1
|
Naito A, Kamakura S, Hayase J, Kohda A, Niiro H, Akashi K, Sumimoto H. The Protein Kinase aPKC as Well as the Small GTPases RhoA and Cdc42 Regulates Neutrophil Chemotaxis Partly by Recruiting the ROCK Kinase to the Leading Edge. Genes Cells 2025; 30:e70002. [PMID: 39906004 PMCID: PMC11795228 DOI: 10.1111/gtc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
The small GTPases RhoA and Cdc42 and their effector proteins play crucial roles in neutrophil chemotaxis. However, endogenous localization and regulation of these proteins have remained largely unknown. Here, we show, using a trichloroacetic acid fixation method, that endogenous RhoA and Cdc42 are preferentially accumulated at the F-actin-rich leading edge (pseudopod) during chemotaxis of human neutrophil-like PLB-985 cells in response to the chemoattractant C5a. Interestingly, the enrichment of RhoA is impaired by knockdown of Cdc42, indicating a positive regulation by Cdc42. Depletion of Cdc42 or RhoA each induces the formation of multiple pseudopods, confirming their significance in cell polarization with an organized actin network at the front. The Rho-associated kinase ROCK is also recruited to the leading edge during chemotaxis in a manner dependent on not only RhoA and Cdc42 but also aPKC, a Cdc42-interacting kinase that can also bind to ROCK. ROCK promotes phosphorylation of the myosin light chain at the front, possibly regulating pseudopod contractility. Knockdown of aPKC suppresses neutrophil chemotaxis by disturbing pseudopod orientation without forming multiple protrusions. An incorrectly oriented pseudopod is also observed in ROCK-depleted cells. Thus, aPKC, as well as RhoA and Cdc42, likely regulates neutrophil chemotaxis partly by recruiting ROCK to the leading edge for correct directionality.
Collapse
Affiliation(s)
- Atsushi Naito
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Sachiko Kamakura
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Junya Hayase
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Akira Kohda
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Hiroaki Niiro
- Department of Medical EducationKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Hideki Sumimoto
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| |
Collapse
|
2
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
3
|
Wang Y, Chiappetta G, Guérois R, Liu Y, Romero S, Boesch DJ, Krause M, Dessalles CA, Babataheri A, Barakat AI, Chen B, Vinh J, Polesskaya A, Gautreau AM. PPP2R1A regulates migration persistence through the NHSL1-containing WAVE Shell Complex. Nat Commun 2023; 14:3541. [PMID: 37322026 PMCID: PMC10272187 DOI: 10.1038/s41467-023-39276-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Here, we identify PPP2R1A by proteomics as a protein differentially associated with the WAVE complex subunit ABI1 when RAC1 is activated and downstream generation of branched actin is blocked. PPP2R1A is found to associate at the lamellipodial edge with an alternative form of WAVE complex, the WAVE Shell Complex, that contains NHSL1 instead of the Arp2/3 activating subunit WAVE, as in the canonical WAVE Regulatory Complex. PPP2R1A is required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement is abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impair WAVE Shell Complex binding and migration regulation, suggesting that the coupling of PPP2R1A to the WAVE Shell Complex is essential to its function.
Collapse
Affiliation(s)
- Yanan Wang
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France
| | - Raphaël Guérois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Daniel J Boesch
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Claire A Dessalles
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Avin Babataheri
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
4
|
Williams AM, Donoughe S, Munro E, Horne-Badovinac S. Fat2 polarizes the WAVE complex in trans to align cell protrusions for collective migration. eLife 2022; 11:e78343. [PMID: 36154691 PMCID: PMC9576270 DOI: 10.7554/elife.78343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
For a group of cells to migrate together, each cell must couple the polarity of its migratory machinery with that of the other cells in the cohort. Although collective cell migrations are common in animal development, little is known about how protrusions are coherently polarized among groups of migrating epithelial cells. We address this problem in the collective migration of the follicular epithelial cells in Drosophila melanogaster. In this epithelium, the cadherin Fat2 localizes to the trailing edge of each cell and promotes the formation of F-actin-rich protrusions at the leading edge of the cell behind. We show that Fat2 performs this function by acting in trans to concentrate the activity of the WASP family verprolin homolog regulatory complex (WAVE complex) at one long-lived region along each cell's leading edge. Without Fat2, the WAVE complex distribution expands around the cell perimeter and fluctuates over time, and protrusive activity is reduced and unpolarized. We further show that Fat2's influence is very local, with sub-micron-scale puncta of Fat2 enriching the WAVE complex in corresponding puncta just across the leading-trailing cell-cell interface. These findings demonstrate that a trans interaction between Fat2 and the WAVE complex creates stable regions of protrusive activity in each cell and aligns the cells' protrusions across the epithelium for directionally persistent collective migration.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Extracellular Signalling Modulates Scar/WAVE Complex Activity through Abi Phosphorylation. Cells 2021; 10:cells10123485. [PMID: 34943993 PMCID: PMC8700165 DOI: 10.3390/cells10123485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 01/01/2023] Open
Abstract
The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.
