1
|
Bouyer PG, Occhipinti R, Taki S, Moss FJ, Boron WF. Effects of extracellular metabolic acidosis on the homeostasis of intracellular pH in hippocampal neurons. Front Physiol 2025; 15:1494956. [PMID: 40161402 PMCID: PMC11949934 DOI: 10.3389/fphys.2024.1494956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 04/02/2025] Open
Abstract
This Hypothesis & Theory contribution accompanies the research paper by Bouyer et al. (Frontiers in Physiology 2024), the first to employ out-of-equilibrium (OOE) CO2/HCO3 - solutions to examine systematically the intracellular pH (pHi) effects of extracellular (o) metabolic acidosis (MAc) and its components: an isolated decrease in pHo (pure acidosis, pAc) and an isolated decrease in [HCO3 -]o (pure metabolic/down, pMet↓). In this study, after reviewing various types of acid-base disturbances and the use of OOE solutions, we discuss pHi "state" (ΔpHi, in response to a single acid-base challenge) and "behavior" (the ΔpHi transition observed between two successive challenges), along with approaches for quantifying state and behavior. We then discuss the molecular basis of how individual extracellular acid-base disturbances influence pHi via effects on-and interactions among-acid-base transporters, acid-base sensors, and cellular constitution. Next, we examine the determinants of states and behaviors, their impact on the buffering of extracellular acid loads, and how variability in state and behavior might arise. We conclude with a consideration of how mathematical models-despite their inherent limitations-might assist in the interpretation of experiments and qualitative models presented in this study. Among the themes that emerge are (1) hippocampal neurons must have distinct sensors for pHo and [HCO3 -]o; (2) these pHo- and [HCO3 -]o-driven signal transduction pathways produce additive pHi effects in naïve neurons (those not previously challenged by an acid-base disturbance); and (3) these pathways produce highly non-additive pHi effects in neurons previously challenged by MAc.
Collapse
Affiliation(s)
- Patrice G. Bouyer
- Department of Biology, Valparaiso University, Valparaiso, IN, United States
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ, United States
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH, Hong CC. Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep 2025; 15:4074. [PMID: 39900965 PMCID: PMC11791087 DOI: 10.1038/s41598-025-88357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Radioresistance is thought to be a major consequence of tumor milieu acidification resulting from the Warburg effect. Previously, using ogremorphin (OGM), a small molecule inhibitor of GPR68, an extracellular proton sensing receptor, we demonstrated that GPR68 is a key pro-survival pathway in glioblastoma cells. Here, we demonstrate that GPR68 inhibition also induces ferroptosis in lung cell carcinoma (A549) and pancreatic ductal adenocarcinoma (Panc02) cells. Moreover, OGM synergized with ionizing radiation to induce lipid peroxidation, a hallmark of ferroptosis, as well as reduce colony size in 2D and 3D cell culture. GPR68 inhibition is not acutely detrimental but increases intracellular free ferrous iron, which is known to trigger reactive oxygen species (ROS) generation. In summary, GPR68 inhibition induces lipid peroxidation in cancer cells and sensitizes them to ionizing radiation in part through the mobilization of intracellular free ferrous iron. Our results suggest that GPR68 is a key mediator of cancer cell radioresistance activated by acidic tumor microenvironment.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
3
|
Pissas KP, Gründer S, Tian Y. Functional expression of the proton sensors ASIC1a, TMEM206, and OGR1 together with BK Ca channels is associated with cell volume changes and cell death under strongly acidic conditions in DAOY medulloblastoma cells. Pflugers Arch 2024; 476:923-937. [PMID: 38627262 PMCID: PMC11139714 DOI: 10.1007/s00424-024-02964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.
Collapse
Affiliation(s)
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
5
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
6
|
Williams CH, Neitzel LR, Cornell J, Rea S, Mills I, Silver MS, Ahmad JD, Birukov KG, Birukova A, Brem H, Tyler B, Bar EE, Hong CC. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp Hematol Oncol 2024; 13:13. [PMID: 38291540 PMCID: PMC10829393 DOI: 10.1186/s40164-023-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.
Collapse
Affiliation(s)
- Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian Mills
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maya S Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jovanni D Ahmad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
7
|
Pissas KP, Schilling M, Tian Y, Gründer S. Functional characterization of acid-sensing ion channels in the cerebellum-originating medulloblastoma cell line DAOY and in cerebellar granule neurons. Pflugers Arch 2023; 475:1073-1087. [PMID: 37474775 PMCID: PMC10409673 DOI: 10.1007/s00424-023-02839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Acid-sensing ion channels (ASICs) are Na+ channels that are almost ubiquitously expressed in neurons of the brain. Functional ASIC1a is also expressed in glioblastoma stem cells, where it might sense the acidic tumor microenvironment. Prolonged acidosis induces cell death in neurons and reduces tumor sphere formation in glioblastoma via activation of ASIC1a. It is currently unknown whether ASICs are expressed and involved in acid-induced cell death in other types of brain tumors. In this study, we investigated ASICs in medulloblastoma, using two established cell lines, DAOY and UW228, as in vitro models. In addition, we characterized ASICs in the most numerous neuron of the brain, the cerebellar granule cell, which shares the progenitor cell with some forms of medulloblastoma. We report compelling evidence using RT-qPCR, western blot and whole-cell patch clamp that DAOY and cerebellar granule cells, but not UW228 cells, functionally express homomeric ASIC1a. Additionally, Ca2+-imaging revealed that extracellular acidification elevated intracellular Ca2+-levels in DAOY cells independently of ASICs. Finally, we show that overexpression of RIPK3, a key component of the necroptosis pathway, renders DAOY cells susceptible to acid-induced cell death via activation of ASIC1a. Our data support the idea that ASIC1a is an important acid sensor in brain tumors and that its activation has potential to induce cell death in tumor cells.
