1
|
Dai Y, Chen X, He G, Gao J, Guo X. Rare cases of a second recurrence of nephroblastoma with MLLT1 gene mutation: case report and literature review. Front Oncol 2024; 14:1487544. [PMID: 39687897 PMCID: PMC11646860 DOI: 10.3389/fonc.2024.1487544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Nephroblastoma or Wilms tumor is the most common tumor of the urinary system in childhood. The survival rate can reach more than 90% after multidisciplinary treatment, but there is still a certain recurrence rate. In recent years, domestic and foreign scholars have analyzed the gene mutations related to the recurrence of nephroblastoma from the genetics or epigenetics perspective. However, few reports on the relationship between MLLT1 and the pathogenesis have been reported; patients with MLLT1 gene mutations are often associated with poor prognosis. In this case, we report the recurrence of nephroblastoma with MLLT1 gene mutation and review relevant literature. The studies on molecular genetic mechanism will provide a theoretical basis for early warning, optimize individualized treatment plan, and are important for improving prognosis.
Collapse
Affiliation(s)
- Yiling Dai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Guoqian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang H, Liu X, Liu Y, Yang C, Ye Y, Yu X, Sheng N, Zhang S, Mao B, Ma P. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 2024; 13:RP94657. [PMID: 39526890 PMCID: PMC11554307 DOI: 10.7554/elife.94657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.
Collapse
Affiliation(s)
- Huishan Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xingyan Liu
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- School of Mathematical Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Chencheng Yang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Yaxin Ye
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Xiaomei Yu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
3
|
Peng Y, Ouyang L, Zhou Y, Lai W, Chen Y, Wang Z, Yan B, Zhang Z, Zhou Y, Peng X, Chen J, Peng X, Xiao D, Liu S, Tao Y, Liu W. AhR Promotes the Development of Non-small cell lung cancer by Inducing SLC7A11-dependent Antioxidant Function. J Cancer 2023; 14:821-834. [PMID: 37056388 PMCID: PMC10088881 DOI: 10.7150/jca.82066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/15/2023] Open
Abstract
Objective: Aryl hydrocarbon receptor (AhR) is a transcription factor. It is reported that AhR is associated with non-small cell lung cancer (NSCLC), but the mechanisms underlying this relationship remain unclear. Therefore, we investigated the role of AhR in NSCLC to elucidate the underlying mechanisms. Methods: We collected clinical lung cancer samples and constructed AhR overexpression and knockdown cell lines to investigate the tumorigenicity of AhR in vivo and in vitro. Furthermore, we performed a ferroptosis induction experiment and chromatin immunoprecipitation experiment. Results: AhR was highly expressed in NSCLC tissue. AhR knockdown cells showed ferroptosis related phenomenon. Furthermore, Chromatin immunoprecipitation confirmed the correlation between AhR and solute carrier family 7 member 11 (SLC7A11) and ferroptosis induction experiment confirmed that AhR affects ferroptosis via SLC7A11. Specifically, AhR regulates ferroptosis-related SLC7A11, which affects ferroptosis and promotes NSCLC progression. Conclusions: AhR promoted NSCLC development and positively correlated with SLC7A11, affecting its actions. AhR bound to the promoter region of SLC7A11 promotes NSCLC by activating SLC7A11 expression, improving the oxidative sensitivity of cells, and inhibiting ferroptosis. Thus, AhR affects ferroptosis in NSCLC by regulating SLC7A11, providing foundational evidence for novel ferroptosis-related treatments.
Collapse
Affiliation(s)
- Yuanhao Peng
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lianlian Ouyang
- Department of dermatology, Second Xiangya Hospital, Central South University, Changsha,410011, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Weiwei Lai
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zuli Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guizhou, 550025, China
| | - Bokang Yan
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Zewen Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yanling Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xintong Peng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jielin Chen
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Peng
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Desheng Xiao
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yongguang Tao
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- ✉ Corresponding authors: ;
| | - Wenliang Liu
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, China
- ✉ Corresponding authors: ;
| |
Collapse
|
4
|
Hu L, Zhang W, Xiang Z, Wang Y, Zeng C, Wang X, Tan C, Zhang Y, Li F, Xiao Y, Zhou L, Li J, Wu C, Xiang Y, Xiang L, Zhang X, Wang X, Yang W, Chen M, Ran Q, Li Z, Chen L. EloA promotes HEL polyploidization upon PMA stimulation through enhanced ERK1/2 activity. Platelets 2021; 33:755-763. [PMID: 34697988 DOI: 10.1080/09537104.2021.1988548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Megakaryocytes (MKs) are the unique non-pathological cells that undergo polyploidization in mammals. The polyploid formation is critical for understanding the MK biology, and transcriptional regulation is involved in the differentiation and maturation of MKs. However, little is known about the functions of transcriptional elongation factors in the MK polyploidization. In this study, we investigated the role of transcription elongation factor EloA in the polyploidy formation during the MK differentiation. We found that EloA was highly expressed in the erythroleukemia cell lines HEL and K562. Knockdown of EloA in HEL cell line was shown to impair the phorbol myristate acetate (PMA) induced polyploidization process, which was used extensively to model megakaryocytic differentiation. Selective over-expression of EloA mutants with Pol II elongation activity partially restored the polyploidization. RNA-sequencing revealed that knockdown of EloA decelerated the transcription of genes enriched in the ERK1/2 cascade pathway. The phosphorylation activity of ERK1/2 decreased upon the EloA inhibition, and the polyploidization process of HEL was hindered when ERK1/2 phosphorylation was inhibited by PD0325901 or SCH772984. This study evidenced a positive role of EloA in HEL polyploidization upon PMA stimulation through enhanced ERK1/2 activity.