Collapse
|
6
|
Le AH, Yelland T, Paul NR, Fort L, Nikolaou S, Ismail S, Machesky LM. CYRI-A limits invasive migration through macropinosome formation and integrin uptake regulation. J Cell Biol 2021; 220:e202012114. [PMID: 34165494 PMCID: PMC8236918 DOI: 10.1083/jcb.202012114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5β1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.
Collapse
Affiliation(s)
- Anh Hoang Le
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Tamas Yelland
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Nikki R. Paul
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Loic Fort
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Department of Cell and Developmental Biology, Medical Research Building III, Vanderbilt University, Nashville, TN
| | - Savvas Nikolaou
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Laura M. Machesky
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
7
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Singh SP, Thomason PA, Lilla S, Schaks M, Tang Q, Goode BL, Machesky LM, Rottner K, Insall RH. Cell-substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biol 2020; 18:e3000774. [PMID: 32745097 PMCID: PMC7425996 DOI: 10.1371/journal.pbio.3000774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.
Collapse
Affiliation(s)
| | | | | | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Qing Tang
- Brandeis University, Waltham, Massachusetts, United States of America
| | - Bruce L. Goode
- Brandeis University, Waltham, Massachusetts, United States of America
| | | | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert H. Insall
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Ghose D, Lew D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol Biol Cell 2020; 31:1085-1102. [PMID: 32186970 PMCID: PMC7346724 DOI: 10.1091/mbc.e20-01-0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, Saccharomyces cerevisiae, relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:6580-6589. [PMID: 32152126 DOI: 10.1073/pnas.1912505117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polarity decisions are central to many processes, including mitosis and chemotropism. In Saccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.
Collapse
|
11
|
Wang X, Tian W, Banh BT, Statler BM, Liang J, Stone DE. Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine. J Cell Biol 2019; 218:3730-3752. [PMID: 31570500 PMCID: PMC6829655 DOI: 10.1083/jcb.201901155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The mating of budding yeast depends on chemotropism, a fundamental cellular process. The two yeast mating types secrete peptide pheromones that bind to GPCRs on cells of the opposite type. Cells find and contact a partner by determining the direction of the pheromone source and polarizing their growth toward it. Actin-directed secretion to the chemotropic growth site (CS) generates a mating projection. When pheromone-stimulated cells are unable to sense a gradient, they form mating projections where they would have budded in the next cell cycle, at a position called the default polarity site (DS). Numerous models have been proposed to explain yeast gradient sensing, but none address how cells reliably switch from the intrinsically determined DS to the gradient-aligned CS, despite a weak spatial signal. Here we demonstrate that, in mating cells, the initially uniform receptor and G protein first polarize to the DS, then redistribute along the plasma membrane until they reach the CS. Our data indicate that signaling, polarity, and trafficking proteins localize to the DS during assembly of what we call the gradient tracking machine (GTM). Differential activation of the receptor triggers feedback mechanisms that bias exocytosis upgradient and endocytosis downgradient, thus enabling redistribution of the GTM toward the pheromone source. The GTM stabilizes when the receptor peak centers at the CS and the endocytic machinery surrounds it. A computational model simulates GTM tracking and stabilization and correctly predicts that its assembly at a single site contributes to mating fidelity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Bryan T Banh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | | | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
12
|
Abstract
In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Jason S. King
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
13
|
Actin Waves: Origin of Cell Polarization and Migration? Trends Cell Biol 2017; 27:515-526. [DOI: 10.1016/j.tcb.2017.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
|
14
|
Buckley CM, King JS. Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J 2017; 284:3778-3790. [DOI: 10.1111/febs.14115] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine M. Buckley
- Department of Biomedical Sciences Centre for Membrane Interactions and Dynamics University of Sheffield UK
- Bateson Centre University of Sheffield UK
| | - Jason S. King
- Department of Biomedical Sciences Centre for Membrane Interactions and Dynamics University of Sheffield UK
- Bateson Centre University of Sheffield UK
| |
Collapse
|
15
|
Meddens MBM, Pandzic E, Slotman JA, Guillet D, Joosten B, Mennens S, Paardekooper LM, Houtsmuller AB, van den Dries K, Wiseman PW, Cambi A. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat Commun 2016; 7:13127. [PMID: 27721497 PMCID: PMC5062568 DOI: 10.1038/ncomms13127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elvis Pandzic
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Dominique Guillet
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Svenja Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Paul W Wiseman
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
16
|
Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol 2016; 14:e1002381. [PMID: 26890004 PMCID: PMC4758609 DOI: 10.1371/journal.pbio.1002381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023] Open
Abstract
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. Coupling of individual oscillators regulates biological functions ranging from crickets chirping in unison to the coordination of pacemaker cells of the heart. This study finds that a similar concept—coupling between actin oscillators—is at work within single slime mold cells to establish polarity and guide their direction of migration. The actin cytoskeleton of motile cells is comprised of highly dynamic structures. Recently, small oscillating actin foci have been discovered around the periphery of Dictyostelium cells. These oscillators are thought to enable pseudopod formation, but how their dynamics are regulated for this is unknown. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. Actin oscillators are weakly coupled to one another in wild-type cells, but they become strongly synchronized after acute inactivation of the signaling protein Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. Supported by a mathematical model, our data suggest that wild-type cells are tuned to an optimal coupling strength for patterning by upstream cues. These observations are only possible following acute inhibition of Gβ, which highlights the value of revisiting classical mutants with acute loss-of-function perturbations.