Collapse
Affiliation(s)
| | - Maria Schilling
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Ye S, Zhu Y, Zhong D, Song X, Li J, Xiao F, Huang Z, Zhang W, Wu M, Zhang K, Xiang FL, Xu J. G protein-coupled receptor GPR68 inhibits lymphocyte infiltration and contributes to gender-dependent melanoma growth. Front Oncol 2023; 13:1202750. [PMID: 37350933 PMCID: PMC10282648 DOI: 10.3389/fonc.2023.1202750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Melanoma is a common and aggressive type of skin cancer with rising incidence rate globally. Gender is one of the determining factors, and overall males have a higher risk of developing melanoma as well as worse prognosis. Emerging evidence show that GPR68, a G protein-coupled receptor that is sensitive to acid and mechanical stimulations for cellular microenvironment, plays an important role in tumor biology. However, whether GPR68 is involved in gender-dependent regulation of tumor growth is unclear. Methods We established a syngeneic melanoma model in Gpr68-deficient mice and investigated tumor growth in males and females. The GPR68 activation-induced cellular responses of melanocytes, including intracellular calcium dynamics, proliferation and migration were measured. The landscape of tumor-infiltrating immune cells were analyzed by flow cytometry and the expression various cytokines were checked by qRT-PCR. Results GPR68 is required for melanoma growth in males but dispensable in females. GPR68 is expressed and functional in B16-F10 melanocytes, but the activity of the receptor does not directly contribute to proliferation and migration of the cells. GPR68 inhibits infiltration of CD45+ lymphocytes, CD8+ T cells and NK cells in melanoma in male mice, but has no apparent effect in females. Furthermore, GPR68 functionally inhibits the expression of IFNγ in the tumor infiltrating CD8+ T cells and NK cells as well as the inflammatory cytokine expression in the spleen in male mice but not in females. Our results show the gender-dependent modulatory effect of GPR68 on tumor-infiltrating immune cells and their tumor-killing capacity. Discussion GPR68 is sensor for acid and mechanical stimulations, which are two important factors in the microenvironment associated with tumor growth and metastasis. Our results suggest a prominent role of the receptor molecules in tumor biology in a gender-dependent manner. Since GPCRs are more feasible to develop small molecule drugs compared to transcription factors, our study demonstrates the potential of GPR68 as a novel druggable therapeutic target for melanoma in male patients.
Collapse
Affiliation(s)
- Shangmei Ye
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Zhu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongmei Zhong
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Zhang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kangdi Zhang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fu-li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Bell TJ, Nagel DJ, Woeller CF, Kottmann RM. Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH. PLoS One 2022; 17:e0271608. [PMID: 35901086 PMCID: PMC9333254 DOI: 10.1371/journal.pone.0271608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor beta (TGF-β) induced myofibroblast differentiation is central to the pathological scarring observed in Idiopathic Pulmonary Fibrosis (IPF) and other fibrotic diseases. Our lab has recently identified expression of GPR68 (Ovarian Cancer Gene Receptor 1, OGR1), a pH sensing G-protein coupled receptor, as a negative regulator of TGF-β induced profibrotic effects in primary human lung fibroblasts (PHLFs). We therefore hypothesized that small molecule activators of GPR68 would inhibit myofibroblast differentiation. Ogerin is a positive allosteric modulator (PAM) of GPR68, inducing a leftward shift of the dose response curve to proton induced signaling. Using PHLFs derived from patients with both non-fibrotic and IPF diagnoses, we show that Ogerin inhibits, and partially reverses TGF-β induced myofibroblast differentiation in a dose dependent manner. This occurs at the transcriptional level without inhibition of canonical TGF-β induced SMAD signaling. Ogerin induces PKA dependent CREB phosphorylation, a marker of Gαs pathway activation. The ability of Ogerin to inhibit both basal and TGF-β induced collagen gene transcription, and induction of Gαs signaling is enhanced at an acidic pH (pH 6.8). Similar findings were also found using fibroblasts derived from dermal, intestinal, and orbital tissue. The biological role of GPR68 in different tissues, cell types, and disease states is an evolving and emerging field. This work adds to the understanding of Gαs coupled GPCRs in fibrotic lung disease, the ability to harness the pH sensing properties of GPR68, and conserved mechanisms of fibrosis across different organ systems.
Collapse
Affiliation(s)
- Tyler J. Bell
- Department of Environmental Medicine Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - David J. Nagel
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - R. Mathew Kottmann
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Elemam NM, Youness RA, Hussein A, Shihab I, Yakout NM, Elwany YN, Manie TM, Talaat IM, Maghazachi AA. Expression of GPR68, an Acid-Sensing Orphan G Protein-Coupled Receptor, in Breast Cancer. Front Oncol 2022; 12:847543. [PMID: 35311103 PMCID: PMC8930915 DOI: 10.3389/fonc.2022.847543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Breast cancer (BC) is the most diagnosed cancer and the leading cause of global cancer incidence in 2020. It is quite known that highly invasive cancers have disrupted metabolism that leads to the creation of an acidic tumor microenvironment. Among the proton-sensing G protein-coupled receptors is GPR68. In this study, we aimed to explore the expression pattern of GPR68 in tissues from BC patients as well as different BC cell lines. METHODS In-silico tools were used to assess the expression of GPR68 in BC patients. The expression pattern was validated in fresh and paraffin-embedded sections of BC patients using qPCR and immunohistochemistry (IHC), respectively. Also, in-silico tools investigated GPR68 expression in different BC cell lines. Validation of GPR68 expression was performed using qPCR and immunofluorescence techniques in four different BC cell lines (MCF-7, MDA-MB-231, BT-549 and SkBr3). RESULTS GPR68 expression was found to be significantly increased in BC patients using the in-silico tools and validation using qPCR and IHC. Upon classification according to the molecular subtypes, the luminal subtype showed the highest GPR68 expression followed by triple-negative and Her2-enriched cells. However, upon validation in the recruited cohort, the triple-negative molecular subtype of BC patients showed the highest GPR68 expression. Also, in-silico and validation data revealed that the triple-negative breast cancer cell line MDA-MB-231 showed the highest expression of GPR68. CONCLUSION Therefore, this study highlights the potential utilization of GPR68 as a possible diagnostic and/or prognostic marker in BC.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Amal Hussein
- Department of Family and Community Medicine and Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Israa Shihab
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada M. Yakout
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Nagy Elwany
