1
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Hamchand R, Wang K, Song D, Palm NW, Crawford JM. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nat Commun 2024; 15:8902. [PMID: 39406708 PMCID: PMC11480411 DOI: 10.1038/s41467-024-53185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Virulent Klebsiella oxytoca strains are associated with gut and lung pathologies, yet our understanding of the molecular signals governing pathogenesis remains limited. Here, we characterized a family of K. oxytoca pyrazine and pyrazinone autoinducers and explored their roles in microbial and host signaling. We identified the human mucin capping sugar Neu5Ac as a selective elicitor of leupeptin, a protease inhibitor prevalent in clinical lung isolates of K. oxytoca, and leupeptin-derived pyrazinone biosynthesis. Additionally, we uncovered a separate pyrazine pathway, regulated by general carbohydrate metabolism, derived from a broadly conserved PLP-dependent enzyme. While both pyrazine and pyrazinone signaling induce iron acquisition responses, including enterobactin biosynthesis, pyrazinone signaling enhances yersiniabactin virulence factor production and selectively activates the proinflammatory human histamine receptor H4 (HRH4). Our findings suggest that the availability of specific carbohydrates delineates distinct autoinducer pathways in K. oxytoca that may have differential effects on bacterial virulence and host immune responses.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Kevin Wang
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Rogan CJ, Pang YY, Mathews SD, Turner SE, Weisberg AJ, Lehmann S, Rentsch D, Anderson JC. Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen. Nat Commun 2024; 15:7048. [PMID: 39147739 PMCID: PMC11327374 DOI: 10.1038/s41467-024-51244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.
Collapse
Affiliation(s)
- Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sophie D Mathews
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Silke Lehmann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
4
|
Lam YC, Hamchand R, Mucci NC, Kauffman SJ, Dudkina N, Reagle EV, Casanova-Torres ÁM, DeCuyper J, Chen H, Song D, Thomas MG, Palm NW, Goodrich-Blair H, Crawford JM. The Xenorhabdus nematophila LrhA transcriptional regulator modulates production of γ-keto- N-acyl amides with inhibitory activity against mutualistic host nematode egg hatching. Appl Environ Microbiol 2024; 90:e0052824. [PMID: 38916293 PMCID: PMC11267870 DOI: 10.1128/aem.00528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.
Collapse
Affiliation(s)
- Yick Chong Lam
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Nicholas C. Mucci
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Natavan Dudkina
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Emily V. Reagle
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jessica DeCuyper
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Haiwei Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Cortés-Albayay C, Delgado-Torres M, Larama G, Paredes-Negron C, de la Luz Mora M, Durán P, Barra PJ. Comparative genomics of plant growth promoting phosphobacteria isolated from acidic soils. Antonie Van Leeuwenhoek 2024; 117:76. [PMID: 38705910 DOI: 10.1007/s10482-024-01961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.
Collapse
Affiliation(s)
- Carlos Cortés-Albayay
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Mabel Delgado-Torres
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile
| | - Giovanni Larama
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Cecilia Paredes-Negron
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile
| | - María de la Luz Mora
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile
| | - Paola Durán
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile.
- Biocontrol Research Laboratory, Universidad de La Frontera, 4811230, Temuco, Chile.
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, 4811230, Temuco, Chile.
| | - Patricio Javier Barra
- Centre of Plant and Soil Interaction, Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4811230, Temuco, Chile.
| |
Collapse
|
6
|
Rill A, Zhao L, Bode HB. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling. Microb Cell Fact 2024; 23:98. [PMID: 38561780 PMCID: PMC10983751 DOI: 10.1186/s12934-024-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.
Collapse
Affiliation(s)
- Alexander Rill
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany
| | - Lei Zhao
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany.
- Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany.
| |
Collapse
|
7
|
Matsuda K, Maruyama H, Imachi K, Ikeda H, Wakimoto T. Actinobacterial chalkophores: the biosynthesis of hazimycins. J Antibiot (Tokyo) 2024; 77:228-237. [PMID: 38378905 DOI: 10.1038/s41429-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Copper is a transition metal element with significant effects on the morphological development and secondary metabolism of actinobacteria. In some microorganisms, copper-binding natural products are employed to modulate copper homeostasis, although their significance in actinobacteria remains largely unknown. Here, we identified the biosynthetic genes of the diisocyanide natural product hazimycin in Kitasatospora purpeofusca HV058, through gene knock-out and heterologous expression. Biochemical analyses revealed that hazimycin A specifically binds to copper, which diminishes its antimicrobial activity. The presence of a set of putative importer/exporter genes surrounding the biosynthetic genes suggested that hazimycin is a chalkophore that modulates the intracellular copper level. A bioinformatic survey of homologous gene cassettes, as well as the identification of two previously unknown hazimycin-producing Streptomyces strains, indicated that the isocyanide-based mechanism of copper homeostasis is prevalent in actinobacteria.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hiroto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Imachi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Haruo Ikeda
- Technology Research Association for Next generation natural products chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
8
|
Huang X, Tang Q, Liu S, Li C, Li Y, Sun Y, Ding X, Xia L, Hu S. Discovery of an antitumor compound from xenorhabdus stockiae HN_xs01. World J Microbiol Biotechnol 2024; 40:101. [PMID: 38366186 DOI: 10.1007/s11274-024-03915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.
Collapse
Affiliation(s)
- Xiyin Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Qiong Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Siqin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Chen Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Yaoguang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
| |
Collapse
|
9
|
Yoshimura A, Saeki R, Nakada R, Tomimoto S, Jomori T, Suganuma K, Wakimoto T. Membrane-Vesicle-Mediated Interbacterial Communication Activates Silent Secondary Metabolite Production. Angew Chem Int Ed Engl 2023; 62:e202307304. [PMID: 37449463 DOI: 10.1002/anie.202307304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Most bacterial biosynthetic gene clusters (BGCs) are "silent BGCs" that are expressed poorly or not at all under normal culture conditions. However, silent BGCs, even in part, may be conditionally expressed in response to external stimuli in the original bacterial habitats. The growing knowledge of bacterial membrane vesicles (MVs) suggests that they could be promising imitators of the exogenous stimulants, especially given their functions as signaling mediators in bacterial cell-to-cell communication. Therefore, we envisioned that MVs added to bacterial cultures could activate diverse silent BGCs. Herein, we employed Burkholderia multivorans MVs, which induced silent metabolites in a wide range of bacteria in Actinobacteria, Bacteroidetes and Proteobacteria phyla. A mechanistic analysis of MV-induced metabolite production in Xenorhabdus innexi suggested that the B. multivorans MVs activate silent metabolite production by inhibiting quorum sensing in X. innexi. In turn, the X. innexi MVs carrying some MV-induced peptides suppressed the growth of B. multivorans, highlighting the interspecies communication between B. multivorans and X. innexi through MV exchange.
Collapse
Affiliation(s)
- Aya Yoshimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Rio Saeki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Ryusuke Nakada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Shota Tomimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
- Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa, 903-0213, Japan
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine Inada, Obihiro, 080-8555, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
10
|
Awori RM, Hendre P, Amugune NO. The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins. Access Microbiol 2023; 5:000659.v3. [PMID: 37970093 PMCID: PMC10634486 DOI: 10.1099/acmi.0.000659.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Elakistos Biosciences, P. O. Box 19301-00100, Nairobi, Kenya
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Prasad Hendre
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Nelson O. Amugune
- Department of Biology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
11
|
Fomin V, Bazhenov S, Kononchuk O, Matveeva V, Zarubina A, Spiridonov S, Manukhov I. Photorhabdus lux-operon heat shock-like regulation. Heliyon 2023; 9:e14527. [PMID: 36950606 PMCID: PMC10025913 DOI: 10.1016/j.heliyon.2023.e14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The expression was researched in the natural strain Photorhabdus temperata and in the heterologous system of Escherichia coli. P. temperata FV2201 bacterium was isolated from soil in the Moscow region (growth optimum 28 °C). We showed that its luminescence significantly increases when the temperature rises to 34 °C. The increase in luminescence is associated with an increase in the transcription of luxCDABE genes, which was confirmed by RT-PCR. The promoter of the lux-operon of the related bacterium P. luminescens ZM1 from the forests of Moldova, being cloned in the heterologous system of E. coli, is activated when the temperature rises from room temperature to 42 °C. When heat shock is caused by ethanol addition, transcription of lux-operon increases only in the natural strain of P. temperata, but not in the heterologous system of E. coli cells. In addition, the activation of the lux-operon of P. luminescens persists in E. coli strains deficient in both the rpoH and rpoE genes. These results indicate the presence of sigma 32 and sigma 24 independent heat-shock-like mechanism of regulation of the lux-operon of P. luminescens in the heterologous E. coli system.