Collapse
|
17
|
Verkhovsky AB. The mechanisms of spatial and temporal patterning of cell-edge dynamics. Curr Opin Cell Biol 2015; 36:113-21. [PMID: 26432504 DOI: 10.1016/j.ceb.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 01/14/2023]
Abstract
Adherent cells migrate and change their shape by means of protrusion and retraction at their edges. When and where these activities occur defines the shape of the cell and the way it moves. Despite a great deal of knowledge about the structural organization, components, and biochemical reactions involved in protrusion and retraction, the origins of their spatial and temporal patterns are still poorly understood. Chemical signaling circuitry is believed to be an important source of patterning, but recent studies highlighted mechanisms based on physical forces, motion, and mechanical feedback.
Collapse
Affiliation(s)
- Alexander B Verkhovsky
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Modeling large-scale dynamic processes in the cell: polarization, waves, and division. Q Rev Biophys 2015; 47:221-48. [PMID: 25124728 DOI: 10.1017/s0033583514000079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.
Collapse
|
19
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
20
|
Graziano BR, Weiner OD. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 2014; 30:60-7. [PMID: 24998184 DOI: 10.1016/j.ceb.2014.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022]
Abstract
Many eukaryotic cells regulate their polarity and motility in response to external chemical cues. While we know many of the linear connections that link receptors with downstream actin polymerization events, we have a much murkier understanding of the higher order positive and negative feedback loops that organize these processes in space and time. Importantly, physical forces and actin polymerization events do not simply act downstream of chemotactic inputs but are rather involved in a web of reciprocal interactions with signaling components to generate self-organizing pseudopods and cell polarity. Here we focus on recent progress and open questions in the field, including the basic unit of actin organization, how cells regulate the number and speed of protrusions, and 2D versus 3D migration.
Collapse
Affiliation(s)
- Brian R Graziano
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Abstract
The occurrence of invadopodia has been, since its characterization, a hallmark of cancerous cell invasion and metastasis. These structures are now the subject of a controversy concerning their cellular function, molecular regulation, and assembly. The terms invadopodia and podosomes have been used interchangeably since their discovery back in 1980. Since then, these phenotypes are now more established and accepted by the scientific community as vital structures for 3D cancer cell motility. Many characteristics relating to invadopodia and podosomes have been elucidated, which might prove these structures as good targets for metastasis treatment. In this review, we briefly review the actin reorganization process needed in most types of cancer cell motility. We also review the important characteristics of invadopodia, including molecular components, assembly, markers, and the signaling pathways, providing a comprehensive model for invadopodia regulation.
Collapse
Affiliation(s)
- Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University , Beirut , Lebanon
| | | |
Collapse
|
23
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
24
|
Byrne MB, Kimura Y, Kapoor A, He Y, Mattam KS, Hasan KM, Olson LN, Wang F, Kenis PJA, Rao CV. Oscillatory behavior of neutrophils under opposing chemoattractant gradients supports a winner-take-all mechanism. PLoS One 2014; 9:e85726. [PMID: 24465668 PMCID: PMC3897492 DOI: 10.1371/journal.pone.0085726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/29/2013] [Indexed: 12/19/2022] Open
Abstract
Neutrophils constitute the largest class of white blood cells and are the first responders in the innate immune response. They are able to sense and migrate up concentration gradients of chemoattractants in search of primary sites of infection and inflammation through a process known as chemotaxis. These chemoattractants include formylated peptides and various chemokines. While much is known about chemotaxis to individual chemoattractants, far less is known about chemotaxis towards many. Previous studies have shown that in opposing gradients of intermediate chemoattractants (interleukin-8 and leukotriene B4), neutrophils preferentially migrate toward the more distant source. In this work, we investigated neutrophil chemotaxis in opposing gradients of chemoattractants using a microfluidic platform. We found that primary neutrophils exhibit oscillatory motion in opposing gradients of intermediate chemoattractants. To understand this behavior, we constructed a mathematical model of neutrophil chemotaxis. Our results suggest that sensory adaptation alone cannot explain the observed oscillatory motion. Rather, our model suggests that neutrophils employ a winner-take-all mechanism that enables them to transiently lock onto sensed targets and continuously switch between the intermediate attractant sources as they are encountered. These findings uncover a previously unseen behavior of neutrophils in opposing gradients of chemoattractants that will further aid in our understanding of neutrophil chemotaxis and the innate immune response. In addition, we propose a winner-take-all mechanism allows the cells to avoid stagnation near local chemical maxima when migrating through a network of chemoattractant sources.