- Clinical Oncology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tamer M. Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azzam A. Maghazachi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Li J, Chen L, Qin Q, Wang D, Zhao J, Gao H, Yuan X, Zhang J, Zou Y, Mao Z, Xiong Y, Min Z, Yan M, Wang CY, Xue Z. Upregulated hexokinase 2 expression induces the apoptosis of dopaminergic neurons by promoting lactate production in Parkinson's disease. Neurobiol Dis 2022; 163:105605. [PMID: 34973450 DOI: 10.1016/j.nbd.2021.105605] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by impaired mitochondrial function and decreased ATP levels. Aerobic glycolysis and lactate production have been shown to be upregulated in dopaminergic neurons to sustain ATP levels, but the effect of upregulated glycolysis on dopaminergic neurons remains unknown. Since lactate promotes apoptosis and α-synuclein accumulation in neurons, we hypothesized that the lactate produced upon upregulated glycolysis is involved in the apoptosis of dopaminergic neurons in PD. In this study, we examined the expression of hexokinase 2 (HK2) and lactate dehydrogenase (LDH), the key enzymes in glycolysis, and lactate levels in the substantia nigra pars compacta (SNpc) of a MPTP-induced mouse model of PD and in MPP+-treated SH-SY5Y cells. We found that the expression of HK2 and LDHA and the lactate levels were markedly increased in the SNpc of MPTP-treated mice and in MPP+-treated SH-SY5Y cells. Exogenous lactate treatment led to the apoptosis of SH-SY5Y cells. Intriguingly, lactate production and the apoptosis of dopaminergic neurons were suppressed by the application of 3-bromopyruvic acid (3-Brpa), a HK2 inhibitor, or siRNA both in vivo and in vitro. 3-Brpa treatment markedly improved the motor behaviour of MPTP-treated mice in pole test and rotarod test. Mechanistically, lactate increases the activity of adenosine monophosphate-activated protein kinase (AMPK) and suppresses the phosphorylation of serine/threonine kinase 1 (Akt) and mammalian target of rapamycin (mTOR). Together, our data suggest that upregulated HK2 and LDHA and increased lactate levels prompt the apoptosis of dopaminergic neurons in PD. Inhibition of HK2 expression attenuated the apoptosis of dopaminergic neurons by downregulating lactate production and AMPK/Akt/mTOR pathway in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Khajah MA, Khushaish S, Luqmani YA. Lactate Dehydrogenase A or B Knockdown Reduces Lactate Production and Inhibits Breast Cancer Cell Motility in vitro. Front Pharmacol 2021; 12:747001. [PMID: 34744727 PMCID: PMC8564068 DOI: 10.3389/fphar.2021.747001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Lactate dehydrogenase (LDH) plays an important role in cancer pathogenesis and enhanced expression/activity of this enzyme has been correlated with poor prognosis. In this study we determined the expression profile of LDH-A and B in normal as well as in endocrine-resistant and -responsive breast cancer cells and the effect of their knockdown on LDH activity, lactate production, proliferation and cell motility. Methods: Knockdown experiments were performed using siRNA and shRNA. The expression profile of LDH and signaling molecules was determined using PCR and western blotting. Intracellular LDH activity and extracellular lactate levels were measured by a biochemical assay. Cell motility was determined using wound healing, while proliferation was determined using MTT assay. Results: LDH-A was expressed in all of the tested cell lines, while LDH-B was specifically expressed only in normal and endocrine-resistant breast cancer cells. This was correlated with significantly enhanced LDH activity and lactate production in endocrine resistant breast cancer cells when compared to normal or endocrine responsive cancer cells. LDH-A or -B knockdown significantly reduced LDH activity and lactate production, which led to reduced cell motility. Exogenous lactate supplementation enhanced cell motility co-incident with enhanced phosphorylation of ERK1/2 and reduced E-cadherin expression. Also, LDH-A or -B knockdown reduced ERK 1/2 phosphorylation. Conclusion: Enhanced cell motility in endocrine resistant breast cancer cells is at least in part mediated by enhanced extracellular lactate levels, and LDH inhibition might be a promising therapeutic target to inhibit cancer cell motility.
Collapse
|
14
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
15
|
Zhou G, Zha XM. GPR68 Contributes to Persistent Acidosis-Induced Activation of AGC Kinases and Tyrosine Phosphorylation in Organotypic Hippocampal Slices. Front Neurosci 2021; 15:692217. [PMID: 34113235 PMCID: PMC8185064 DOI: 10.3389/fnins.2021.692217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
16
|
Abstract
Acidic metabolic waste products accumulate in the tumor microenvironment because of high metabolic activity and insufficient perfusion. In tumors, the acidity of the interstitial space and the relatively well-maintained intracellular pH influence cancer and stromal cell function, their mutual interplay, and their interactions with the extracellular matrix. Tumor pH is spatially and temporally heterogeneous, and the fitness advantage of cancer cells adapted to extracellular acidity is likely particularly evident when they encounter less acidic tumor regions, for instance, during invasion. Through complex effects on genetic stability, epigenetics, cellular metabolism, proliferation, and survival, the compartmentalized pH microenvironment favors cancer development. Cellular selection exacerbates the malignant phenotype, which is further enhanced by acid-induced cell motility, extracellular matrix degradation, attenuated immune responses, and modified cellular and intercellular signaling. In this review, we discuss how the acidity of the tumor microenvironment influences each stage in cancer development, from dysplasia to full-blown metastatic disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Maeyashiki C, Melhem H, Hering L, Baebler K, Cosin-Roger J, Schefer F, Weder B, Hausmann M, Scharl M, Rogler G, de Vallière C, Ruiz PA. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1α/JNK Pathway in an Intestinal Epithelial Cell Model. Sci Rep 2020; 10:1438. [PMID: 31996710 PMCID: PMC6989664 DOI: 10.1038/s41598-020-57657-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation and can induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), an evolutionary mechanism that enables cells to cope with stressful conditions. ER stress activates autophagy, and both play important roles in gut homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). Using a human intestinal epithelial cell model, we investigated whether our previously observed protective effects of OGR1 deficiency in experimental colitis are associated with a differential regulation of ER stress, the UPR and autophagy. Caco-2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-dependent OGR1-mediated signalling led to a significant upregulation in the ER stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce apoptosis, but triggered accumulation of total microtubule-associated protein 1 A/1B-light chain 3, suggesting blockage of late stage autophagy. Our results show novel functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition might represent a novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Schefer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Comprehensive Assessment of GPR68 Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2019; 20:ijms20215261. [PMID: 31652823 PMCID: PMC6862545 DOI: 10.3390/ijms20215261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
GPR68 (OGR1) belongs to the proton-sensing G protein-coupled receptors that are involved in cellular adaptations to pH changes during tumour development. Although expression of GPR68 has been described in many tumour cell lines, little is known about its presence in human tumour entities. We characterised the novel rabbit monoclonal anti-human GPR68 antibody 16H23L16 using various cell lines and tissue specimens. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. Antibody specificity was demonstrated in a Western blot analysis of GPR68-expressing cells using specific siRNAs. Immunocytochemical experiments revealed pH-dependent changes in subcellular localisation of the receptor and internalisation after stimulation with lorazepam. In normal tissue, GPR68 was present in glucagon-producing islet cells, neuroendocrine cells of the intestinal tract, gastric glands, granulocytes, macrophages, muscle layers of arteries and arterioles, and capillaries. GPR68 was also expressed in neuroendocrine tumours, where it may be a positive prognostic factor, in pheochromocytomas, cervical adenocarcinomas, and endometrial cancer, as well as in paragangliomas, medullary thyroid carcinomas, gastrointestinal stromal tumours, and pancreatic adenocarcinomas. Often, tumour capillaries were also strongly GPR68-positive. The novel antibody 16H23L16 will be a valuable tool for basic research and for identifying GPR68-expressing tumours during histopathological examinations.