Collapse
Affiliation(s)
- Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zheng Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yali Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Zeng
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yichi Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Luping Zhou
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiuxuan Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chun Wu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lixin Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaomei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xueying Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wuchen Yang
- Department of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Maoshan Chen
- Australian Centre for Blood Diseases (Acbd), Clinical Central School, Monash University, Melbourne, Australia
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Ghotbi E, Ye P, Ervin T, Kum A, Benes J, Jones RS. Polycomb-group recruitment to a Drosophila target gene is the default state that is inhibited by a transcriptional activator. SCIENCE ADVANCES 2021; 7:7/29/eabg1556. [PMID: 34272248 PMCID: PMC8284896 DOI: 10.1126/sciadv.abg1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Polycomb-group (PcG) proteins are epigenetic regulators that maintain the transcriptional repression of target genes following their initial repression by transcription factors. PcG target genes are repressed in some cells, but active in others. Therefore, a mechanism must exist by which PcG proteins distinguish between the repressed and active states and only assemble repressive chromatin environments at target genes that are repressed. Here, we present experimental evidence that the repressed state of a Drosophila PcG target gene, giant (gt), is not identified by the presence of a repressor. Rather, de novo establishment of PcG-mediated silencing at gt is the default state that is prevented by the presence of an activator or coactivator, which may inhibit the catalytic activity of Polycomb-repressive complex 2 (PRC2).
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Taylor Ervin
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Anni Kum
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
6
|
Ardehali MB, Damle M, Perea-Resa C, Blower MD, Kingston RE. Elongin A associates with actively transcribed genes and modulates enhancer RNA levels with limited impact on transcription elongation rate in vivo. J Biol Chem 2020; 296:100202. [PMID: 33334895 PMCID: PMC7948453 DOI: 10.1074/jbc.ra120.015877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Dahl NA, Danis E, Balakrishnan I, Wang D, Pierce A, Walker FM, Gilani A, Serkova NJ, Madhavan K, Fosmire S, Green AL, Foreman NK, Venkataraman S, Vibhakar R. Super Elongation Complex as a Targetable Dependency in Diffuse Midline Glioma. Cell Rep 2020; 31:107485. [PMID: 32268092 PMCID: PMC11670739 DOI: 10.1016/j.celrep.2020.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Histone 3 gene mutations are the eponymous drivers in diffuse midline gliomas (DMGs), aggressive pediatric brain cancers for which no curative therapy currently exists. These recurrent oncohistones induce a global loss of repressive H3K27me3 residues and broad epigenetic dysregulation. In order to identify therapeutically targetable dependencies within this disease context, we performed an RNAi screen targeting epigenetic/chromatin-associated genes in patient-derived DMG cultures. This identified AFF4, the scaffold protein of the super elongation complex (SEC), as a molecular dependency in DMG. Interrogation of SEC function demonstrates a key role for maintaining clonogenic potential while promoting self-renewal of tumor stem cells. Small-molecule inhibition of SEC using clinically relevant CDK9 inhibitors restores regulatory RNA polymerase II pausing, promotes cellular differentiation, and leads to potent anti-tumor effect both in vitro and in patient-derived xenograft models. These studies present a rationale for further exploration of SEC inhibition as a promising therapeutic approach to this intractable disease.
Collapse
Affiliation(s)
- Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - Etienne Danis
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dong Wang
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faye M Walker
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Krishna Madhavan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Susan Fosmire
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
8
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
10
|
Grindheim JM, Nicetto D, Donahue G, Zaret KS. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice. Gastroenterology 2019; 156:1834-1848. [PMID: 30689973 PMCID: PMC6599454 DOI: 10.1053/j.gastro.2019.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Jessica Mae Grindheim
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. of Cancer Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Rosales-Vega M, Hernández-Becerril A, Murillo-Maldonado JM, Zurita M, Vázquez M. The role of the trithorax group TnaA isoforms in Hox gene expression, and in Drosophila late development. PLoS One 2018; 13:e0206587. [PMID: 30372466 PMCID: PMC6205608 DOI: 10.1371/journal.pone.0206587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Regulation of developmental gene expression in eukaryotes involves several levels. One of them is the maintenance of gene expression along the life of the animal once it is started by different triggers early in development. One of the questions in the field is when in developmental time, the animal start to use the different maintenance mechanisms. The trithorax group (TrxG) of genes was first characterized as essential for maintaining homeotic gene expression. The TrxG gene tonalli interacts genetically and physically with genes and subunits of the BRAHMA BAP chromatin remodeling complex and encodes TnaA proteins with putative E3 SUMO-ligase activity. In contrast to the phenocritic lethal phase of animals with mutations in other TrxG genes, tna mutant individuals die late in development. In this study we determined the requirements of TnaA for survival at pupal and adult stages, in different tna mutant genotypes where we corroborate the lack of TnaA proteins, and the presence of adult homeotic loss-of-function phenotypes. We also investigated whether the absence of TnaA in haltere and leg larval imaginal discs affects the presence of the homeotic proteins Ultrabithorax and Sex combs reduced respectively by using some of the characterized genotypes and more finely by generating TnaA defective clones induced at different stages of development. We found that, tna is not required for growth or survival of imaginal disc cells and that it is a fine modulator of homeotic gene expression.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adriana Hernández-Becerril
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan Manuel Murillo-Maldonado
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
13
|
Def1 interacts with TFIIH and modulates RNA polymerase II transcription. Proc Natl Acad Sci U S A 2017; 114:13230-13235. [PMID: 29180430 DOI: 10.1073/pnas.1707955114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined. We have found that Def1 copurifies from yeast whole-cell extract with TFIIH, the largest general transcription factor required for transcription initiation and nucleotide excision repair. The addition of recombinant Def1 and Ela1-Elc1 enhanced transcription initiation in an in vitro reconstituted system including pol II, the general transcription factors, and TFIIS. Def1 also enhanced transcription restart from TFIIS-induced cleavage in a pol II transcribing complex. In the Δdef1 strain, heat shock genes were misregulated, indicating that Def1 is required for induction of some stress-responsive genes in yeast. Taken together, our results extend the understanding of the molecular mechanism of transcription regulation on cellular stress and reveal functional similarities to the mammalian system.