Collapse
Affiliation(s)
- Matthew B. Byrne
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yuki Kimura
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ashish Kapoor
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yuan He
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kewin S. Mattam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Katherine M. Hasan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Luke N. Olson
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Fei Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Dandekar SN, Park JS, Peng GE, Onuffer JJ, Lim WA, Weiner OD. Actin dynamics rapidly reset chemoattractant receptor sensitivity following adaptation in neutrophils. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130008. [PMID: 24062580 DOI: 10.1098/rstb.2013.0008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutrophils are cells of the innate immune system that hunt and kill pathogens using directed migration. This process, known as chemotaxis, requires the regulation of actin polymerization downstream of chemoattractant receptors. Reciprocal interactions between actin and intracellular signals are thought to underlie many of the sophisticated signal processing capabilities of the chemotactic cascade including adaptation, amplification and long-range inhibition. However, with existing tools, it has been difficult to discern actin's role in these processes. Most studies investigating the role of the actin cytoskeleton have primarily relied on actin-depolymerizing agents, which not only block new actin polymerization but also destroy the existing cytoskeleton. We recently developed a combination of pharmacological inhibitors that stabilizes the existing actin cytoskeleton by inhibiting actin polymerization, depolymerization and myosin-based rearrangements; we refer to these processes collectively as actin dynamics. Here, we investigated how actin dynamics influence multiple signalling responses (PI3K lipid products, calcium and Pak phosphorylation) following acute agonist addition or during desensitization. We find that stabilized actin polymer extends the period of receptor desensitization following agonist binding and that actin dynamics rapidly reset receptors from this desensitized state. Spatial differences in actin dynamics may underlie front/back differences in agonist sensitivity in neutrophils.
Collapse
Affiliation(s)
- Sheel N Dandekar
- Department of Biophysics, Genentech Hall, University of California, , 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
26
|
Mata MA, Dutot M, Edelstein-Keshet L, Holmes WR. A model for intracellular actin waves explored by nonlinear local perturbation analysis. J Theor Biol 2013; 334:149-61. [PMID: 23831272 DOI: 10.1016/j.jtbi.2013.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/07/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Waves and dynamic patterns in chemical and physical systems have long interested experimentalists and theoreticians alike. Here we investigate a recent example within the context of cell biology, where waves of actin (a major component of the cytoskeleton) and its regulators (nucleation promoting factors, NPFs) are observed experimentally. We describe and analyze a minimal reaction diffusion model depicting the feedback between signalling proteins and filamentous actin (F-actin). Using numerical simulation, we show that this model displays a rich variety of patterning regimes. A relatively recent nonlinear stability method, the Local Perturbation Analysis (LPA), is used to map the parameter space of this model and explain the genesis of patterns in various linear and nonlinear patterning regimes. We compare our model for actin waves to others in the literature, and focus on transitions between static polarization, transient waves, periodic wave trains, and reflecting waves. We show, using LPA, that the spatially distributed model gives rise to dynamics that are absent in the kinetics alone. Finally, we show that the width and speed of the waves depend counter-intuitively on parameters such as rates of NPF activation, negative feedback, and the F-actin time scale.
Collapse
Affiliation(s)
- May Anne Mata
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | | | | | | |
Collapse
|
27
|
Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. PLANT PHYSIOLOGY 2013; 162:689-706. [PMID: 23613272 PMCID: PMC3668063 DOI: 10.1104/pp.113.217422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation.
Collapse
|
28
|
Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc Natl Acad Sci U S A 2013; 110:1339-44. [PMID: 23297209 PMCID: PMC3557052 DOI: 10.1073/pnas.1221538110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dynamic spatial patterns of signaling factors or macromolecular assemblies in the form of oscillations or traveling waves have emerged as important themes in cell physiology. Feedback mechanisms underlying these processes and their modulation by signaling events and reciprocal cross-talks remain poorly understood. Here we show that antigen stimulation of mast cells triggers cyclic changes in the concentration of actin regulatory proteins and actin in the cell cortex that can be manifested in either spatial pattern. Recruitment of FBP17 and active Cdc42 at the plasma membrane, leading to actin polymerization, are involved in both events, whereas calcium oscillations, which correlate with global fluctuations of plasma membrane PI(4,5)P(2), are tightly linked to standing oscillations and counteract wave propagation. These findings demonstrate the occurrence of a calcium-independent oscillator that controls the collective dynamics of factors linking the actin cytoskeleton to the plasma membrane. Coupling between this oscillator and the one underlying global plasma membrane PI(4,5)P2 and calcium oscillations spatially regulates actin dynamics, revealing an unexpected pattern-rendering mechanism underlying plastic changes occurring in the cortical region of the cell.