Collapse
|
19
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
20
|
Glitsch M. Mechano- and pH-sensing convergence on Ca 2+-mobilising proteins - A recipe for cancer? Cell Calcium 2019; 80:38-45. [PMID: 30952068 DOI: 10.1016/j.ceca.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Alterations in the (bio)chemical and physical microenvironment of cells accompany and often promote disease formation and progression. This is particularly well established for solid cancers, which are typically stiffer than the healthy tissue in which they arise, and often display profound acidification of their interstitial fluid. Cell surface receptors can sense changes in the mechanical and (bio)chemical properties of the surrounding extracellular matrix and fluid, and signalling through these receptors is thought to play a key role in disease development and advancement. This review will look at ion channels and G protein coupled receptors that are activated by mechanical cues and extracellular acidosis, and stimulation of which results in increases in intracellular Ca2+ concentrations. Cellular Ca2+ levels are dysregulated in cancer as well as cancer-associated cells, and mechano- and proton-sensing proteins likely contribute to these aberrant intracellular Ca2+ signals, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Wiley SZ, Sriram K, Salmerón C, Insel PA. GPR68: An Emerging Drug Target in Cancer. Int J Mol Sci 2019; 20:E559. [PMID: 30696114 PMCID: PMC6386835 DOI: 10.3390/ijms20030559] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
GPR68 (or ovarian cancer G protein-coupled receptor 1, OGR1) is a proton-sensing G-protein-coupled receptor (GPCR) that responds to extracellular acidity and regulates a variety of cellular functions. Acidosis is considered a defining hallmark of the tumor microenvironment (TME). GPR68 expression is highly upregulated in numerous types of cancer. Emerging evidence has revealed that GPR68 may play crucial roles in tumor biology, including tumorigenesis, tumor growth, and metastasis. This review summarizes current knowledge regarding GPR68-its expression, regulation, signaling pathways, physiological roles, and functions it regulates in human cancers (including prostate, colon and pancreatic cancer, melanoma, medulloblastoma, and myelodysplastic syndrome). The findings provide evidence for GPR68 as a potentially novel therapeutic target but in addition, we note challenges in developing drugs that target GPR68.
Collapse
Affiliation(s)
- Shu Z Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Wei WC, Bianchi F, Wang YK, Tang MJ, Ye H, Glitsch MD. Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Curr Biol 2018; 28:3815-3823.e4. [PMID: 30471999 DOI: 10.1016/j.cub.2018.10.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The physical environment critically affects cell shape, proliferation, differentiation, and survival by exerting mechanical forces on cells. These forces are sensed and transduced into intracellular signals and responses by cells. A number of different membrane and cytoplasmic proteins have been implicated in sensing mechanical forces, but the picture is far from complete, and the exact transduction pathways remain largely elusive. Furthermore, mechanosensation takes place alongside chemosensation, and cells need to integrate physical and chemical signals to respond appropriately and ensure normal tissue and organ development and function. Here, we report that ovarian cancer G protein coupled receptor 1 (OGR1) (aka GPR68) acts as coincidence detector of membrane stretch and its physiological ligand, extracellular H+. Using fluorescence imaging, substrates of different stiffness, microcontact printing methods, and cell-stretching techniques, we show that OGR1 only responds to extracellular acidification under conditions of membrane stretch and vice versa. The level of OGR1 activity mirrors the extent of membrane stretch and degree of extracellular acidification. Furthermore, actin polymerization in response to membrane stretch is critical for OGR1 activity, and its depolymerization limits how long OGR1 remains responsive following a stretch event, thus providing a "memory" for past stretch. Cells experience changes in membrane stretch and extracellular pH throughout their lifetime. Because OGR1 is a widely expressed receptor, it represents a unique yet widespread mechanism that enables cells to respond dynamically to mechanical and pH changes in their microenvironment by integrating these chemical and physical stimuli at the receptor level.
Collapse
Affiliation(s)
- Wei-Chun Wei
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Fabio Bianchi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Maike D Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
23
|
Katt WP, Blobel NJ, Komarova S, Antonyak MA, Nakano I, Cerione RA. A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells. Oncotarget 2018; 9:34379-34397. [PMID: 30344949 PMCID: PMC6188150 DOI: 10.18632/oncotarget.26193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
The protein crosslinking enzyme tissue transglutaminase (tTG) is an acyltransferase which catalyzes transamidation reactions between two proteins, or between a protein and a polyamine. It is frequently overexpressed in several different types of human cancer cells, where it has been shown to contribute to their growth, survival, and invasiveness. tTG is capable of adopting two distinct conformational states: a protein crosslinking active (“open”) state, and a GTP-bound, crosslinking inactive (“closed”) state. We have previously shown that the ectopic expression of mutant forms of tTG, which constitutively adopt the open conformation, are toxic to cells. This raises the possibility that strategies directed toward causing tTG to maintain an open state could potentially provide a therapeutic benefit for cancers in which tTG is highly expressed. Here, we report the identification of a small molecule, TTGM 5826, which stabilizes the open conformation of tTG. Treatment of breast and brain cancer cell lines, as well as glioma stem cells, with this molecule broadly inhibits their transformed phenotypes. Thus, TTGM 5826 represents the lead compound for a new class of small molecules that promote the toxicity of cancer cells by stabilizing the open state of tTG.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas J Blobel
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Svetlana Komarova
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Flinck M, Kramer SH, Pedersen SF. Roles of pH in control of cell proliferation. Acta Physiol (Oxf) 2018; 223:e13068. [PMID: 29575508 DOI: 10.1111/apha.13068] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/17/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Abstract
Precise spatiotemporal regulation of intracellular pH (pHi ) is a prerequisite for normal cell function, and changes in pHi or pericellular pH (pHe ) exert important signalling functions. It is well established that proliferation of mammalian cells is dependent on a permissive pHi in the slightly alkaline range (7.0-7.2). It is also clear that mitogen signalling in nominal absence of HCO3- is associated with an intracellular alkalinization (~0.3 pH unit above steady-state pHi ), which is secondary to activation of Na+ /H+ exchange. However, it remains controversial whether this increase in pHi is part of the mitogenic signal cascade leading to cell cycle entry and progression, and whether it is relevant under physiological conditions. Furthermore, essentially all studies of pHi in mammalian cell proliferation have focused on the mitogen-induced G0-G1 transition, and the regulation and roles of pHi during the cell cycle remain poorly understood. The aim of this review is to summarize and critically discuss the possible roles of pHi and pHe in cell cycle progression. While the focus is on the mammalian cell cycle, important insights from studies in lower eukaryotes are also discussed. We summarize current evidence of links between cell cycle progression and pHi and discuss possible pHi - and pHe sensors and signalling pathways relevant to mammalian proliferation control. The possibility that changes in pHi during cell cycle progression may be an integral part of the checkpoint control machinery is explored. Finally, we discuss the relevance of links between pH and proliferation in the context of the perturbed pH homoeostasis and acidic microenvironment of solid tumours.