Collapse
Affiliation(s)
- V.V. Fomin
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - S.V. Bazhenov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - O.V. Kononchuk
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - V.O. Matveeva
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - A.P. Zarubina
- Biological Faculty, Lomonosov Moscow State University, Vorob’evy Gory, Moscow, 119992, Russian Federation
| | - S.E. Spiridonov
- Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect, 33, Moscow, 119071, Russian Federation
| | - I.V. Manukhov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Corresponding author.
| |
Collapse
|
12
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
13
|
Kavakli S, Grammbitter GL, Bode HB. Biosynthesis of the multifunctional isopropylstilbene in Photorhabdus laumondii involves cross-talk between specialized and primary metabolism. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Awori RM. Nematophilic bacteria associated with entomopathogenic nematodes and drug development of their biomolecules. Front Microbiol 2022; 13:993688. [PMID: 36187939 PMCID: PMC9520725 DOI: 10.3389/fmicb.2022.993688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
The importance of Xenorhabdus and Photorhabdus symbionts to their respective Steinernema and Heterorhabditis nematode hosts is that they not only contribute to their entomopathogenicity but also to their fecundity through the production of small molecules. Thus, this mini-review gives a brief introductory overview of these nematophilic bacteria. Specifically, their type species, nematode hosts, and geographic region of isolations are tabulated. The use of nucleotide sequence-based techniques for their species delineation and how pangenomes can improve this are highlighted. Using the Steinernema–Xenorhabdus association as an example, the bacterium-nematode lifecycle is visualized with an emphasis on the role of bacterial biomolecules. Those currently in drug development are discussed, and two potential antimalarial lead compounds are highlighted. Thus, this mini-review tabulates forty-eight significant nematophilic bacteria and visualizes the ecological importance of their biomolecules. It further discusses three of these biomolecules that are currently in drug development. Through it, one is introduced to Xenorhabdus and Photorhabdus bacteria, their natural production of biomolecules in the nematode-bacterium lifecycle, and how these molecules are useful in developing novel therapies.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Department of Biology, University of Nairobi, Nairobi, Kenya
- Elakistos Biosciences, Nairobi, Kenya
- *Correspondence: Ryan Musumba Awori,
| |
Collapse
|
15
|
Goswami G, Hazarika DJ, Chowdhury N, Bora SS, Sarmah U, Naorem RS, Boro RC, Barooah M. Proline confers acid stress tolerance to Bacillus megaterium G18. Sci Rep 2022; 12:8875. [PMID: 35614097 PMCID: PMC9133035 DOI: 10.1038/s41598-022-12709-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Proline plays a multifunctional role in several organisms including bacteria in conferring protection under stress conditions. In this paper we report the role of proline in conferring acid tolerance to Bacillus megaterium G18. An acid susceptible mutant of B. megaterium G18 which required proline for its growth under acid stress condition was generated through Tn5 mutagenesis. Further, targeted inactivation of proC involved in osmo-adaptive proline synthesis in B. megaterium G18 resulted in the loss of ability of the bacterium to grow at low pH (pH 4.5). Exogenous supply of proline (1 mM) to the growth medium restored the ability of the mutant cells to grow at pH 4.5 which was not the same in case of other osmoprotectants tested. Proline was produced and secreted to extracellular medium by B. megaterium G18 when growing in low pH condition as evidenced by the use of Escherichia coli proline auxotrophs and HPLC analysis. Further, pHT01 vector based expression of full length proC gene in the ∆proC mutant cells restored the survival capacity of the mutant cells in acidic pH, suggesting that proline production is an important strategy employed by B. megaterium G18 to survive under acid stress induced osmotic stress.