Collapse
|
29
|
Abstract
Many forms of cellular motility are driven by the growth of branched networks of actin filaments, which push against a membrane. In the dendritic nucleation model, Arp2/3 complex is critical, binding to the side of an existing mother filament, nucleating a new daughter filament, and thus creating a branch. Spatial and temporal regulation of Arp2/3 activity is critical for efficient generation of force and movement. A diverse collection of Arp2/3 regulatory proteins has been identified. They bind to and/or activate Arp2/3 complex via an acidic motif with a conserved tryptophan residue. We tested this model for Arp2/3 regulator function in vivo, by examining the roles of multiple Arp2/3 regulators in endocytosis in living yeast cells. We measured the molecular composition of the actin network in cells with mutations that removed the acidic motifs of the four Arp2/3 regulators previously shown to influence the proper function of the actin network. Unexpectedly, we did not find a simple or direct correlation between defects in patch assembly and movement and changes in the composition and dynamics of dendritic nucleation proteins. Taken together our data does not support the simple hypothesis that the primary role for Arp2/3 regulators is to recruit and activate Arp2/3. Rather our data suggests that these regulators may be playing more subtle roles in establishing functional networks in vivo.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO, USA
| | | | | |
Collapse
|
30
|
Holmes WR, Carlsson AE, Edelstein-Keshet L. Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Phys Biol 2012; 9:046005. [PMID: 22785332 DOI: 10.1088/1478-3975/9/4/046005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patterns of waves, patches, and peaks of actin are observed experimentally in many living cells. Models of this phenomenon have been based on the interplay between filamentous actin (F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here we present an alternative biologically-motivated model for F-actin-NPF interaction based on properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model is a natural extension of a previous mathematical mini-model of small GTPases that generates static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence localizing the activity spatially. We find that our NPF-actin model generates a rich set of behaviours, spanning a transition from static polarization to single pulses, reflecting waves, wave trains, and oscillations localized at the cell edge. The model is developed with simplicity in mind to investigate the interaction between nucleation promoting factor kinetics and negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies parameter regimes corresponding to distinct behaviours. We show that weak actin feedback yields static patterning, moderate feedback yields dynamical behaviour such as travelling waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a recently introduced nonlinear bifurcation analysis to explore the parameter space of this model and predict its behaviour with simulations validating those results.
Collapse
Affiliation(s)
- W R Holmes
- Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada.
| | | | | |
Collapse
|
31
|
Abstract
Fibroblasts migrate on two-dimensional (2D) surfaces by forming lamellipodia-actin-rich extensions at the leading edge of the cell that have been well characterized. In this issue, Petrie et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201124) show that in some 3D environments, including tissue explants, fibroblasts project different structures, termed lobopodia, at the leading edge. Lobopodia still assemble focal adhesions; however, similar to membrane blebs, they are driven by actomyosin contraction and do not accumulate active Rac, Cdc42, and phosphatidylinositol 3-kinases.
Collapse
Affiliation(s)
- Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
32
|
Welf ES, Ahmed S, Johnson HE, Melvin AT, Haugh JM. Migrating fibroblasts reorient directionality by a metastable, PI3K-dependent mechanism. ACTA ACUST UNITED AC 2012; 197:105-14. [PMID: 22472441 PMCID: PMC3317800 DOI: 10.1083/jcb.201108152] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal cell migration as exhibited by fibroblasts is distinct from amoeboid cell migration and is characterized by dynamic competition among multiple protrusions, which determines directional persistence and responses to spatial cues. Localization of phosphoinositide 3-kinase (PI3K) signaling is thought to play a broadly important role in cell motility, yet the context-dependent functions of this pathway have not been adequately elucidated. By mapping the spatiotemporal dynamics of cell protrusion/retraction and PI3K signaling monitored by total internal reflection fluorescence microscopy, we show that randomly migrating fibroblasts reorient polarity through PI3K-dependent branching and pivoting of protrusions. PI3K inhibition did not affect the initiation of newly branched protrusions, nor did it prevent protrusion induced by photoactivation of Rac. Rather, PI3K signaling increased after, not before, the onset of local protrusion and was required for the lateral spreading and stabilization of nascent branches. During chemotaxis, the branch experiencing the higher chemoattractant concentration was favored, and, thus, the cell reoriented so as to align with the external gradient.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
33
|
Ura S, Pollitt AY, Veltman DM, Morrice NA, Machesky LM, Insall RH. Pseudopod growth and evolution during cell movement is controlled through SCAR/WAVE dephosphorylation. Curr Biol 2012; 22:553-61. [PMID: 22386315 PMCID: PMC4961229 DOI: 10.1016/j.cub.2012.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 12/22/2011] [Accepted: 02/06/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND SCAR/WAVE is a principal regulator of pseudopod growth in crawling cells. It exists in a stable pentameric complex, which is regulated at multiple levels that are only beginning to be understood. SCAR/WAVE is phosphorylated at multiple sites, but how this affects its biological activity is unclear. Here we show that dephosphorylation of Dictyostelium SCAR controls normal pseudopod dynamics. RESULTS We demonstrate that the C-terminal acidic domain of most Dictyostelium SCAR is basally phosphorylated at four serine residues. A small amount of singly phosphorylated SCAR is also found. SCAR phosphorylation site mutants cannot replace SCAR's role in the pseudopod cycle, though they rescue cell size and growth. Unphosphorylatable SCAR is hyperactive-excessive recruitment to the front results in large pseudopods that fail to bifurcate because they continually grow forward. Conversely, phosphomimetic SCAR is weakly active, causing frequent small, disorganized pseudopods. Even in its regulatory complex, SCAR is normally held inactive by an interaction between the phosphorylated acidic and basic domains. Loss of basic residues complementary to the acidic phosphosites yields a hyperactive protein similar to unphosphorylatable SCAR. CONCLUSIONS Regulated dephosphorylation of a fraction of the cellular SCAR pool is a key step in SCAR activation during pseudopod growth. Phosphorylation increases autoinhibition of the intact complex. Dephosphorylation weakens this interaction and facilitates SCAR activation but also destabilizes the protein. We show that SCAR is specifically dephosphorylated in pseudopods, increasing activation by Rac and lipids and supporting positive feedback of pseudopod growth.