Collapse
Affiliation(s)
- M. Flinck
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - S. H. Kramer
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - S. F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
25
|
Identification of Key Genes and miRNAs in Osteosarcoma Patients with Chemoresistance by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4761064. [PMID: 29850522 PMCID: PMC5937522 DOI: 10.1155/2018/4761064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/21/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription, DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs (DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify potential pathways and functional annotations linked with osteosarcoma chemoresistance. The present study may provide a deeper understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.
Collapse
|
26
|
Kim MS, Shin DM, Kim MS. Acidification induces OGR1/Ca 2+/calpain signaling in gingival fibroblasts. Biochem Biophys Res Commun 2018; 496:693-699. [PMID: 29366789 DOI: 10.1016/j.bbrc.2018.01.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/20/2018] [Indexed: 11/30/2022]
Abstract
Gingivitis, the mildest form of periodontitis, is generally considered a consequence of prolonged exposure of the gingiva to periodontal pathogens. On the other hand, several epidemiologic reports have suggested that other etiologic factors such as oral acidification may also increase the susceptibility of the periodontium to destruction. However, the pathologic mechanism underlying the effects of oral acidification on the gingiva is still largely unknown. In this study, we analyzed molecular pathways mediating the influence of the acidic environment on human gingival fibroblasts (HGFs). Acidic extracellular pH caused biphasic increase of intracellular Ca2+ level ([Ca2+]i) through activation of ovarian cancer G protein-coupled receptor 1, phospholipase C, and Ca2+ release from the endoplasmic reticulum, but not through voltage-gated Ca2+ channels or extracellular Ca2+ influx via transient receptor potential cation channel subfamily V member 1. The acidic environment was also transiently cytotoxic for HGFs; however, the activation of pro-apoptotic proteins poly (ADP-ribose) polymerase-1 and BAX was not observed. Furthermore, we found that intracellular matrix metalloproteinase 1 was consistently upregulated in HGFs grown in regular medium, but significantly reduced in the acidic medium, which depended on [Ca2+]i increase, lysosomal pH homeostasis, and Ca2+-dependent protease calpain. Considering that HGFs, essential for oral wound healing, in the in vitro culture system are placed in wound repair-like conditions, our findings provide important insights into molecular mechanisms underlying HGF functional impairment and chronic damage to the gingiva caused by the acidic intraoral environment.
Collapse
Affiliation(s)
- Mi Seong Kim
- Center for Metabolic Function Regulation, Wonkwang University, School of Medicine, No. 460 Iksan-Daero, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, Wonkwang University, School of Dentistry, Iksan 54538, Republic of Korea.
| |
Collapse
|
27
|
Dubouskaya TG, Hrynevich SV, Waseem TV, Fedorovich SV. Calcium release from intracellular stores is involved in mitochondria depolarization after lowering extracellular pH in rat brain synaptosomes. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Wei W, Huang W, Lin Y, Becker EBE, Ansorge O, Flockerzi V, Conti D, Cenacchi G, Glitsch MD. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells. J Physiol 2017; 595:5525-5544. [PMID: 28627017 PMCID: PMC5556167 DOI: 10.1113/jp274659] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.
Collapse
Affiliation(s)
- Wei‐Chun Wei
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Wan‐Chen Huang
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei115Taiwan
| | - Yu‐Ping Lin
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburgGermany
| | - Daniele Conti
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| |
Collapse
|
29
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
30
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
31
|
Abstract
Frequently observed phenotypes of tumours include high metabolic activity, hypoxia and poor perfusion; these act to produce an acidic microenvironment. Cellular function depends on pH homoeostasis, and thus, tumours become dependent on pH regulatory mechanisms. Many of the proteins involved in pH regulation are highly expressed in tumours, and their expression is often of prognostic significance. The more acidic tumour microenvironment also has important implications with regard to chemotherapeutic and radiotherapeutic interventions. In addition, we review pH-sensing mechanisms, the role of pH regulation in tumour phenotype and the use of pH regulatory mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:215-251. [PMID: 29594864 DOI: 10.1007/978-3-319-55858-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
All eukaryotic cells have adapted the use of the calcium ion (Ca2+) as a universal signaling element through the evolution of a toolkit of Ca2+ sensor, buffer and effector proteins. Among these toolkit components, integral and peripheral proteins decorate biomembranes and coordinate the movement of Ca2+ between compartments, sense these concentration changes and elicit physiological signals. These changes in compartmentalized Ca2+ levels are not mutually exclusive as signals propagate between compartments. For example, agonist induced surface receptor stimulation can lead to transient increases in cytosolic Ca2+ sourced from endoplasmic reticulum (ER) stores; the decrease in ER luminal Ca2+ can subsequently signal the opening surface channels which permit the movement of Ca2+ from the extracellular space to the cytosol. Remarkably, the minuscule compartments of mitochondria can function as significant cytosolic Ca2+ sinks by taking up Ca2+ in a coordinated manner. In non-excitable cells, inositol 1,4,5 trisphosphate receptors (IP3Rs) on the ER respond to surface receptor stimulation; stromal interaction molecules (STIMs) sense the ER luminal Ca2+ depletion and activate surface Orai1 channels; surface Orai1 channels selectively permit the movement of Ca2+ from the extracellular space to the cytosol; uptake of Ca2+ into the matrix through the mitochondrial Ca2+ uniporter (MCU) further shapes the cytosolic Ca2+ levels. Recent structural elucidations of these key Ca2+ toolkit components have improved our understanding of how they function to orchestrate precise cytosolic Ca2+ levels for specific physiological responses. This chapter reviews the atomic-resolution structures of IP3R, STIM1, Orai1 and MCU elucidated by X-ray crystallography, electron microscopy and NMR and discusses the mechanisms underlying their biological functions in their respective compartments within the cell.
