphogenesis in Drosophila. Nat Commun 2022; 13:772. [PMID: 35140224 PMCID: PMC8828718 DOI: 10.1038/s41467-022-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases. The mechanisms regulating mitosis and differentiation during development are thought to be distinct. Here they show that in Drosophila the mitotic kinase Polo regulates cellular morphogenesis after cell cycle exit.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yingqiu Du
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer Trigg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Lv Z, de-Carvalho J, Telley IA, Großhans J. Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo. J Cell Sci 2021; 134:134/4/jcs246496. [PMID: 33597155 DOI: 10.1242/jcs.246496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell and tissue functions rely on the genetic programmes and cascades of biochemical signals. It has become evident during the past decade that the physical properties of soft material that govern the mechanics of cells and tissues play an important role in cellular function and morphology. The biophysical properties of cells and tissues are determined by the cytoskeleton, consisting of dynamic networks of F-actin and microtubules, molecular motors, crosslinkers and other associated proteins, among other factors such as cell-cell interactions. The Drosophila syncytial embryo represents a simple pseudo-tissue, with its nuclei orderly embedded in a structured cytoskeletal matrix at the embryonic cortex with no physical separation by cellular membranes. Here, we review the stereotypic dynamics and regulation of the cytoskeleton in Drosophila syncytial embryos and how cytoskeletal dynamics underlies biophysical properties and the emergence of collective features. We highlight the specific features and processes of syncytial embryos and discuss the applicability of biophysical approaches.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Jörg Großhans
- Fachbereich Biologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
9
|
Naydenov NG, Koblinski JE, Ivanov AI. Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell Mol Life Sci 2021; 78:621-633. [PMID: 32880660 PMCID: PMC11072349 DOI: 10.1007/s00018-020-03605-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Remodeling of the intracellular cytoskeleton plays a key role in accelerating tumor growth and metastasis. Targeting different cytoskeletal elements is important for existing and future anticancer therapies. Anillin is a unique scaffolding protein that interacts with major cytoskeletal structures, e.g., actin filaments, microtubules and septin polymers. A well-studied function of this scaffolding protein is the regulation of cytokinesis at the completion of cell division. Emerging evidence suggest that anillin has other important activities in non-dividing cells, including control of intercellular adhesions and cell motility. Anillin is markedly overexpressed in different solid cancers and its high expression is commonly associated with poor prognosis of patient survival. This review article summarizes rapidly accumulating evidence that implicates anillin in the regulation of tumor growth and metastasis. We focus on molecular and cellular mechanisms of anillin-dependent tumorigenesis that include both canonical control of cytokinesis and novel poorly understood functions as a nuclear regulator of the transcriptional reprogramming and phenotypic plasticity of cancer cells.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, 9500 Euclid Avenue, NC22, Cleveland, OH, 44195, USA
| | - Jennifer E Koblinski
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, 9500 Euclid Avenue, NC22, Cleveland, OH, 44195, USA.
| |
Collapse
|
10
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Fraschini R, Giansanti MG. A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in Drosophila. J Cell Sci 2020; 133:jcs252965. [PMID: 33037125 DOI: 10.1242/jcs.252965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
In animal cell cytokinesis, interaction of non-muscle myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that celibe (cbe) is a missense allele of zipper, which encodes the Drosophila Myosin heavy chain. Mutation of cbe impairs binding of Zipper protein to the regulatory light chain Spaghetti squash (Sqh). In dividing spermatocytes from cbe males, Sqh fails to concentrate at the equatorial cortex, resulting in thin actomyosin rings that are unable to constrict. We show that cbe mutation impairs localization of the phosphatidylinositol 4-phosphate [PI(4)P]-binding protein Golgi phosphoprotein 3 (GOLPH3, also known as Sauron) and maintenance of centralspindlin at the cell equator of telophase cells. Our results further demonstrate that GOLPH3 protein associates with Sqh and directly binds the centralspindlin subunit Pavarotti. We propose that during cytokinesis, the reciprocal dependence between Myosin and PI(4)P-GOLPH3 regulates centralspindlin stabilization at the invaginating plasma membrane and contractile ring assembly.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
11
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Tuan NM, Lee CH. Role of Anillin in Tumour: From a Prognostic Biomarker to a Novel Target. Cancers (Basel) 2020; 12:E1600. [PMID: 32560530 PMCID: PMC7353083 DOI: 10.3390/cancers12061600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023] Open
Abstract