Collapse
Affiliation(s)
| | - Alice Y. Pollitt
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
34
|
Millius A, Watanabe N, Weiner OD. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. J Cell Sci 2012; 125:1165-76. [PMID: 22349699 DOI: 10.1242/jcs.091157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.
Collapse
Affiliation(s)
- Arthur Millius
- Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
35
|
Filić V, Marinović M, Faix J, Weber I. A dual role for Rac1 GTPases in the regulation of cell motility. J Cell Sci 2012; 125:387-98. [PMID: 22302991 DOI: 10.1242/jcs.089680] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rac proteins are the only canonical Rho family GTPases in Dictyostelium, where they act as key regulators of the actin cytoskeleton. To monitor the dynamics of activated Rac1 in Dictyostelium cells, a fluorescent probe was developed that specifically binds to the GTP-bound form of Rac1. The probe is based on the GTPase-binding domain (GBD) from PAK1 kinase, and was selected on the basis of yeast two-hybrid, GST pull-down and fluorescence resonance energy transfer assays. The PAK1 GBD localizes to leading edges of migrating cells and to endocytotic cups. Similarly to its role in vertebrates, activated Rac1 therefore appears to control de novo actin polymerization at protruding regions of the Dictyostelium cell. Additionally, we found that the IQGAP-related protein DGAP1, which sequesters active Rac1 into a quaternary complex with actin-binding proteins cortexillin I and cortexillin II, localizes to the trailing regions of migrating cells. Notably, PAK1 GBD and DGAP1, which both bind to Rac1-GTP, display mutually exclusive localizations in cell migration, phagocytosis and cytokinesis, and opposite dynamics of recruitment to the cell cortex upon stimulation with chemoattractants. Moreover, cortical localization of the PAK1 GBD depends on the integrity of the actin cytoskeleton, whereas cortical localization of DGAP1 does not. Taken together, these results imply that Rac1 GTPases play a dual role in regulation of cell motility and polarity in Dictyostelium.
Collapse
Affiliation(s)
- Vedrana Filić
- Ruder Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
36
|
Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, Altschuler SJ, Wu LF, Weiner OD. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 2012; 148:175-88. [PMID: 22265410 PMCID: PMC3308728 DOI: 10.1016/j.cell.2011.10.050] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/15/2011] [Accepted: 10/24/2011] [Indexed: 12/24/2022]
Abstract
Little is known about how neutrophils and other cells establish a single zone of actin assembly during migration. A widespread assumption is that the leading edge prevents formation of additional fronts by generating long-range diffusible inhibitors or by sequestering essential polarity components. We use morphological perturbations, cell-severing experiments, and computational simulations to show that diffusion-based mechanisms are not sufficient for long-range inhibition by the pseudopod. Instead, plasma membrane tension could serve as a long-range inhibitor in neutrophils. We find that membrane tension doubles during leading-edge protrusion, and increasing tension is sufficient for long-range inhibition of actin assembly and Rac activation. Furthermore, reducing membrane tension causes uniform actin assembly. We suggest that tension, rather than diffusible molecules generated or sequestered at the leading edge, is the dominant source of long-range inhibition that constrains the spread of the existing front and prevents the formation of secondary fronts.