Collapse
|
33
|
Fang J, Liu X, Bolanos L, Barker B, Rigolino C, Cortelezzi A, Oliva EN, Cuzzola M, Grimes HL, Fontanillo C, Komurov K, MacBeth K, Starczynowski DT. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat Med 2016; 22:727-34. [PMID: 27294874 PMCID: PMC5507589 DOI: 10.1038/nm.4127] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022]
Abstract
Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Apoptosis/drug effects
- Apoptosis/genetics
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calpain/drug effects
- Calpain/genetics
- Calpain/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks
- Humans
- Ikaros Transcription Factor/drug effects
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Immunologic Factors/pharmacology
- Lenalidomide
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Peptide Hydrolases/metabolism
- RNA Interference
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Thalidomide/analogs & derivatives
- Thalidomide/pharmacology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Xiaona Liu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Brenden Barker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Carmela Rigolino
- Bone Marrow Transplant Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Agostino Cortelezzi
- Department of Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Esther N Oliva
- Hematology Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Maria Cuzzola
- Bone Marrow Transplant Unit, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Kyle MacBeth
- Celgene Corporation, San Francisco, California, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Martial S. Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. Am J Physiol Cell Physiol 2016; 310:C710-27. [PMID: 26791487 DOI: 10.1152/ajpcell.00218.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a finely tuned process, which is the result of the equilibrium between pro- and antiangiogenic factors. In solid tumor angiogenesis, the balance is highly in favor of the production of new, but poorly functional blood vessels, initially intended to provide growing tumors with nutrients and oxygen. Among the numerous proteins involved in tumor development, several types of ion channels are overexpressed in tumor cells, as well as in stromal and endothelial cells. Ion channels thus actively participate in the different hallmarks of cancer, especially in tumor angiogenesis and metastasis. Indeed, from their strategic localization in the plasma membrane, ion channels are key operators of cell signaling, as they sense and respond to environmental changes. This review aims to decipher how ion channels of different families are intricately involved in the fundamental angiogenesis and metastasis hallmarks, which lead from a nascent tumor to systemic dissemination. An overview of the possible use of ion channels as therapeutic targets will also be given, showing that ion channel inhibitors or specific antibodies may provide effective tools, in the near future, in the treatment of carcinomas.
Collapse
Affiliation(s)
- Sonia Martial
- Institut de Recherche sur le Cancer et le Vieillissement, CNRS UMR 7284, Inserm U1081, Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
35
|
Reciprocal regulation of two G protein-coupled receptors sensing extracellular concentrations of Ca2+ and H. Proc Natl Acad Sci U S A 2015; 112:10738-43. [PMID: 26261299 DOI: 10.1073/pnas.1506085112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca(2+) and H(+), respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression.
Collapse
|
36
|
Song J, Ge Z, Yang X, Luo Q, Wang C, You H, Ge T, Deng Y, Lin H, Cui Y, Chu W, Yao M, Zhang Z, Gu J, Fan J, Qin W. Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett 2015; 356:713-720. [PMID: 25449435 DOI: 10.1016/j.canlet.2014.10.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 12/12/2022]
Abstract
Extracellular pH of solid tumor is generally acidic due to excessive glycolysis and poor perfusion. But whether acidic tumor microenvironment influenced the stromal cells infiltrating in tumor remains unknown. As the predominant progenitor of stromal cells in liver, the number of activated hepatic stellate cells (HSCs) was found positively correlated to the acidification level in the tumor tissues of HCC patients in our study. Whereas, in vitro acidic culture condition and in vivo co-implanting xenograft model were adopted to study the response of HSCs and its influence on HCC progression. HSCs were activated under acidic culture condition depending on the phosphorylation of cellular signal-regulated kinase (ERK). Acidity-activated HSCs promoted HCC metastasis in vitro and in vivo. Osteopontin (OPN) excretion from HSCs was increased under acidic condition and proved to promote the migration of HCC cells. Furthermore, the expression level of OPN was significantly associated with myofibroblasts and the combination of α-SMA with OPN was a powerful predictor for poor prognosis of HCC patients. Activation of HSCs in acidic tumor microenvironment represents a novel mechanism for HCC metastasis and provides a potential therapeutic strategy for HCC.
Collapse
MESH Headings
- Acids/chemistry
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/secondary
- Cell Movement
- Cell Proliferation
- Culture Media, Conditioned/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Hydrogen-Ion Concentration
- Immunoenzyme Techniques
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Osteopontin/genetics
- Osteopontin/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jin Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Zhouhong Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Xinrong Yang
- Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical College, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, the Chinese Ministry of Education, Shanghai 200032, China
| | - Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Haiyan You
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Tianxiang Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Yun Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Yongqi Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Wei Chu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical College, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, the Chinese Ministry of Education, Shanghai 200032, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/Ln 2200 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
37
|
Langfelder A, Okonji E, Deca D, Wei WC, Glitsch MD. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia. Cell Calcium 2015; 57:247-56. [PMID: 25623949 DOI: 10.1016/j.ceca.2015.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Microglia are the resident macrophage and immune cell of the brain and are critically involved in combating disease and assaults on the brain. Virtually all brain pathologies are accompanied by acidosis of the interstitial fluid, meaning that microglia are exposed to an acidic environment. However, little is known about how extracellular acidosis impacts on microglial function. The activity of microglia is tightly controlled by 'on' and 'off' signals, the presence or absence of which results in generation of distinct phenotypes in microglia. Activation of G protein coupled purinergic (P2Y) receptors triggers a number of distinct behaviours in microglia, including activation, migration, and phagocytosis. Using pharmacological tools and fluorescence imaging of the murine cerebellar microglia cell line C8B4, we show that extracellular acidosis interferes with P2Y receptor-mediated Ca(2+) signalling in these cells. Distinct P2Y receptors give rise to signature intracellular Ca(2+) signals, and Ca(2+) release from stores and Ca(2+) influx are differentially affected by acidotic conditions: Ca(2+) release is virtually unaffected, whereas Ca(2+) influx, mediated at least in part by store-operated Ca(2+) channels, is profoundly inhibited. Furthermore, P2Y1 and P2Y6-mediated stimulation of migration is inhibited under conditions of extracellular acidosis, whereas basal migration independent of P2Y receptor activation is not. Taken together, our results demonstrate that an acidic microenvironment impacts on P2Y receptor-mediated Ca(2+) signalling, thereby influencing microglial responses and responsiveness to extracellular signals. This may result in altered behaviour of microglia under pathological conditions compared with microglial responses in healthy tissue.