Anillin (ANLN), an actin-binding protein, reportedly plays a vital role in cell proliferation and migration, particularly in cytokinesis. Although there have been findings pointing to a contribution of ANLN to the development of cancer, the association of ANLN to cancer remains not fully understood. Here, we gather evidence to determine the applicability of ANLN as a prognostic tool for some types of cancer, and the impact that ANLN has on the hallmarks of cancer. We searched academic repositories including PubMed and Google Scholar to find and review studies related to cancer and ANLN. The conclusion is that ANLN could be a potent target for cancer treatment, but the roles ANLN, other than in cytokinesis and its influence on tumour microenvironment remodeling in cancer development, must be further elucidated, and specific ANLN inhibitors should be found.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea;
| |
Collapse
|
13
|
Ma J, Liu X, Liu P, Lu W, Shen X, Ma R, Zong H. Identification of a new p53 responsive element in the promoter region of anillin. Int J Mol Med 2020; 45:1563-1570. [PMID: 32323752 DOI: 10.3892/ijmm.2020.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022] Open
Abstract
The expression of anillin mRNA and protein is regulated in a cell cycle‑dependent manner. However, the mechanism underlying this process is unclear. Previous studies analyzing the sequence of the 5'‑untranslated region of anillin have unveiled several putative p53 binding sites. Therefore, the present study hypothesized that the anillin gene may be repressed by p53 and that the commonly observed mutation (or loss of function) of p53 may serve a role in this phenotype. Bioinformatic analysis of the anillin promoter region revealed potential p53 responsive elements. Of those identified, 2 were able to bind p53 protein, as determined via a chromatin immunoprecipitation assay. Although it was hypothesized that DNA damage and resultant p53 expression would repress anillin expression, the results revealed that anillin mRNA and protein expression levels were negatively regulated by DNA damage in the wild‑type p53 cells, but not in the isogenic p53 null cells. Furthermore, DNA sequences encompassing the p53 binding site downregulated luciferase transgenes in a p53 dependent manner. Taken together, these data indicated that anillin was negatively regulated by p53 and that anillin overexpression observed in cancer may be a p53‑mediated phenomenon. The data from the present study provided further evidence for the role of p53 in the biologically crucial process of cytokinesis.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinying Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Pengyi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Wenqing Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinxin Shen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Ruixiang Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Hongliang Zong
- Shanghai PerHum Therapeutics Co. Ltd., Shanghai 200052, P.R. China
| |
Collapse
|
14
|
Moon HM, Hippenmeyer S, Luo L, Wynshaw-Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. eLife 2020; 9:51512. [PMID: 32159512 PMCID: PMC7112955 DOI: 10.7554/elife.51512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous loss of human PAFAH1B1 (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human- induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here, we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from Pafah1b1-deficient mutants. Pafah1b1-deficient neocortical NPCs and MEFs similarly exhibited cleavage plane displacement with mislocalization of furrow-associated markers, associated with actomyosin dysfunction and cell membrane hyper-contractility. Thus, it suggests LIS1 acts as a key molecular link connecting MTs/dynein and actomyosin, ensuring that cell membrane contractility is tightly controlled to execute proper daughter cell separation.
Collapse
Affiliation(s)
- Hyang Mi Moon
- Department of Pediatrics, Institute for Human Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Simon Hippenmeyer
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, United States
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, United States
| | - Anthony Wynshaw-Boris
- Department of Pediatrics, Institute for Human Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, Cleveland, United States
| |
Collapse
|
15
|
Di Giorgio ML, Morciano P, Bucciarelli E, Porrazzo A, Cipressa F, Saraniero S, Manzi D, Rong YS, Cenci G. The Drosophila Citrate Lyase Is Required for Cell Division during Spermatogenesis. Cells 2020; 9:E206. [PMID: 31947614 PMCID: PMC7016701 DOI: 10.3390/cells9010206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/29/2023] Open
Abstract
The Drosophila melanogasterDmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones. We had previously reported that, although loss of Drosophila ATPCL reduced levels of Acetyl-CoA, unlike its human counterpart, it does not affect global histone acetylation and gene expression, suggesting that its role in histone acetylation is either partially redundant in Drosophila or compensated by alternative pathways. Here, we describe that depletion of DmATPCL affects spindle organization, cytokinesis, and fusome assembly during male meiosis, revealing an unanticipated role for DmATPCL during spermatogenesis. We also show that DmATPCL mutant meiotic phenotype is in part caused by a reduction of fatty acids, but not of triglycerides or cholesterol, indicating that DmATPCL-derived Acetyl-CoA is predominantly devoted to the biosynthesis of fatty acids during spermatogenesis. Collectively, our results unveil for the first time an involvement for DmATPCL in the regulation of meiotic cell division, which is likely conserved in human cells.