Collapse
Affiliation(s)
- Andrew R. Houk
- Cardiovascular Research Institute and Department of Biochemistry, University of California San Francisco, San Francisco, California
| | - Alexandra Jilkine
- Green Comprehensive Center for Molecular, Computational, and Systems Biology, Southwestern Medical School, Dallas, Texas
| | | | | | | | | | - Steven J. Altschuler
- Green Comprehensive Center for Molecular, Computational, and Systems Biology, Southwestern Medical School, Dallas, Texas
| | - Lani F. Wu
- Green Comprehensive Center for Molecular, Computational, and Systems Biology, Southwestern Medical School, Dallas, Texas
| | - Orion D. Weiner
- Cardiovascular Research Institute and Department of Biochemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
37
|
Peng GE, Wilson SR, Weiner OD. A pharmacological cocktail for arresting actin dynamics in living cells. Mol Biol Cell 2011; 22:3986-94. [PMID: 21880897 PMCID: PMC3204061 DOI: 10.1091/mbc.e11-04-0379] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this paper, we report a new combination of actin inhibitors optimized to rapidly arrest actin dynamics while preserving the actin network. Using this drug combination, we demonstrate that actin dynamics, but not actin structure, are required for the spatial persistence of Rac activation in HL-60 cells. The actin cytoskeleton is regulated by factors that influence polymer assembly, disassembly, and network rearrangement. Drugs that inhibit these events have been used to test the role of actin dynamics in a wide range of cellular processes. Previous methods of arresting actin rearrangements take minutes to act and work well in some contexts, but can lead to significant actin reorganization in cells with rapid actin dynamics, such as neutrophils. In this paper, we report a pharmacological cocktail that not only arrests actin dynamics but also preserves the structure of the existing actin network in neutrophil-like HL-60 cells, human fibrosarcoma HT1080 cells, and mouse NIH 3T3 fibroblast cells. Our cocktail induces an arrest of actin dynamics that initiates within seconds and persists for longer than 10 min, during which time cells maintain their responsivity to external stimuli. With this cocktail, we demonstrate that actin dynamics, and not simply morphological polarity or actin accumulation at the leading edge, are required for the spatial persistence of Rac activation in HL-60 cells. Our drug combination preserves the structure of the existing cytoskeleton while blocking actin assembly, disassembly, and rearrangement, and should prove useful for investigating the role of actin dynamics in a wide range of cellular signaling contexts.
Collapse
Affiliation(s)
- Grace E Peng
- Department of Biochemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
38
|
Neilson MP, Veltman DM, van Haastert PJM, Webb SD, Mackenzie JA, Insall RH. Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 2011; 9:e1000618. [PMID: 21610858 PMCID: PMC3096608 DOI: 10.1371/journal.pbio.1000618] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and--unexpectedly--lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.
Collapse
Affiliation(s)
| | | | | | - Steven D. Webb
- Department of Mathematics and Statistics,
University of Strathclyde, Glasgow, United Kingdom
| | - John A. Mackenzie
- Department of Mathematics and Statistics,
University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
39
|
Rørth P. Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev Cell 2011; 20:9-18. [PMID: 21238921 DOI: 10.1016/j.devcel.2010.12.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/28/2010] [Indexed: 11/25/2022]
Abstract
As individual cells or groups of cells move through the complex environment of the body, their migration is affected by multiple external cues. Some cues are diffusible signaling molecules, and some are solid biophysical features. How do cells respond appropriately? This perspective discusses the relationship between guidance input and the cellular output, considering effects from classical chemotaxis to contact-dependent guidance. The influences of membrane trafficking and of imposed constraints on directional movement are also considered. New insights regarding guidance and dynamic cell polarity have emerged from examining new cell migration models and from re-examining well known ones with new approaches and new tools.
Collapse
Affiliation(s)
- Pernille Rørth
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore.
| |
Collapse
|
40
|
Moorjani S, Nielson R, Chang XA, Shear JB. Dynamic remodeling of subcellular chemical gradients using a multi-directional flow device. LAB ON A CHIP 2010; 10:2139-2146. [PMID: 20544072 DOI: 10.1039/c004627b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Elucidation of the mechanisms by which external chemical cues regulate polarized cellular behaviors requires tools that can rapidly recast chemical landscapes with subcellular resolution. Here, we describe an approach for creating steep microscopic gradients of cellular effectors at any desired position in culture that can be reoriented rapidly to evaluate dynamic responses. In this approach, micrometre pores are ablated in a membrane that supports cell adherence, allowing dosing reagent from an underlying reservoir to enter the cell-culture flow chamber as sharp streams that are directed at subcellular targets by using a system of paired sources and drains to specify flow direction. This tool substantially extends capabilities for chemical interaction with cultured cells, enabling investigations of chemotaxis via precise placement and reorientation of peptide gradients formed at the boundaries of dosing streams. These studies demonstrate that neutrophil precursor cells can repolarize and redirect their migration paths using morphological responses that depend on the subcellular localization of chemoattractant gradients.
Collapse
Affiliation(s)
- Samira Moorjani
- Department of Biomedical Engineering, University of Texas, 1 University Station C0800, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Current descriptions of eukaryotic chemotaxis and cell movement focus on how extracellular signals (chemoattractants) cause new pseudopods to form. This 'signal-centred' approach is widely accepted but is derived mostly from special cases, particularly steep chemoattractant gradients. I propose a 'pseudopod-centred' explanation, whereby most pseudopods form themselves, without needing exogenous signals, and chemoattractants only bias internal pseudopod dynamics. This reinterpretation of recent data suggests that future research should focus on pseudopod mechanics, not signal processing.