Collapse
|
14
|
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription. Mol Cell 2017; 68:872-884.e6. [PMID: 29153392 DOI: 10.1016/j.molcel.2017.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/21/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Polycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of the PRC2 active site and used the resultant data to screen for uncharacterized potential targets. The RNA polymerase II (Pol II) transcription elongation factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of a subset of PRC2 target genes as measured by both steady-state and nascent RNA levels and perturbed embryonic stem cell differentiation. We propose that PRC2 modulates transcription of a subset of low expression target genes in part via methylation of EloA.
Collapse
|
15
|
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem 2017; 119:1273-1284. [PMID: 28722178 DOI: 10.1002/jcb.26293] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.
Collapse
Affiliation(s)
- Lia Carolina Franco
- Escuela de Medicina, Universidad de las Americas (UDLA), Quito, Ecuador.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Fátima Morales
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Departamento de Química Orgánica, Universidad de Murcia, Murcia, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
17
|
Tan JL, Fogley RD, Flynn RA, Ablain J, Yang S, Saint-André V, Fan ZP, Do BT, Laga AC, Fujinaga K, Santoriello C, Greer CB, Kim YJ, Clohessy JG, Bothmer A, Pandell N, Avagyan S, Brogie JE, van Rooijen E, Hagedorn EJ, Shyh-Chang N, White RM, Price DH, Pandolfi PP, Peterlin BM, Zhou Y, Kim TH, Asara JM, Chang HY, Young RA, Zon LI. Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell 2016; 62:34-46. [PMID: 27058786 DOI: 10.1016/j.molcel.2016.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022]
Abstract
Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma.
Collapse
Affiliation(s)
- Justin L Tan
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Rachel D Fogley
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julien Ablain
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Song Yang
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Violaine Saint-André
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Zi Peng Fan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Brian T Do
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvaro C Laga
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina Santoriello
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Celeste B Greer
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Bothmer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Pandell
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Serine Avagyan
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - John E Brogie
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elliott J Hagedorn
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ng Shyh-Chang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Sadasivam DA, Huang DH. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet 2016; 12:e1005897. [PMID: 26926299 PMCID: PMC4771708 DOI: 10.1371/journal.pgen.1005897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells often adopt a unique developmental program while retaining certain flexibility. The molecular basis of such properties remains unclear. Using differentiation of pluripotent Drosophila imaginal tissues as assays, we examined the contribution of epigenetic factors in ectopic activation of Hox genes. We found that over-expression of Trithorax H3K4 methyltransferase can induce ectopic adult appendages by selectively activating the Hox genes Ultrabithorax and Sex comb reduced in wing and leg discs, respectively. This tissue-specific inducibility correlates with the presence of paused RNA polymerase II in the promoter-proximal region of these genes. Although the Antennapedia promoter is paused in eye-antenna discs, it cannot be induced by Trx without a reduction in histone variants or their chaperones, suggesting additional control by the nucleosomal architecture. Lineage tracing and pulse-chase experiments revealed that the active state of Hox genes is maintained substantially longer in mutants deficient for HIRA, a chaperone for the H3.3 variant. In addition, both HIRA and H3.3 appeared to act cooperatively with the Polycomb group of epigenetic repressors. These results support the involvement of H3.3-mediated nucleosome turnover in restoring the repressed state. We propose a regulatory framework integrating transcriptional pausing, histone modification, nucleosome architecture and turnover for cell lineage maintenance. During animal development, the primordia of different body parts undergo a series of transitions in which their developmental potency becomes more restricted. Hox genes encode a family of evolutionarily conserved transcriptional factors that are crucial for choosing different paths during transitions. Thus, the transcriptional status of Hox genes is directly linked to the maintenance and developmental direction of pluripotent tissues. As post-translational methylation of histone H3 is pivotal for transcriptional control, we could activate Hox genes and alter the subsequent development of some pluripotent Drosophila imaginal tissues by increasing the level of Trithorax that catalyzes activation-related methylation. However, other imaginal tissues remain refractory unless histone variants or their chaperones that directly affect nucleosome dynamics are simultaneously depleted. By monitoring the duration of Hox expression under these conditions, we found that the active state of Hox genes is substantially prolonged, resulting from effective conversion of promoter-associated paused RNA polymerase II into active transcription. Further analyses indicate that these factors are functionally linked to the Polycomb group of epigenetic factors that bestow long-term repression. Our studies demonstrate that developmental constraints are modulated by factors acting at multiple levels, offering a useful approach to tissue re-programming in regeneration medicine and stem cell research.
Collapse
Affiliation(s)
- Devendran A. Sadasivam
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, Liu S, Li H, Lu J, Li Z, Chen L, Chen X, Sun L, Muegge K, Cao Y, Tao Y. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 2015; 34:6079-91. [PMID: 25745994 PMCID: PMC4564361 DOI: 10.1038/onc.2015.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) causes human lymphoid malignancies, and the EBV product latent membrane protein 1 (LMP1) has been identified as an oncogene in epithelial carcinomas such as nasopharyngeal carcinoma (NPC). EBV can epigenetically reprogram lymphocyte-specific processes and induce cell immortalization. However, the interplay between LMP1 and the NPC host cell remains largely unknown. Here, we report that LMP1 is important to establish the Hox gene expression signature in NPC cell lines and tumor biopsies. LMP1 induces repression of several Hox genes in part via stalling of RNA polymerase II (RNA Pol II). Pol II stalling can be overcome by irradiation involving the epigenetic regulator TET3. Furthermore, we report that HoxC8, one of the genes silenced by LMP1, has a role in tumor growth. Ectopic expression of HoxC8 inhibits NPC cell growth in vitro and in vivo, modulates glycolysis and regulates the expression of tricarboxylic acid (TCA) cycle-related genes. We propose that viral latency products may repress via stalling key mediators that in turn modulate glycolysis.
Collapse
Affiliation(s)
- Yiqun Jiang
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Bin Yan
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Weiwei Lai
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Ying Shi
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 China
| | - Jiantao Jia
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Hongde Li
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Jinchen Lu
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Ling Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Xue Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Lunqun Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Yongguang Tao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| |
Collapse
|
20
|
Perlman EJ, Gadd S, Arold ST, Radhakrishnan A, Gerhard DS, Jennings L, Huff V, Guidry Auvil JM, Davidsen TM, Dome JS, Meerzaman D, Hsu CH, Nguyen C, Anderson J, Ma Y, Mungall AJ, Moore RA, Marra MA, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Gastier-Foster JM, Ross N, Smith MA. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nat Commun 2015; 6:10013. [PMID: 26635203 PMCID: PMC4686660 DOI: 10.1038/ncomms10013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.