Collapse
Affiliation(s)
- Antonia Langfelder
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Emeka Okonji
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Diana Deca
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Wei-Chun Wei
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Maike D Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
38
|
Katt WP, Antonyak MA, Cerione RA. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 2014; 12:46-55. [PMID: 25426679 PMCID: PMC4291776 DOI: 10.1021/mp500405h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most cancer cells undergo characteristic metabolic changes that are commonly referred to as the Warburg effect, with one of the hallmarks being a dramatic increase in the rate of lactic acid fermentation. This leads to the production of protons, which in turn acidifies the microenvironment surrounding tumors. Cancer cells have acquired resistance to acid toxicity, allowing them to survive and grow under these detrimental conditions. Kidney type glutaminase (GLS1), which is responsible for the conversion of glutamine to glutamate, produces ammonia as part of its catalytic activities and has been shown to modulate cellular acidity. In this study, we show that tissue, or type 2, transglutaminase (TG2), a γ-glutamyl transferase that is highly expressed in metastatic cancers and produces ammonia as a byproduct of its catalytic activity, is up-regulated by decreases in cellular pH and helps protect cells from acid-induced cell death. Since both TG2 and GLS1 can similarly function to protect cancer cells, we then proceeded to demonstrate that treatment of a variety of cancer cell types with inhibitors of each of these proteins results in synthetic lethality. The combination doses of the inhibitors induce cell death, while individual treatment with each compound shows little or no ability to kill cells. These results suggest that combination drug treatments that simultaneously target TG2 and GLS1 might provide an effective strategy for killing cancer cells.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine and Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-6401, United States
| | | | | |
Collapse
|
39
|
Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol 2013; 4:370. [PMID: 24381558 PMCID: PMC3865727 DOI: 10.3389/fphys.2013.00370] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| |
Collapse
|
40
|
Honasoge A, Sontheimer H. Involvement of tumor acidification in brain cancer pathophysiology. Front Physiol 2013; 4:316. [PMID: 24198789 PMCID: PMC3814515 DOI: 10.3389/fphys.2013.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/14/2013] [Indexed: 01/04/2023] Open
Abstract
Gliomas, primary brain cancers, are characterized by remarkable invasiveness and fast growth. While they share many qualities with other solid tumors, gliomas have developed special mechanisms to convert the cramped brain space and other limitations afforded by the privileged central nervous system into pathophysiological advantages. In this review we discuss gliomas and other primary brain cancers in the context of acid-base regulation and interstitial acidification; namely, how the altered proton (H+) content surrounding these brain tumors influences tumor development in both autocrine and paracrine manners. As proton movement is directly coupled to movement of other ions, pH serves as both a regulator of cell activity as well as an indirect readout of other cellular functions. In the case of brain tumors, these processes result in pathophysiology unique to the central nervous system. We will highlight what is known about pH-sensitive processes in brain tumors in addition to gleaning insight from other solid tumors.
Collapse
Affiliation(s)
- Avinash Honasoge
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | | |
Collapse
|
41
|
Wolf-Goldberg T, Barbul A, Ben-Dov N, Korenstein R. Low electric fields induce ligand-independent activation of EGF receptor and ERK via electrochemical elevation of H(+) and ROS concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1396-408. [PMID: 23481041 DOI: 10.1016/j.bbamcr.2013.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/17/2022]
Abstract
Physiological electric fields are involved in many biological processes and known to elicit their effects during long exposures ranging from a few hours to days. Following exposure to electric fields of physiological amplitude, epidermal growth factor receptor (EGFR) was demonstrated to be redistributed and upregulated with further intracellular signaling such as the MAPK signaling cascade. In our study we demonstrated EGFR activation and signaling induced by short train of pulsed low electric field (LEF) (10V/cm, pulse-width 180μs, 500Hz, 2min) in serum-free medium, following 24-hour starvation, and in the absence of exogenous EGF ligand, suggesting a ligand-independent pathway for EGFR activation. This ligandless activation was further confirmed by using neutralizing antibodies (LA1) that block the EGFR ligand-binding site. EGFR activation was found to be EGFR kinase dependent, yet with no dimerization following exposure to LEF. ERK activation was found to be mainly a result of EGFR downstream signaling though it partially occurred via EGFR-independent way. We demonstrate that reactive oxygen species and especially decrease in pH generated during exposure to LEF are involved in EGFR ligandless activation. We propose a possible mechanism for the LEF-induced EGFR ligand-independent activation and show activation of other receptor tyrosine kinases following exposure to LEF.
Collapse
Affiliation(s)
- Tami Wolf-Goldberg
- Department of Physiology and Pharmacology, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
42
|
Takahashi K, Ohta T. Low pH enhances 2-aminoethoxydiphenyl borate-induced cell death of PC12 cells. Toxicol Lett 2012; 215:161-6. [DOI: 10.1016/j.toxlet.2012.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 11/15/2022]
|
43
|
Yoshino S, Hara T, Weng JS, Takahashi Y, Seiki M, Sakamoto T. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library. PLoS One 2012; 7:e35590. [PMID: 22523603 PMCID: PMC3327663 DOI: 10.1371/journal.pone.0035590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshiro Hara
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jane S. Weng
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuka Takahashi
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| | - Takeharu Sakamoto
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
44
|
Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, Hu X. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 2012; 227:189-99. [PMID: 22190257 DOI: 10.1002/path.3978] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/21/2011] [Accepted: 12/10/2011] [Indexed: 01/07/2023]
Abstract
Solid tumours are dependent on glucose, but are generally glucose-deprived due to poor vascularization. Nevertheless, cancer cells can generally survive glucose deprivation better than their normal counterparts. Thus, to render cancer cells sensitive to glucose depletion may potentially provide an effective strategy for cancer intervention. We propose that lactic acidosis, a tumour microenvironment factor, may allow cancer cells to develop resistance to glucose deprivation-induced death, and that disruption of lactic acidosis may resume cancer cells' sensitivity to glucose depletion. Lactic acidosis, lactosis, or acidosis was generated by adding pure lactic acid, sodium lactate, or HCl to the culture medium. Cell death, cell cycle, autophagy, apoptosis, and gene expression profiling of the surviving cancer cells under glucose deprivation with lactic acidosis were determined. Under glucose deprivation without lactic acidosis, 90% of 4T1 cancer cells died within a single day; in a sharp contrast, under lactic acidosis, 90% of 4T1 cells died in a period of 10 days, with viable cells identified even 65 days after glucose was depleted. Upon glucose restoration, surviving cells resumed proliferation. Lactic acidosis also significantly extended survival of other cancer cells under glucose deprivation. G1/G0 arrest, autophagy induction, and apoptosis inhibition were tightly associated with lactic acidosis-mediated resistance to glucose deprivation. Lactosis alone had no effect on cell survival under glucose deprivation; acidosis alone can prolong cell survival time but is not as potent as lactic acidosis. Thus, the ability of cancer cells to resist glucose deprivation-induced cell death is conferred, at least in part, by lactic acidosis, and we envision that disrupting the lactic acidosis may resume the sensitivity of cancer cells to glucose deprivation.