Collapse
Affiliation(s)
- Maria Laura Di Giorgio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Patrizia Morciano
- INFN-Laboratori Nazionali del Gran Sasso, I-67100 Assergi (L’Aquila), Italy
| | | | - Antonella Porrazzo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Sara Saraniero
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Diana Manzi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Yikang S. Rong
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, SAPIENZA Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, 00185 Rome, Italy
| |
Collapse
|
16
|
Wu Y, Mirzaei M, Pascovici D, Haynes PA, Atwell BJ. Proteomes of Leaf-Growing Zones in Rice Genotypes with Contrasting Drought Tolerance. Proteomics 2019; 19:e1800310. [PMID: 30891909 DOI: 10.1002/pmic.201800310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Plants require a distinctive cohort of enzymes to coordinate cell division and expansion. Proteomic analysis now enables interrogation of immature leaf bases where these processes occur. Hence, proteins in tissues sampled from leaves of a drought-tolerant rice (IAC1131) are investigated to provide insights into the effect of soil drying on gene expression relative to the drought-sensitive genotype Nipponbare. Shoot growth zones are dissected to estimate the proportion of dividing cells and extract protein for subsequent tandem mass tags quantitative proteomic analysis. Gene ontology annotations of differentially expressed proteins provide insights into responses of Nipponbare and IAC1131 to drought. Soil drying does not affect the percentage of mitotic cells in IAC1131. More than 800 proteins across most functional categories increase in drought (and decrease on rewatering) in IAC1131, including proteins involved in "organizing the meristem" and "new cell formation". On the other hand, the percentage of dividing cells in Nipponbare is severely impaired during drought and fewer than 200 proteins respond in abundance when growing zones undergo a drying cycle. Remarkably, the proteomes of the growing zones of each genotype respond in a highly distinctive manner, reflecting their contrasting drought tolerance even at the earliest stages of leaf development.
Collapse
Affiliation(s)
- Yunqi Wu
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
17
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
|
19
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Derksen PWB, van de Ven RAH. Shared mechanisms regulate spatiotemporal RhoA-dependent actomyosin contractility during adhesion and cell division. Small GTPases 2018; 11:113-121. [PMID: 29291271 DOI: 10.1080/21541248.2017.1366966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Local modulation of the actin cytoskeleton is essential for the initiation and maintenance of strong homotypic adhesive interfaces between neighboring cells. The epithelial adherens junction (AJ) fulfils a central role in this process by mediating E-cadherin interactions and functioning as a signaling scaffold to control the activity of the small GTPase RhoA and subsequent actomyosin contractility. Interestingly, a number of regulatory proteins that modulate RhoA activity at the AJ also control RhoA during cytokinesis, an actomyosin-dependent process that divides the cytoplasm to generate two daughter cells at the final stages of mitosis. Recent insights have revealed that the central player in AJ stability, p120-catenin (p120), interacts with and modulates essential regulators of actomyosin contraction during cytokinesis. In cancer, loss of this modulation is a common event during tumor progression that can induce chromosomal instability and tumor progression.In this review, we will highlight the functional differences and similarities of the different RhoA-associated factors that have been linked to both the regulation of cell-cell adhesion and cytokinesis.
Collapse
Affiliation(s)
- Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan CX Utrecht, the Netherlands
| | - Robert A H van de Ven
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, MA, USA
| |
Collapse
|
21
|
Goupil E, Amini R, Hall DH, Labbé JC. Actomyosin contractility regulators stabilize the cytoplasmic bridge between the two primordial germ cells during Caenorhabditis elegans embryogenesis. Mol Biol Cell 2017; 28:3789-3800. [PMID: 29074566 PMCID: PMC5739295 DOI: 10.1091/mbc.e17-08-0502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
The Caenorhabditis elegans germline is syncytial but its formation is not completely understood. During embryogenesis, the germline precursor blastomere does not complete cytokinesis and maintains a stable cytoplasmic bridge between the two primordial germ cells that is enriched in actomyosin contractility regulators. Stable cytoplasmic bridges arise from failed cytokinesis, the last step of cell division, and are a key feature of syncytial architectures in the germline of most metazoans. Whereas the Caenorhabditis elegans germline is syncytial, its formation remains poorly understood. We found that the germline precursor blastomere, P4, fails cytokinesis, leaving a stable cytoplasmic bridge between the two daughter cells, Z2 and Z3. Depletion of several regulators of actomyosin contractility resulted in a regression of the membrane partition between Z2 and Z3, indicating that they are required to stabilize the cytoplasmic bridge. Epistatic analysis revealed a pathway in which Rho regulators promote accumulation of the noncannonical anillin ANI-2 at the stable cytoplasmic bridge, which in turns promotes the accumulation of the nonmuscle myosin II NMY-2 and the midbody component CYK-7 at the bridge, in part by limiting the accumulation of canonical anillin ANI-1. Our results uncover key steps in C. elegans germline formation and define a set of conserved regulators that are enriched at the primordial germ cell cytoplasmic bridge to ensure its stability during embryonic development.