Collapse
Affiliation(s)
- Elizabeth J. Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Stefan T. Arold
- King Abdullah University of Science and Technology, Department of Biochemistry and Molecular Biology, Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, Thuwal 23955, Saudi Arabia
| | - Anand Radhakrishnan
- King Abdullah University of Science and Technology, Department of Biochemistry and Molecular Biology, Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, Thuwal 23955, Saudi Arabia
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Lawrence Jennings
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Jaime M. Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Tanja M. Davidsen
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Jeffrey S. Dome
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Chih Hao Hsu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - James Anderson
- Frontier Science and Technology Research Foundation, 505 S. Rosa Rd #100, Madison, Wisconsin 53719, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Andrew J. Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Richard A. Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, Tennessee 38105, USA
| | - Jing Ma
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, Tennessee 38105, USA
| | - David A. Wheeler
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | - Oliver A. Hampton
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | - Julie M. Gastier-Foster
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, 700 Children's Drive, Columbus, Ohio 43205, USA
| | - Nicole Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, 9609 Medical Center Drive, RM 5-W414, MSC 9737, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Lee JEA, Mitchell NC, Zaytseva O, Chahal A, Mendis P, Cartier-Michaud A, Parsons LM, Poortinga G, Levens DL, Hannan RD, Quinn LM. Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nat Commun 2015; 6:7404. [PMID: 26074141 DOI: 10.1038/ncomms8404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Naomi C Mitchell
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Olga Zaytseva
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Arjun Chahal
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Peter Mendis
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | | | - Linda M Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Ross D Hannan
- 1] Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia [2] Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra Australian Capital Territory 2600, Australia
| | - Leonie M Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
22
|
De Kumar B, Parrish ME, Slaughter BD, Unruh JR, Gogol M, Seidel C, Paulson A, Li H, Gaudenz K, Peak A, McDowell W, Fleharty B, Ahn Y, Lin C, Smith E, Shilatifard A, Krumlauf R. Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells. Genome Res 2015; 25:1229-43. [PMID: 26025802 PMCID: PMC4510006 DOI: 10.1101/gr.184978.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian Fleharty
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
23
|
Weems JC, Slaughter BD, Unruh JR, Hall SM, McLaird MB, Gilmore JM, Washburn MP, Florens L, Yasukawa T, Aso T, Conaway JW, Conaway RC. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses. J Biol Chem 2015; 290:15030-41. [PMID: 25878247 DOI: 10.1074/jbc.m114.632794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 11/06/2022] Open
Abstract
Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.
Collapse
Affiliation(s)
- Juston C Weems
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Brian D Slaughter
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Jay R Unruh
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Shawn M Hall
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Merry B McLaird
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Joshua M Gilmore
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, the Departments of Pathology and Laboratory Medicine and
| | - Laurence Florens
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Takashi Yasukawa
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Teijiro Aso
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Joan W Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Ronald C Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| |
Collapse
|
24
|
Dahlberg O, Shilkova O, Tang M, Holmqvist PH, Mannervik M. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development. PLoS Genet 2015; 11:e1004971. [PMID: 25679530 PMCID: PMC4334199 DOI: 10.1371/journal.pgen.1004971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. Embryo development involves formation of various cell types through the regulation of gene transcription, resulting in expression of cell type specific RNAs and proteins. A key regulatory step in transcription of animal genes involves the transition of RNA polymerase II (Pol II) into active elongation. At many genes, Pol II is transiently paused approximately 50 basepairs downstream of the transcription start site. Release from this promoter-proximal pausing involves the kinase P-TEFb, which phosphorylates negative elongation factors, allowing Pol II to enter into productive elongation. In this work, we have depleted a considerable amount of P-TEFb from early Drosophila embryos. We find that several genes with paused Pol II can be expressed relatively normally in P-TEFb depleted embryos, whereas expression of some non-paused genes is substantially reduced. This result suggests that also non-paused genes transit through a P-TEFb-dependent checkpoint before entering active elongation. Unexpectedly, we find less Pol II associated with these non-paused genes in P-TEFb embryos. We demonstrate that a protein complex involved in recruitment of Pol II to promoters, the Mediator complex, show the same morphological and gene expression phenotypes as P-TEFb. We propose that Mediator and P-TEFb function together in recruiting Pol II to a subset of developmental genes.
Collapse
Affiliation(s)
- Olle Dahlberg
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Olga Shilkova
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Min Tang
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Dept. Biochemistry & Biology, South China University, Hengyang, Hunan Province, China
| | - Per-Henrik Holmqvist
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Dept. Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Yin A, Pan L, Zhang X, Wang L, Yin Y, Jia S, Liu W, Xin C, Liu K, Yu X, Sun G, Al-hudaib K, Hu S, Al-Mssallem IS, Yu J. Transcriptomic study of the red palm weevil Rhynchophorus ferrugineus embryogenesis. INSECT SCIENCE 2015; 22:65-82. [PMID: 24347559 DOI: 10.1111/1744-7917.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 06/03/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is an invasive, concealed and destructive tissue borer, and it becomes a lethal pest of the palm family of plants and has been reported to attack 20 palm species around the globe. Here we report a systematic transcriptomic study on embryogenesis of RPW, where we analyze the transcriptomes across five developmental stages of RPW embryogenesis, involving four embryonic stages (E1, E2, E3 and E4) and one larval stage (L1). Using the RNA-seq and next-generation platforms, we generated 80 to 91 million reads for each library and assemble 22 532 genes that are expressed at different embryonic stages. Among the total transcripts from the five embryonic development stages, we found that 30.45 % are differentially expressed, 10.10 % show stage-specificity and even a larger fraction, 62.88 %, exhibit constitutive expression in all the stages. We also analyzes the expression dynamics of several conserved signaling pathways (such as Hedgehog, JAK-STAT, Notch, TGF-β, Ras/MAPK and Wnt), as well as key developmental genes, including those related to apoptosis, axis formation, Hox complex, neurogenesis and segmentation. The datasets provide an essential resource for gene annotation and RPW functional genomics, including studies by using tools and concepts from multiple disciplines, such as development, physiology, biochemistry, molecular biology and genetics.