Collapse
Affiliation(s)
- Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ion channels and G-protein-coupled receptors (GPCRs) play a fundamental role in cancer progression by influencing Ca(2+) influx and signaling pathways in transformed cells. Transformed cells thrive in a hostile environment that is characterized by extracellular acidosis that promotes the pathological phenotype. The pathway(s) by which extracellular protons achieve this remain unclear. Here, a role for proton-sensing ion channels and GPCRs as mediators of the effects of extracellular protons in cancer cells is discussed.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
46
|
Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 2011; 131:633-40. [DOI: 10.1002/ijc.26410] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/11/2011] [Indexed: 12/20/2022]
|
47
|
Murri-Plesko MT, Hulikova A, Oosterwijk E, Scott AM, Zortea A, Harris AL, Ritter G, Old L, Bauer S, Swietach P, Renner C. Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. Eur J Pharmacol 2011; 657:173-83. [PMID: 21315712 DOI: 10.1016/j.ejphar.2011.01.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 01/14/2011] [Accepted: 01/27/2011] [Indexed: 01/02/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-induced, membrane-tethered enzyme that is highly expressed in many cancers. It catalyses the hydration of CO(2) to HCO(3)(-) and H(+), and the reverse dehydration reaction. Recent studies have shown an important role for CAIX in pH regulation and it has been speculated that CAIX may play a role in supporting cancer progression towards more aggressive forms of the disease. Clinical correlative studies in many tumours have shown that high expression is related to poor outcome. In the present study, we have selected antigen-binding antibody fragments (Fab) against human CAIX by phage-display, and tested these for inhibitory potency on CAIX catalytic activity. Inhibition was assessed from the kinetics of the CAIX-catalysed reaction, using assays performed on intact cells over-expressing CAIX, and their CAIX-containing membrane fragments. Inhibition was also assessed in multi-cellular tissue-models (spheroids) from the kinetics of CO(2) venting. We have identified a Fab antibody, labelled MSC8, and its corresponding full-length IgG that inhibited CAIX by up to 57% and 76%, respectively, with half-maximal inhibition at 0.3μg/ml. Incubation of CAIX-expressing cells with MSC8 IgG produced a lasting inhibitory effect. The inhibitory effect was prompt and was also observed in isolated membrane-fragments, suggesting that a direct inhibitory interaction takes place between the antibody and CAIX. The inhibitory effects in spheroids argue for a physiological relevance of the antibody. Biologically-active antibodies against CAIX can be used as selective, high-affinity inhibitors in experimental studies to dissect the role of CAIX and, possibly, therapeutically by targeting a catalytically-active cancer-related protein.
Collapse
|
48
|
Shumilina E, Huber SM, Lang F. Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol 2011; 300:C1205-14. [PMID: 21451105 DOI: 10.1152/ajpcell.00039.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are highly versatile antigen-presenting cells critically involved in both innate and adaptive immunity as well as maintenance of self-tolerance. DC function is governed by Ca(2+) signaling, which directs the DC responses to diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins. Ca(2+)-sensitive DC functions include DC activation, maturation, migration, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca(2+) trigger immune suppression or switch off DC activity. Ca(2+) signals are generated by the orchestration of Ca(2+) transport processes across plasma, endoplasmic reticulum, and inner mitochondrial membrane. These processes include active pumping of Ca(2+), Ca(2+)/Na(+) antiport, and electrodiffusion through Ca(2+)-permeable channels or uniporters. Ca(2+) channels in the plasma membrane such as Ca(2+) release-activated Ca(2+) or L-type Ca(2+) channels are tightly regulated by the membrane potential which in turn depends on the activity of voltage-gated K(+) or Ca(2+)-activated nonselective cation channels. The rapidly growing knowledge on the function and regulation of these membrane transport proteins provides novel insight into pathophysiological mechanisms underlying dysfunction of the immune system and opens novel therapeutic opportunity to favorably influence the function of the immune system.
Collapse
Affiliation(s)
- Ekaterina Shumilina
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | |
Collapse
|
49
|
Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 2010; 29:6509-21. [PMID: 20890298 DOI: 10.1038/onc.2010.455] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/15/2022]
Abstract
In this review, we discuss the role of the tumour-associated carbonic anhydrase isoform IX (CAIX) in the context of pH regulation. We summarise recent experimental findings on the effect of CAIX on cell growth and survival, and present a diffusion-reaction model to help in the assessment of CAIX function under physiological conditions. CAIX emerges as an important facilitator of acid diffusion and acid transport, helping to overcome large cell-to-capillary distances that are characteristic of solid tumours. The source of substrate for CAIX catalysis is likely to be CO₂, generated by adequately oxygenated mitochondria or from the titration of metabolic acids with HCO₃⁻ taken up from the extracellular milieu. The relative importance of these pathways will depend on oxygen and metabolite availability, the spatiotemporal patterns of the cell's exposure to hypoxia and on the regulation of metabolism by genes. This is now an important avenue for further investigation. The importance of CAIX in regulating tumour pH highlights the protein as a potential target for cancer therapy.
Collapse
Affiliation(s)
- P Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
50
|
Smith PJS, Collis LP, Messerli MA. Windows to cell function and dysfunction: signatures written in the boundary layers. Bioessays 2010; 32:514-23. [PMID: 20486138 DOI: 10.1002/bies.200900173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medium surrounding cells either in culture or in tissues contains a chemical mix varying with cell state. As solutes move in and out of the cytoplasmic compartment they set up characteristic signatures in the cellular boundary layers. These layers are complex physical and chemical environments the profiles of which reflect cell physiology and provide conduits for intercellular messaging. Here we review some of the most relevant characteristics of the extracellular/intercellular space. Our initial focus is primarily on cultured cells but we extend our consideration to the far more complex environment of tissues, and discuss how chemical signatures in the boundary layer can or may affect cell function. Critical to the entire essay are the methods used, or being developed, to monitor chemical profiles in the boundary layers. We review recent developments in ultramicro electrochemical sensors and tailored optical reporters suitable for the task in hand.
Collapse
Affiliation(s)
- Peter J S Smith
- BioCurrents Research Center, Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|