Collapse
Affiliation(s)
| | - Rana Amini
- Institute of Research in Immunology and Cancer and
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jean-Claude Labbé
- Institute of Research in Immunology and Cancer and .,Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
22
|
Multimodal and Polymorphic Interactions between Anillin and Actin: Their Implications for Cytokinesis. J Mol Biol 2017; 429:715-731. [DOI: 10.1016/j.jmb.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022]
|
23
|
Kim H, Johnson JM, Lera RF, Brahma S, Burkard ME. Anillin Phosphorylation Controls Timely Membrane Association and Successful Cytokinesis. PLoS Genet 2017; 13:e1006511. [PMID: 28081137 PMCID: PMC5230765 DOI: 10.1371/journal.pgen.1006511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
During cytokinesis, a contractile ring generates the constricting force to divide a cell into two daughters. This ring is composed of filamentous actin and the motor protein myosin, along with additional structural and regulatory proteins, including anillin. Anillin is a required scaffold protein that links the actomyosin ring to membrane and its organizer, RhoA. However, the molecular basis for timely action of anillin at cytokinesis remains obscure. Here, we find that phosphorylation regulates efficient recruitment of human anillin to the equatorial membrane. Anillin is highly phosphorylated in mitosis, and is a substrate for mitotic kinases. We surveyed function of 46 residues on anillin previously found to be phosphorylated in human cells to identify those required for cytokinesis. Among these sites, we identified S635 as a key site mediating cytokinesis. Preventing S635 phosphorylation adjacent to the AH domain disrupts anillin concentration at the equatorial cortex at anaphase, whereas a phosphomimetic mutant, S635D, partially restores this localization. Time-lapse videomicroscopy reveals impaired recruitment of S635A anillin to equatorial membrane and a transient unstable furrow followed by ultimate failure in cytokinesis. A phosphospecific antibody confirms phosphorylation at S635 in late cytokinesis, although it does not detect phosphorylation in early cytokinesis, possibly due to adjacent Y634 phosphorylation. Together, these findings reveal that anillin recruitment to the equatorial cortex at anaphase onset is enhanced by phosphorylation and promotes successful cytokinesis.
Collapse
Affiliation(s)
- Hyunjung Kim
- University of Wisconsin Carbone Cancer Center and Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James M. Johnson
- University of Wisconsin Carbone Cancer Center and Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert F. Lera
- University of Wisconsin Carbone Cancer Center and Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sarang Brahma
- University of Wisconsin Carbone Cancer Center and Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark E. Burkard
- University of Wisconsin Carbone Cancer Center and Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
An Overview of Alternating Electric Fields Therapy (NovoTTF Therapy) for the Treatment of Malignant Glioma. Curr Neurol Neurosci Rep 2016; 16:8. [PMID: 26739692 PMCID: PMC4703612 DOI: 10.1007/s11910-015-0606-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As with many cancer treatments, tumor treating fields (TTFields) target rapidly dividing tumor cells. During mitosis, TTFields-exposed cells exhibit uncontrolled membrane blebbing at the onset of anaphase, resulting in aberrant mitotic exit. Based on these criteria, at least two protein complexes have been proposed as TTFields’ molecular targets, including α/β-tubulin and the septin 2, 6, 7 heterotrimer. After aberrant mitotic exit, cells exhibited abnormal nuclei and signs of cellular stress, including decreased cellular proliferation and p53 dependence, and exhibit the hallmarks of immunogenic cell death, suggesting that TTFields treatment may induce an antitumor immune response. Clinical trials lead to Food and Drug Administration approval for their treatment of recurrent glioblastoma. Detailed modeling of TTFields within the brain suggests that the location of the tumor may affect treatment efficacy. These observations have a profound impact on the use of TTFields in the clinic, including what co-therapies may be best applied to boost its efficacy.
Collapse
|
25
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
26
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
27
|
Tao L, Fasulo B, Warecki B, Sullivan W. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor. Nat Commun 2016; 7:11182. [PMID: 27091402 PMCID: PMC4838857 DOI: 10.1038/ncomms11182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. Centralspindlin consists of dimeric kinesin-6 and dimeric RacGAP, and is involved in the organization of anaphase midzone microtubules. Here, the authors show that the RacGAP is needed for motor activity at the plus-end of microtubules, but not for the bundling activity associated with kinesin-6.