Collapse
Affiliation(s)
- An Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bowman SK, Deaton AM, Domingues H, Wang PI, Sadreyev RI, Kingston RE, Bender W. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. eLife 2014; 3:e02833. [PMID: 25082344 PMCID: PMC4139060 DOI: 10.7554/elife.02833] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bithorax complex (BX-C) in Drosophila melanogaster is a cluster of homeotic genes that determine body segment identity. Expression of these genes is governed by cis-regulatory domains, one for each parasegment. Stable repression of these domains depends on Polycomb Group (PcG) functions, which include trimethylation of lysine 27 of histone H3 (H3K27me3). To search for parasegment-specific signatures that reflect PcG function, chromatin from single parasegments was isolated and profiled. The H3K27me3 profiles across the BX-C in successive parasegments showed a 'stairstep' pattern that revealed sharp boundaries of the BX-C regulatory domains. Acetylated H3K27 was broadly enriched across active domains, in a pattern complementary to H3K27me3. The CCCTC-binding protein (CTCF) bound the borders between H3K27 modification domains; it was retained even in parasegments where adjacent domains lack H3K27me3. These findings provide a molecular definition of the homeotic domains, and implicate precisely positioned H3K27 modifications as a central determinant of segment identity.
Collapse
Affiliation(s)
- Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Aimee M Deaton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Heber Domingues
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Peggy I Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Pathology, Harvard Medical School, Boston, United States
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
27
|
Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 2014; 156:678-90. [PMID: 24529373 DOI: 10.1016/j.cell.2014.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/28/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023]
Abstract
Erk1/2 activation contributes to mouse ES cell pluripotency. We found a direct role of Erk1/2 in modulating chromatin features required for regulated developmental gene expression. Erk2 binds to specific DNA sequence motifs typically accessed by Jarid2 and PRC2. Negating Erk1/2 activation leads to increased nucleosome occupancy and decreased occupancy of PRC2 and poised RNAPII at Erk2-PRC2-targeted developmental genes. Surprisingly, Erk2-PRC2-targeted genes are specifically devoid of TFIIH, known to phosphorylate RNA polymerase II (RNAPII) at serine-5, giving rise to its initiated form. Erk2 interacts with and phosphorylates RNAPII at its serine 5 residue, which is consistent with the presence of poised RNAPII as a function of Erk1/2 activation. These findings underscore a key role for Erk1/2 activation in promoting the primed status of developmental genes in mouse ES cells and suggest that the transcription complex at developmental genes is different than the complexes formed at other genes, offering alternative pathways of regulation.
Collapse
|
28
|
Orsi GA, Kasinathan S, Hughes KT, Saminadin-Peter S, Henikoff S, Ahmad K. High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Res 2014; 24:809-20. [PMID: 24668908 PMCID: PMC4009610 DOI: 10.1101/gr.163642.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polycomb-mediated chromatin repression modulates gene expression during development in metazoans. Binding of multiple sequence-specific factors at discrete Polycomb response elements (PREs) is thought to recruit repressive complexes that spread across an extended chromatin domain. To dissect the structure of PREs, we applied high-resolution mapping of nonhistone chromatin proteins in native chromatin of Drosophila cells. Analysis of occupied sites reveal interactions between transcription factors that stabilize Polycomb anchoring to DNA, and implicate the general transcription factor ADF1 as a novel PRE component. By comparing two Drosophila cell lines with differential chromatin states, we provide evidence that repression is accomplished by enhanced Polycomb recruitment both to PREs and to target promoters of repressed genes. These results suggest that the stability of multifactor complexes at promoters and regulatory elements is a crucial aspect of developmentally regulated gene expression.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
30
|
Saunders A, Core LJ, Sutcliffe C, Lis JT, Ashe HL. Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 2013; 27:1146-58. [PMID: 23699410 DOI: 10.1101/gad.215459.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cascades of zygotic gene expression pattern the anterior-posterior (AP) and dorsal-ventral (DV) axes of the early Drosophila embryo. Here, we used the global run-on sequencing assay (GRO-seq) to map the genome-wide RNA polymerase distribution during early Drosophila embryogenesis, thus providing insights into how genes are regulated. We identify widespread promoter-proximal pausing yet show that the presence of paused polymerase does not necessarily equate to direct regulation through pause release to productive elongation. Our data reveal that a subset of early Zelda-activated genes is regulated at the level of polymerase recruitment, whereas other Zelda target and axis patterning genes are predominantly regulated through pause release. In contrast to other signaling pathways, we found that bone morphogenetic protein (BMP) target genes are collectively more highly paused than BMP pathway components and show that BMP target gene expression requires the pause-inducing negative elongation factor (NELF) complex. Our data also suggest that polymerase pausing allows plasticity in gene activation throughout embryogenesis, as transiently repressed and transcriptionally silenced genes maintain and lose promoter polymerases, respectively. Finally, we provide evidence that the major effect of pausing is on the levels, rather than timing, of transcription. These data are discussed in terms of the efficiency of transcriptional activation required across cell populations during developmental time constraints.
Collapse
Affiliation(s)
- Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Harvey R, Schuster E, Jennings BH. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila. PLoS One 2013; 8:e70184. [PMID: 23894613 PMCID: PMC3718797 DOI: 10.1371/journal.pone.0070184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022] Open
Abstract
The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.