Collapse
Affiliation(s)
- Robert H Insall
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
42
|
Derivery E, Gautreau A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 2010; 32:119-31. [PMID: 20091750 DOI: 10.1002/bies.200900123] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Arp2/3 complex is a molecular machine that generates branched actin networks responsible for membrane remodeling during cell migration, endocytosis, and other morphogenetic events. This machine requires activators, which themselves are multiprotein complexes. This review focuses on recent advances concerning the assembly of stable complexes containing the most-studied activators, N-WASP and WAVE proteins, and the level of regulation that is provided by these complexes. N-WASP is the paradigmatic auto-inhibited protein, which is activated by a conformational opening. Even though this regulation has been successfully reconstituted in vitro with isolated N-WASP, the native dimeric complex with a WIP family protein has unique additional properties. WAVE proteins are part of a pentameric complex, whose basal state and activated state when bound to the Rac GTPase were recently clarified. Moreover, this review attempts to put together diverse observations concerning the WAVE complex in the conceptual frame of an in vivo assembly pathway that has gained support from the recent identification of a precursor.
Collapse
Affiliation(s)
- Emmanuel Derivery
- CNRS UPR3082, Laboratoire d'Enzymologie et de Biochimie Structurales, Bât. 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
43
|
Gerisch G. Self-organizing actin waves that simulate phagocytic cup structures. PMC BIOPHYSICS 2010; 3:7. [PMID: 20298542 PMCID: PMC2851664 DOI: 10.1186/1757-5036-3-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 03/18/2010] [Indexed: 01/19/2023]
Abstract
This report deals with actin waves that are spontaneously generated on the planar, substrate-attached surface of Dictyostelium cells. These waves have the following characteristics. (1) They are circular structures of varying shape, capable of changing the direction of propagation. (2) The waves propagate by treadmilling with a recovery of actin incorporation after photobleaching of less than 10 seconds. (3) The waves are associated with actin-binding proteins in an ordered 3-dimensional organization: with myosin-IB at the front and close to the membrane, the Arp2/3 complex throughout the wave, and coronin at the cytoplasmic face and back of the wave. Coronin is a marker of disassembling actin structures. (4) The waves separate two areas of the cell cortex that differ in actin structure and phosphoinositide composition of the membrane. The waves arise at the border of membrane areas rich in phosphatidylinositol (3,4,5) trisphosphate (PIP3). The inhibition of PIP3 synthesis reversibly inhibits wave formation. (5) The actin wave and PIP3 patterns resemble 2-dimensional projections of phagocytic cups, suggesting that they are involved in the scanning of surfaces for particles to be taken up. PACS Codes: 87.16.Ln, 87.19.lp, 89.75.Fb
Collapse
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
44
|
Schroth-Diez B, Gerwig S, Ecke M, Hegerl R, Diez S, Gerisch G. Propagating waves separate two states of actin organization in living cells. HFSP JOURNAL 2009; 3:412-27. [PMID: 20514132 DOI: 10.2976/1.3239407] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/08/2009] [Indexed: 12/29/2022]
Abstract
Propagating actin waves are dynamic supramolecular structures formed by the self-assembly of proteins within living cells. They are built from actin filaments together with single-headed myosin, the Arp23 complex, and coronin in a defined three-dimensional order. The function of these waves in structuring the cell cortex is studied on the substrate-attached surface of Dictyostelium cells by the use of total internal reflection fluorescence (TIRF) microscopy. Actin waves separate two areas of the cell cortex from each other, which are distinguished by the arrangement of actin filaments. The Arp23 complex dominates in the area enclosed by a wave, where it has the capacity of building dendritic structures, while the proteins prevailing in the external area, cortexillin I and myosin-II, bundle actin filaments and arrange them in antiparallel direction. Wave propagation is accompanied by transitions in the state of actin with a preferential period of 5 min. Wave generation is preceded by local fluctuations in actin assembly, some of the nuclei of polymerized actin emanating from clathrin-coated structures, others emerging independently. The dynamics of phase transitions has been analyzed to provide a basis for modeling the nonlinear interactions that produce spatio-temporal patterns in the actin system of living cells.
Collapse
|
45
|
Insall RH, Machesky LM. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 2009; 17:310-22. [PMID: 19758556 DOI: 10.1016/j.devcel.2009.08.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell migration is an essential feature of eukaryotic life, required for processes ranging from feeding and phagoctyosis to development, healing, and immunity. Migration requires the actin cytoskeleton, specifically the localized polymerization of actin filaments underneath the plasma membrane. Here we summarize recent developments in actin biology that particularly affect structures at the leading edge of the cell, including the structure of actin branches, the multiple pathways that lead to cytoskeleton assembly and disassembly, and the role of blebs. Future progress depends on connecting these processes and components to the dynamic behavior of the whole cell in three dimensions.
Collapse
Affiliation(s)
- Robert H Insall
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland.
| | | |
Collapse
|