Collapse
Affiliation(s)
- Li Tao
- Department of Biology, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Barbara Fasulo
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Brandt Warecki
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - William Sullivan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
28
|
Comparative biology of cell division in the fission yeast clade. Curr Opin Microbiol 2015; 28:18-25. [PMID: 26263485 DOI: 10.1016/j.mib.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 11/21/2022]
Abstract
Cytokinesis must be regulated in time and space in order to preserve genome integrity during cell proliferation and to allow daughter cells to adopt distinct fates and geometries during differentiation. The fission yeast Schizosaccharomyces pombe has been a popular model organism for understanding spatiotemporal regulation of cytokinesis in a symmetrically dividing cell. Recent work on another member of the same genus, Schisozaccharomyces japonicus, suggests that S. pombe may have evolved an unusual division site placement mechanism based on a recently duplicated anillin paralog. Here we discuss an extraordinary evolutionary plasticity of cytokinesis within the fission yeast clade and argue that the comparative cell biology approach may provide functional insights beyond those afforded by scrutinizing individual model species.
Collapse
|
29
|
Asano E, Hasegawa H, Hyodo T, Ito S, Maeda M, Chen D, Takahashi M, Hamaguchi M, Senga T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle 2015; 13:2744-51. [PMID: 25486361 DOI: 10.4161/15384101.2015.945840] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.
Collapse
Affiliation(s)
- Eri Asano
- a Division of Cancer Biology ; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One 2015; 10:e0125269. [PMID: 26010837 PMCID: PMC4444126 DOI: 10.1371/journal.pone.0125269] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/23/2015] [Indexed: 01/04/2023] Open
Abstract
The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death.
Collapse
Affiliation(s)
- Nidhi Gera
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron Yang
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Talia S. Holtzman
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sze Xian Lee
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Eric T. Wong
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth D. Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 2015; 72:3185-3200. [PMID: 25809162 DOI: 10.1007/s00018-015-1890-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.
Collapse
|
32
|
Sharif B, Fadero T, Maddox AS. Anillin localization suggests distinct mechanisms of division plane specification in mouse oogenic meiosis I and II. Gene Expr Patterns 2015; 17:98-106. [PMID: 25818309 DOI: 10.1016/j.gep.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 01/22/2023]
Abstract
Anillin is a conserved cytokinetic ring protein implicated in actomyosin cytoskeletal organization and cytoskeletal-membrane linkage. Here we explored anillin localization in the highly asymmetric divisions of the mouse oocyte that lead to the extrusion of two polar bodies. The purposes of polar body extrusion are to reduce the chromosome complement within the egg to haploid, and to retain the majority of the egg cytoplasm for embryonic development. Anillin's proposed roles in cytokinetic ring organization suggest that it plays important roles in achieving this asymmetric division. We report that during meiotic maturation, anillin mRNA is expressed and protein levels steadily rise. In meiosis I, anillin localizes to a cortical cap overlying metaphase I spindles, and a broad ring over anaphase spindles that are perpendicular to the cortex. Anillin is excluded from the cortex of the prospective first polar body, and highly enriched in the cytokinetic ring that severs the polar body from the oocyte. In meiosis II, anillin is enriched in a cortical stripe precisely coincident with and overlying the meiotic spindle midzone. These results suggest a model in which this cortical structure contributes to spindle re-alignment in meiosis II. Thus, localization of anillin as a conserved cytokinetic ring marker illustrates that the geometry of the cytokinetic ring is distinct between the two oogenic meiotic cytokineses in mammals.
Collapse
Affiliation(s)
- Bedra Sharif
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Tanner Fadero
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
34
|
Manukyan A, Ludwig K, Sanchez-Manchinelly S, Parsons SJ, Stukenberg PT. A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J Cell Sci 2014; 128:50-60. [PMID: 25359885 DOI: 10.1242/jcs.151647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cytokinetic furrow is organized by the RhoA GTPase, which recruits actin and myosin II to the furrow and drives contractility. Here, we show that the RhoA GTPase-activting protein (GAP) p190RhoGAP-A (also known as ARHGAP35) has a role in cytokinesis and is involved in regulating levels of RhoA-GTP and contractility. Cells depleted of p190RhoGAP-A accumulate high levels of RhoA-GTP and markers of high RhoA activity in the furrow, resulting in failure of the cytokinetic furrow to progress to abscission. The loss of p190RhoGAP-A can be rescued by a low dose of the myosin II inhibitor blebbistatin, suggesting that cells fail cytokinesis because they have too much myosin activity. p190RhoGAP-A binds the cytokinetic organizer anillin, and mutants of p190RhoGAP-A that are unable to bind anillin or unable to inactivate RhoA fail to rescue cytokinesis defects in p190RhoGAP-A-depleted cells. Taken together, these data demonstrate that a complex of p190RhoGAP-A and anillin modulates RhoA-GTP levels in the cytokinetic furrow to ensure progression of cytokinesis.