Collapse
Affiliation(s)
- Robert Harvey
- Transcriptional Regulation Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Eugene Schuster
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Barbara H. Jennings
- Transcriptional Regulation Group, UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Smith E, Shilatifard A. Transcriptional elongation checkpoint control in development and disease. Genes Dev 2013; 27:1079-88. [PMID: 23699407 DOI: 10.1101/gad.215137.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcriptional elongation control by RNA polymerase II and its associated factors has taken center stage as a process essential for the regulation of gene expression throughout development. In this review, we analyze recent findings on the identification of factors functioning in the regulation of the transcriptional elongation checkpoint control (TECC) stage of gene expression and how the factors' misregulation is associated with disease pathogenesis, including cancer.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
33
|
Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 2012; 21:176-183. [PMID: 23260655 DOI: 10.1016/j.str.2012.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 01/31/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins cause oncogenic transformation of hematopoietic cells by constitutive recruitment of elongation factors to HOX promoters, resulting in overexpression of target genes. The structural basis of transactivation by MLL fusion partners remains undetermined. We show that the ANC1 homology domain (AHD) of AF9, one of the most common MLL translocation partners, is intrinsically disordered and recruits multiple transcription factors through coupled folding and binding. We determined the structure of the AF9 AHD in complex with the elongation factor AF4 and show that aliphatic residues, which are conserved in each of the AF9 binding partners, form an integral part of the hydrophobic core of the complex. Nuclear magnetic resonance relaxation measurements show that AF9 retains significant dynamic behavior which may facilitate exchange between disordered partners. We propose that AF9 functions as a signaling hub that regulates transcription through dynamic recruitment of cofactors in normal hematopoiesis and in acute leukemia.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Charles R Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie A Johnson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
34
|
Yasukawa T, Bhatt S, Takeuchi T, Kawauchi J, Takahashi H, Tsutsui A, Muraoka T, Inoue M, Tsuda M, Kitajima S, Conaway RC, Conaway JW, Trainor PA, Aso T. Transcriptional elongation factor elongin A regulates retinoic acid-induced gene expression during neuronal differentiation. Cell Rep 2012; 2:1129-36. [PMID: 23122963 DOI: 10.1016/j.celrep.2012.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 08/30/2012] [Accepted: 09/28/2012] [Indexed: 01/16/2023] Open
Abstract
Elongin A increases the rate of RNA polymerase II (pol II) transcript elongation by suppressing transient pausing by the enzyme. Elongin A also acts as a component of a cullin-RING ligase that can target stalled pol II for ubiquitylation and proteasome-dependent degradation. It is not known whether these activities of Elongin A are functionally interdependent in vivo. Here, we demonstrate that Elongin A-deficient (Elongin A(-/-)) embryos exhibit abnormalities in the formation of both cranial and spinal nerves and that Elongin A(-/-) embryonic stem cells (ESCs) show a markedly decreased capacity to differentiate into neurons. Moreover, we identify Elongin A mutations that selectively inactivate one or the other of the aforementioned activities and show that mutants that retain the elongation stimulatory, but not pol II ubiquitylation, activity of Elongin A rescue neuronal differentiation and support retinoic acid-induced upregulation of a subset of neurogenesis-related genes in Elongin A(-/-) ESCs.
Collapse
Affiliation(s)
- Takashi Yasukawa
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu S, Tao Y. Interplay between chromatin modifications and paused RNA polymerase II in dynamic transition between stalled and activated genes. Biol Rev Camb Philos Soc 2012; 88:40-8. [PMID: 22765520 DOI: 10.1111/j.1469-185x.2012.00237.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dynamic interplay between chromatin modification (e.g. DNA methylation) and RNA polymerase II (Pol II) plays a critical role in gene transcription during stem cell development, establishment, and maintenance and in the cellular response to extracellular stimuli such as those that cause DNA damage. Pol II is recruited to the promoter-proximal regions of numerous inactive genes at high conentrations in a process called Pol II stalling. This is a key process prior to gene activation and it involves many interacting factors. Chromatin modification including nucleosome position is dependent on chromatin structure. Stalled genes create a particular structural conformation of chromatin, which acts as a target for chromatin modification. In this way, Pol II stalling may be regarded as a type of signal for chromatin modification in these regions during the dynamic transition between stalled and activated genes.
Collapse
Affiliation(s)
- Shuang Liu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | | |
Collapse
|
36
|
Briones V, Muegge K. The ghosts in the machine: DNA methylation and the mystery of differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:757-62. [PMID: 22381140 PMCID: PMC7477944 DOI: 10.1016/j.bbagrm.2012.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 01/29/2023]
Abstract
Methylation regulates DNA by altering chromatin and limiting accessibility of transcription factors and RNA polymerase. In this way, DNA methylation controls gene expression and plays a role in ES cell regulation, tissue differentiation and the development of the organism. In abnormal circumstances methylation can also induce diseases and promote cancer progression. Chromatin remodeling proteins such as the SNF2 family member Lsh regulates genome-wide cytosine methylation patterns during mammalian development. Lsh promotes methylation by targeting and repressing repeat sequences that are imbedded in heterochromatin. Lsh also regulates cytosine methylation at unique loci. Alterations in histone modifications (such as H3K4me3, histone acetylation, H3K27me3 and H2Aub) can be associated with DNA methylation changes making Lsh-mediated cytosine methylation part of a larger epigenetic network defining gene expression and cellular differentiation during development. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Victorino Briones
- Laboratory of Cancer Prevention, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Kathrin Muegge
- Laboratory of Cancer Prevention, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| |
Collapse
|
37
|