Collapse
Affiliation(s)
- Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - Kirsten Ludwig
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Psychiatry and Behavioral Sciences and Jonsson Cancer Center, UCLA, Los Angeles, CA 90095-6900, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - Sergio Sanchez-Manchinelly
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Beckman Corporation, Los Angeles, CA 90025, USA
| | - Sarah J Parsons
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| |
Collapse
|
35
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
36
|
Zuo Y, Oh W, Frost JA. Controlling the switches: Rho GTPase regulation during animal cell mitosis. Cell Signal 2014; 26:2998-3006. [PMID: 25286227 DOI: 10.1016/j.cellsig.2014.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022]
Abstract
Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.
Collapse
Affiliation(s)
- Yan Zuo
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States
| | - Wonkyung Oh
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States
| | - Jeffrey A Frost
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States.
| |
Collapse
|
37
|
Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J, Hu Y, Li X, Sun L. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem 2014; 398:11-9. [PMID: 25223638 DOI: 10.1007/s11010-014-2200-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/30/2014] [Indexed: 11/27/2022]
Abstract
Anillin (ANLN), an actin-binding protein, is required for cytokinesis. Recently, ANLN has been identified as a biomarker in diverse human cancers; however, the precise role of ANLN in breast cancer remains unclear. In this study, we firstly detected the expression of ANLN in 71 patients with breast cancer by immunohistochemistry, and found ANLN was highly expressed in breast cancer tissues. To evaluate the function of ANLN in breast cancer cells, we employed lentivirus-mediated RNA interference to knock down ANLN expression in two human breast cancer cell lines, MDA-MB-231, and ZR-75-30. Knockdown of ANLN remarkably inhibited the proliferation rate and colony formation ability of both breast cancer cell lines. Moreover, flow cytometry analysis showed that depletion of ANLN in MDA-MB-231 cells blocked the cell cycle progression, with more cells delayed at G2/M phase, due to phosphorylation of Cdc2 and suppression of Cyclin D1. Furthermore, knockdown of ANLN strongly suppressed the migration of breast cancer cells, strengthening the evidence that ANLN could be involved in breast cancer progression. Our results may suggest ANLN as a potential target candidate in breast cancer.
Collapse
Affiliation(s)
- Weibing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5:29770. [PMID: 24988197 DOI: 10.4161/sgtp.29770] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute; The University of Sydney; Westmead, Australia
| |
Collapse
|
39
|
Kitazawa D, Matsuo T, Kaizuka K, Miyauchi C, Hayashi D, Inoue YH. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis. PLoS One 2014; 9:e93669. [PMID: 24850412 PMCID: PMC4029619 DOI: 10.1371/journal.pone.0093669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Peripheral microtubules (MTs) near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR) in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daishi Kitazawa
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Tatsuru Matsuo
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kana Kaizuka
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Chie Miyauchi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H. Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
- * E-mail:
| |
Collapse
|
40
|
Reyes CC, Jin M, Breznau EB, Espino R, Delgado-Gonzalo R, Goryachev AB, Miller AL. Anillin regulates cell-cell junction integrity by organizing junctional accumulation of Rho-GTP and actomyosin. Curr Biol 2014; 24:1263-70. [PMID: 24835458 DOI: 10.1016/j.cub.2014.04.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Anillin is a scaffolding protein that organizes and stabilizes actomyosin contractile rings and was previously thought to function primarily in cytokinesis [1-10]. Using Xenopus laevis embryos as a model system to examine Anillin's role in the intact vertebrate epithelium, we find that a population of Anillin surprisingly localizes to epithelial cell-cell junctions throughout the cell cycle, whereas it was previously thought to be nuclear during interphase [5, 11]. Furthermore, we show that Anillin plays a critical role in regulating cell-cell junction integrity. Both tight junctions and adherens junctions are disrupted when Anillin is knocked down, leading to altered cell shape and increased intercellular spaces. Anillin interacts with Rho, F-actin, and myosin II [3, 8, 9], all of which regulate cell-cell junction structure and function. When Anillin is knocked down, active Rho (Rho-guanosine triphosphate [GTP]), F-actin, and myosin II are misregulated at junctions. Indeed, increased dynamic "flares" of Rho-GTP are observed at cell-cell junctions, whereas overall junctional F-actin and myosin II accumulation is reduced when Anillin is depleted. We propose that Anillin is required for proper Rho-GTP distribution at cell-cell junctions and for maintenance of a robust apical actomyosin belt, which is required for cell-cell junction integrity. These results reveal a novel role for Anillin in regulating epithelial cell-cell junctions.
Collapse
Affiliation(s)
- Ciara C Reyes
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meiyan Jin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elaina B Breznau
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rhogelyn Espino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ricard Delgado-Gonzalo
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andrew B Goryachev
- Centre for Systems Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Ann L Miller
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S. MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 2014; 25:1995-2005. [PMID: 24807907 PMCID: PMC4072573 DOI: 10.1091/mbc.e13-11-0680] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Rac1 inhibitor MgcRacGAP regulates Rac1 activation and TJ barrier development during junction assembly in epithelial cells. CGN and CGNL1 recruit MgcRacGAP to the TJ and interact with MgcRacGAP. The regulation of Rho-family GTPases is crucial to direct the formation of cell–cell junctions and tissue barriers. Cingulin (CGN) and paracingulin (CGNL1) control RhoA activation in epithelial cells by interacting with RhoA guanidine exchange factors. CGNL1 depletion also inhibits Rac1 activation during junction assembly. Here we show that, unexpectedly, Madin–Darby canine kidney epithelial cells depleted of both CGN and CGNL1 (double-KD cells) display normal Rac1 activation and tight junction (TJ) formation, despite decreased junctional recruitment of the Rac1 activator Tiam1. The expression of the Rac1 inhibitor MgcRacGAP is decreased in double-KD cells, and the barrier development and Rac1 activation phenotypes are rescued by exogenous expression of MgcRacGAP. MgcRacGAP colocalizes with CGN and CGNL1 at TJs and forms a complex and interacts directly in vitro with CGN and CGNL1. Depletion of either CGN or CGNL1 in epithelial cells results in decreased junctional localization of MgcRacGAP but not of ECT2, a centralspindlin-interacting Rho GEF. These results provide new insight into coordination of Rho-family GTPase activities at junctions, since apical accumulation of CGN and CGNL1 at TJs during junction maturation provides a mechanism to spatially restrict down-regulation of Rac1 activation through the recruitment of MgcRacGAP.
Collapse
Affiliation(s)
- Laurent Guillemot
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Diego Guerrera
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Domenica Spadaro
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Rocio Tapia
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, SwitzerlandDepartment of Cell Biology, University of Geneva, CH-1211 Geneva, SwitzerlandInstitute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
42
|
Nam HJ, Lee IJ, Jang S, Bae CD, Kwak SJ, Lee JH. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression. Cell Signal 2014; 26:208-19. [DOI: 10.1016/j.cellsig.2013.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
43
|
El Amine N, Kechad A, Jananji S, Hickson GRX. Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring. ACTA ACUST UNITED AC 2014; 203:487-504. [PMID: 24217622 PMCID: PMC3824009 DOI: 10.1083/jcb.201305053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During cytokinesis, closure of the actomyosin contractile ring (CR) is coupled to the formation of a midbody ring (MR), through poorly understood mechanisms. Using time-lapse microscopy of Drosophila melanogaster S2 cells, we show that the transition from the CR to the MR proceeds via a previously uncharacterized maturation process that requires opposing mechanisms of removal and retention of the scaffold protein Anillin. The septin cytoskeleton acts on the C terminus of Anillin to locally trim away excess membrane from the late CR/nascent MR via internalization, extrusion, and shedding, whereas the citron kinase Sticky acts on the N terminus of Anillin to retain it at the mature MR. Simultaneous depletion of septins and Sticky not only disrupted MR formation but also caused earlier CR oscillations, uncovering redundant mechanisms of CR stability that can partly explain the essential role of Anillin in this process. Our findings highlight the relatedness of the CR and MR and suggest that membrane removal is coordinated with CR disassembly.
Collapse
Affiliation(s)
- Nour El Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, Québec H3T 1C5, Canada
| | | | | | | |
Collapse
|
44
|
van Oostende Triplet C, Jaramillo Garcia M, Haji Bik H, Beaudet D, Piekny A. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J Cell Sci 2014; 127:3699-710. [DOI: 10.1242/jcs.147504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that separates the cell into two daughter cells. The mitotic spindle, comprised of astral and central spindle microtubules, couples contractile ring ingression with DNA segregation. Cues from the central spindle activate RhoA, the upstream regulator of the contractile ring. However, additional cues from the astral microtubules also reinforce the localization of active RhoA. Using human cells, we show that astral and central spindle microtubules independently control the localization of contractile proteins during cytokinesis. Astral microtubules restrict the accumulation and localization of contractile proteins during mitosis, while the central spindle forms a discrete ring by directing RhoA activation in the equatorial plane. Anillin stabilizes the contractile ring during cytokinesis. We show that human anillin interacts with astral microtubules, which is competed by its cortical recruitment by active RhoA. Anillin restricts the localization of myosin at the equatorial cortex, and NuMA (part of the microtubule-tethering complex that regulates spindle position) at the polar cortex. The sequestration of anillin by astral microtubules may alter the organization of cortical proteins to polarize cells for cytokinesis.
Collapse
|
45
|
Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. ACTA ACUST UNITED AC 2013; 202:623-36. [PMID: 23960144 PMCID: PMC3747305 DOI: 10.1083/jcb.201302123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gradient of Aurora B activity determines the distribution of the microtubule depolymerase Kif2A at the central spindle and specifies the subsequent spindle structure necessary for proper cytokinesis. The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B–dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.