Cosgrove MS, Ding Y, Rennie WA, Lane MJ, Hanes SD. The Bin3 RNA methyltransferase targets 7SK RNA to control transcription and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:633-47. [PMID: 22740346 DOI: 10.1002/wrna.1123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bicoid-interacting protein 3 (Bin3) is a conserved RNA methyltransferase found in eukaryotes ranging from fission yeast to humans. It was originally discovered as a Bicoid (Bcd)-interacting protein in Drosophila, where it is required for anterior-posterior and dorso-ventral axis determination in the early embryo. The mammalian ortholog of Bin3 (BCDIN3), also known as methyl phosphate capping enzyme (MePCE), plays a key role in repressing transcription. In transcription, MePCE binds the non-coding 7SK RNA, which forms a scaffold for an RNA-protein complex that inhibits positive-acting transcription elongation factor b, an RNA polymerase II elongation factor. MePCE uses S-adenosyl methionine to transfer a methyl group onto the γ-phosphate of the 5' guanosine of 7SK RNA generating an unusual cap structure that protects 7SK RNA from degradation. Bin3/MePCE also has a role in translation regulation. Initial studies in Drosophila indicate that Bin3 targets 7SK RNA and stabilizes a distinct RNA-protein complex that assembles on the 3'-untranslated region of caudal mRNAs to prevent translation initiation. Much remains to be learned about Bin3/MeCPE function, including how it recognizes 7SK RNA, what other RNA substrates it might target, and how widespread a role it plays in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
38
|
Negative elongation factor-mediated suppression of RNA polymerase II elongation of Kaposi's sarcoma-associated herpesvirus lytic gene expression. J Virol 2012; 86:9696-707. [PMID: 22740393 DOI: 10.1128/jvi.01012-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genome-wide chromatin immunoprecipitation assays indicate that the promoter-proximal pausing of RNA polymerase II (RNAPII) is an important postinitiation step for gene regulation. During latent infection, the majority of Kaposi's sarcoma-associated herpesvirus (KSHV) genes is silenced via repressive histone marks on their promoters. Despite the absence of their expression during latency, however, several lytic promoters are enriched with activating histone marks, suggesting that mechanisms other than heterochromatin-mediated suppression contribute to preventing lytic gene expression. Here, we show that the RNAPII-mediated transcription of the KSHV OriLytL, K5, K6, and K7 (OriLytL-K7) lytic genes is paused at the elongation step during latency. Specifically, the RNAPII-mediated transcription is stalled by the host's negative elongation factor (NELF) at the promoter regions of OriLytL-K7 lytic genes during latency, leading to the hyperphosphorylation of the serine 5 residue and the hypophosphorylation of the serine 2 of the C-terminal domain of the RNAPII large subunit, a hallmark of stalled RNAPII. Consequently, depletion of NELF expression induced transition of stalled RNAPII into a productive transcription elongation at the promoter-proximal regions of OriLytL-K7 lytic genes, leading to their RTA-independent expression. Using an RTA-deficient recombinant KSHV, we also showed that expression of the K5, K6, and K7 lytic genes was highly inducible upon external stimuli compared to other lytic genes that lack RNAPII on their promoters during latency. These results indicate that the transcription elongation of KSHV OriLytL-K7 lytic genes is inhibited by NELF during latency, but can also be promptly reactivated in an RTA-independent manner upon external stimuli.
Collapse
|
39
|
Transcriptional repression via antilooping in the Drosophila embryo. Proc Natl Acad Sci U S A 2012; 109:9460-4. [PMID: 22645339 DOI: 10.1073/pnas.1102625108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressors are thought to inhibit gene expression by interfering with the binding or function of RNA Polymerase II, perhaps by promoting local chromatin condensation. Here, we present evidence for a distinctive mechanism of repression, whereby sequence-specific repressors prevent the looping of distal enhancers to the promoter. Particular efforts focus on the Snail repressor, which plays a conserved role in promoting epithelial-mesenchyme transitions in both invertebrates and vertebrates, including mesoderm invagination in Drosophila, neural crest migration in vertebrates, and tumorigenesis in mammals. Chromosome conformation capture experiments were used to examine enhancer looping at Snail target genes in wild-type and mutant embryos. These studies suggest that the Snail repressor blocks the formation of fruitful enhancer-promoter interactions when bound to a distal enhancer. This higher-order mechanism of transcriptional repression has broad implications for the control of gene activity in metazoan development.
Collapse
|
40
|
Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012; 3:81. [PMID: 22509166 PMCID: PMC3321637 DOI: 10.3389/fphys.2012.00081] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
Collapse
Affiliation(s)
- Joshua Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME, USA
| | | | | |
Collapse
|
41
|
Nguyen D, Krueger BJ, Sedore SC, Brogie JE, Rogers JT, Rajendra TK, Saunders A, Matera AG, Lis JT, Uguen P, Price DH. The Drosophila 7SK snRNP and the essential role of dHEXIM in development. Nucleic Acids Res 2012; 40:5283-97. [PMID: 22379134 PMCID: PMC3384314 DOI: 10.1093/nar/gks191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of the positive transcription elongation factor, P-TEFb, plays a major role in controlling mammalian transcription and this is accomplished in part by controlled release of P-TEFb from the 7SK snRNP that sequesters the kinase in an inactive state. We demonstrate here that a similar P-TEFb control system exists in Drosophila. We show that an RNA previously suggested to be a 7SK homolog is, in fact, associated with P-TEFb, through the action of a homolog of the human HEXIM1/2 proteins (dHEXIM). In addition, a Drosophila La related protein (now called dLARP7) is shown to be the functional homolog of human LARP7. The Drosophila 7SK snRNP (d7SK snRNP) responded to treatment of cells with P-TEFb inhibitors and to nuclease treatment of cell lysates by releasing P-TEFb. Supporting a critical role for the d7SK snRNP in Drosophila development, dLARP7 and dHEXIM were found to be ubiquitously expressed throughout embryos and tissues at all stages. Importantly, knockdown of dHEXIM was embryonic lethal, and reduction of dHEXIM in specific tissues led to serious developmental defects. Our results suggest that regulation of P-TEFb by the d7SK snRNP is essential for the growth and differentiation of tissues required during Drosophila development.
Collapse
Affiliation(s)
- Duy Nguyen
- Université Paris-Sud 11, UMR-S757, Bât. 443, Orsay, F-91405, INSERM, Orsay, F-91405, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tang JB, Greenberg RA. Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks. Genes Cancer 2011; 1:787-96. [PMID: 21113239 DOI: 10.1177/1947601910382774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein modifications, including phosphorylation, ubiquitylation, and SUMOylation, have emerged as essential components of the response to DNA double-strand breaks (DSBs). Mutations within the genes encoding effectors of these components lead to genomic instability and in selected cases, human radiosensitivity and cancer susceptibility syndromes. In this review, we highlight recent advances in the study of DSB-associated signaling events by ubiquitylation and SUMOylation and discuss how coordination among protein modification systems integrates components of the DNA damage response into a network that regulates DNA repair and transcriptional processes on contiguous stretches of chromatin.