Collapse
Affiliation(s)
- Ryota Uehara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
47
|
Hasegawa H, Hyodo T, Asano E, Ito S, Maeda M, Kuribayashi H, Natsume A, Wakabayashi T, Hamaguchi M, Senga T. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J Cell Sci 2013; 126:3627-37. [PMID: 23750008 DOI: 10.1242/jcs.124818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a widely conserved serine/threonine kinase that regulates progression of multiple stages of mitosis. Although extensive studies about PLK1 functions during cell division have been performed, it is still not known how PLK1 regulates myosin II activation at the equatorial cortex and ingression of the cleavage furrow. In this report, we show that an actin/myosin-II-binding protein, supervillin (SVIL), is a substrate of PLK1. PLK1 phosphorylates Ser238 of SVIL, which can promote the localization of SVIL to the central spindle and association with PRC1. Expression of a PLK1 phosphorylation site mutant, S238A-SVIL, inhibited myosin II activation at the equatorial cortex and induced aberrant furrowing. SVIL has both actin- and myosin-II-binding regions in the N-terminus. Expression of ΔMyo-SVIL (deleted of the myosin-II-binding region), but not of ΔAct-SVIL (deleted of actin-binding region), reduced myosin II activation and caused defects in furrowing. Our study indicates a possible role of phosphorylated SVIL as a molecular link between the central spindle and the contractile ring to coordinate the activation of myosin II for the ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Hitoki Hasegawa
- Division of Cancer Biology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci U S A 2013; 110:9782-7. [PMID: 23716662 DOI: 10.1073/pnas.1301328110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokinesis partitions cytoplasmic and genomic materials at the end of cell division. Failure in this process causes polyploidy, which in turn can generate chromosomal instability, a hallmark of many cancers. Successful cytokinesis requires cooperative interaction between contractile ring and central spindle components, but how this cooperation is established is poorly understood. Here we show that Sticky (Sti), the Drosophila ortholog of the contractile ring component Citron kinase (CIT-K), interacts directly with two kinesins, Nebbish [the fly counterpart of human kinesin family member 14 (KIF14)] and Pavarotti [the Drosophila ortholog of human mitotic kinesin-like protein 1 (MKLP1)], and that in turn these kinesins interact with each other and with another central spindle protein, Fascetto [the fly ortholog of protein regulator of cytokinesis 1 (PRC1)]. Sti recruits Nebbish to the cleavage furrow, and both proteins are required for midbody formation and proper localization of Pavarotti and Fascetto. These functions require Sti kinase activity, indicating that Sti plays both structural and regulatory roles in midbody formation. Finally, we show that CIT-K's role in midbody formation is conserved in human cells. Our findings indicate that CIT-K is likely to act at the top of the midbody-formation hierarchy by connecting and regulating a molecular network of contractile ring components and microtubule-associated proteins.
Collapse
|
49
|
Asano E, Hasegawa H, Hyodo T, Ito S, Maeda M, Takahashi M, Hamaguchi M, Senga T. The Aurora-B-mediated phosphorylation of SHCBP1 regulates cytokinetic furrow ingression. J Cell Sci 2013; 126:3263-70. [PMID: 23704356 DOI: 10.1242/jcs.124875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Centralspindlin, which is composed of MgcRacGAP and MKLP1, is essential for central spindle formation and cytokinetic furrow ingression. MgcRacGAP utilizes its GAP domain to inactivate Rac1 and induce furrow ingression in mammalian cells. In this report, we present a novel regulatory mechanism for furrowing that is mediated by the phosphorylation of SHC SH2-domain binding protein 1 (SHCBP1), a binding partner of centralspindlin, by Aurora B (AurB). AurB phosphorylates Ser634 of SHCBP1 during mitosis. We generated a phosphorylation site mutant, S634A-SHCBP1, which was prematurely recruited to the central spindle during anaphase and inhibited furrowing. An in vitro GAP assay demonstrated that SHCBP1 can suppress the MgcRacGAP-mediated inactivation of Rac1. In addition, the inhibition of Rac1 activity rescued the furrowing defect induced by S634A-SHCBP1 expression. Thus, AurB phosphorylates SHCBP1 to prevent the premature localization of SHCBP1 to the central spindle and ensures that MgcRacGAP inactivates Rac1 to promote the ingression of the cytokinetic furrow.
Collapse
Affiliation(s)
- Eri Asano
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee KY, Davies T, Mishima M. Cytokinesis microtubule organisers at a glance. J Cell Sci 2013; 125:3495-500. [PMID: 22991411 DOI: 10.1242/jcs.094672] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Kian-Yong Lee
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | |
Collapse
|