Collapse
Affiliation(s)
- Jiang-Bo Tang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
43
|
Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:283-301. [PMID: 22017583 DOI: 10.1146/annurev-pathol-011811-132434] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggressive leukemias arise in both children and adults as a result of rearrangements to the mixed-lineage leukemia gene (MLL) located on chromosome 11q23. MLL encodes a large histone methyltransferase that directly binds DNA and positively regulates gene transcription, including homeobox (HOX) genes. MLL is involved in chromosomal translocations, partial tandem duplications, and amplifications, all of which result in hematopoietic malignancies due to sustained HOX expression and stalled differentiation. MLL lesions are associated with both acute myeloid leukemia and acute lymphoid leukemia and are usually associated with a relatively poor prognosis despite improved treatment options such as allogeneic hematopoietic stem cell transplantation, which underscores the need for new treatment regimens. Recent advances have begun to reveal the molecular mechanisms that drive MLL-associated leukemias, which, in turn, have provided opportunities for therapeutic development. Here, we discuss the etiology of MLL leukemias and potential directions for future therapy.
Collapse
Affiliation(s)
- Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
44
|
Cave JW. Selective repression of Notch pathway target gene transcription. Dev Biol 2011; 360:123-31. [PMID: 21963536 DOI: 10.1016/j.ydbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/28/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway regulates metazoan development, in part, by directly controlling the transcription of target genes. For a given cellular context, however, only subsets of the known target genes are transcribed when the pathway is activated. Thus, there are context-dependent mechanisms that selectively maintain repression of target gene transcription when the Notch pathway is activated. This review focuses on molecular mechanisms that have been recently reported to mediate selective repression of Notch pathway target gene transcription. These mechanisms are essential for generating the complex spatial and temporal expression patterns of Notch target genes during development.
Collapse
Affiliation(s)
- John W Cave
- Dept. of. Neurology and Neuroscience, Weill Cornell Medical College, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| |
Collapse
|
45
|
Chopra VS, Hendrix DA, Core LJ, Tsui C, Lis JT, Levine M. The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol Cell 2011; 42:837-44. [PMID: 21700228 DOI: 10.1016/j.molcel.2011.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/27/2011] [Accepted: 05/05/2011] [Indexed: 01/30/2023]
Abstract
Many developmental control genes contain paused RNA polymerase II (Pol II) and are thereby "poised" for rapid and synchronous activation in the early Drosophila embryo. Evidence is presented that Polycomb group (PcG) repressors can influence paused Pol II. ChIP-Seq and GRO-Seq assays were used to determine the genome-wide distributions of Pol II, H3K27me3, and H3K4me3 in extra sex combs (esc) mutant embryos. ESC is a key component of the Polycomb repressive complex 2 (PRC2), which mediates H3K27me3 modification. Enhanced Pol II occupancy is observed for thousands of genes in esc mutant embryos, including genes not directly regulated by PRC2. Thus, it would appear that silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into "poised" genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants.
Collapse
Affiliation(s)
- Vivek S Chopra
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Xiao A. Epigenetic regulation in neural crest development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:788-96. [PMID: 21618405 DOI: 10.1002/bdra.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the developing dorsal neural fold of vertebrate embryos. Once their fates are specified, neural crest cells (NCCs) migrate along defined routes and differentiate into a variety of tissues, including bone and cartilage of the craniofacial skeleton, peripheral neurons, glia, pigment cells, endocrine cells, and mesenchymal precursor cells (Santagati and Rijli,2003; Dupin et al.,2006; Hall,2009). Abnormal development of NCCs causes a number of human diseases, including ear abnormalities (including deafness), heart anomalies, neuroblastomas, and mandibulofacial dysostosis (Hall,2009). For more than a century, NCCs have attracted the attention of geneticists and developmental biologists for their stem cell-like properties, including self-renewal and multipotent differentiation potential. However, we have only begun to understand the underlying mechanisms responsible for their formation and behavior. Recent studies have demonstrated that epigenetic regulation plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-mediated mechanisms for vertebrate NCC development.
Collapse
Affiliation(s)
- Yifei Liu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Abstract
Recent studies identified an interaction between the Polymerase Associated Factor complex (PAFc) and Mixed Lineage Leukemia (MLL), including MLL-rearranged oncoproteins. This interaction is critical for MLL transcriptional activity and MLL-rearranged leukemogenesis. Here, we discuss the potential molecular role of the PAFc in transcriptional dysregulation of MLL target genes and the interplay between PAFc and MLL-rearranged oncoproteins in leukemogenesis.
Collapse
Affiliation(s)
- Jiaying Tan
- Department of Pathology, University of Michigan Medical School, 5240 Medical Sciences 1, 1301 Catherine Avenue, Ann Arbor MI 48109, USA
| | | | | |
Collapse
|
49
|
Balagopal V, Parker R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:835-42. [PMID: 21460238 PMCID: PMC3078733 DOI: 10.1261/rna.2677311] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The control of translation is a critical aspect of gene regulation. It is often inversely related to mRNA degradation and is typically controlled during initiation. The Stm1 protein in Saccharomyces cerevisiae has been shown to interact with ribosomes, affect the interaction of eEF3 with ribosomes, and promote the decapping of a subclass of mRNAs. We demonstrate that in vitro Stm1 inhibits translation after formation of an 80S complex. This suggests that Stm1 modulates translation and mRNA decapping by controlling translation elongation.
Collapse
Affiliation(s)
- Vidya Balagopal
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
50
|
Abstract
As a significant epigenetic regulation mechanism, histone methylation plays an important role in many biological processes. In cells, there are various histone methyltransferases and histone demethylases working cooperatively to regulate the histone methylation state. Upon histone modification, effector proteins recognize modification sites specifically, and affect gene transcriptional process. This review mainly focuses on recent advances in histone methylation effector protein's function mechanism.
Collapse
|