Collapse
Affiliation(s)
- Gunajit Goswami
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Unmona Sarmah
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
16
|
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat Chem 2022; 14:701-712. [PMID: 35469007 PMCID: PMC9177418 DOI: 10.1038/s41557-022-00923-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria–nematode–insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship. ![]()
Entomopathogenic nematodes carrying Xenorhabdus and Photorhabdus bacteria prey on insect larvae in the soil. Now, a comprehensive analysis of the bacterial genome has revealed ubiquitous and unique families of biosynthetic gene clusters. Evaluation of the bioactivity of the natural products expressed by the most prevalent cluster families explains the functional basis of bacterial natural products involved in bacteria–nematode–insect interactions.
Collapse
|
17
|
CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. Cell Chem Biol 2021; 29:696-710.e4. [PMID: 34508657 DOI: 10.1016/j.chembiol.2021.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
With the advent of genome sequencing and mining technologies, secondary metabolite biosynthetic gene clusters (BGCs) within bacterial genomes are becoming easier to predict. For subsequent BGC characterization, clustered regularly interspaced short palindromic repeats (CRISPR) has contributed to knocking out target genes and/or modulating their expression; however, CRISPR is limited to strains for which robust genetic tools are available. Here we present a strategy that combines CRISPR with chassis-independent recombinase-assisted genome engineering (CRAGE), which enables CRISPR systems in diverse bacteria. To demonstrate CRAGE-CRISPR, we select 10 polyketide/non-ribosomal peptide BGCs in Photorhabdus luminescens as models and create their deletion and activation mutants. Subsequent loss- and gain-of-function studies confirm 22 secondary metabolites associated with the BGCs, including a metabolite from a previously uncharacterized BGC. These results demonstrate that the CRAGE-CRISPR system is a simple yet powerful approach to rapidly perturb expression of defined BGCs and to profile genotype-phenotype relationships in bacteria.
Collapse
|
18
|
Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene 2021; 795:145780. [PMID: 34147570 DOI: 10.1016/j.gene.2021.145780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
The genome sequences of entomopathogenic nematode (EPN) bacteria and their functional analyses can lead to the genetic engineering of the bacteria for use as biocontrol agents. The bacterial symbiont Photorhabdus heterorhabditis strain ETL isolated from an insect pathogenic nematode, Heterorhabditis zealandica strain ETL, collected in the northernmost region of South Africa was studied to reveal information that can be useful in the design of improvement strategies for both effective and liquid production method of EPN-based pesticides. The strain ETL genome was found closely related to the type strain genome of P. australis DSM 17,609 (~60 to 99.9% CDSs similarity), but closely related to the not yet genome-sequenced type strain, P. heterorhabditis. It has a genome size of 4,866,148 bp and G + C content of 42.4% similar to other Photorhabdus. It contains 4,351 protein coding genes (CDSs) of which, at least 84% are shared with the de facto type strain P. luminescens subsp. laumondii TTO1, and has 318 unknown CDSs and the genome has a higher degree of plasticity allowing it to adapt to different environmental conditions, and to be virulent against various insects; observed through genes acquired through horizontal gene transfer mechanisms, clustered regularly interspaced short palindromic repeats, non-determined polyketide- and non-ribosomal peptide- synthase gene clusters, and many genes associated with uncharacterized proteins; which also justify the strain ETL's genes differences (quantity and quality) compared to P. luminescens subsp. laumondii TTO1. The protein coding sequences contained genes with both bio-engineering and EPNs mass production importance, of which numerous are uncharacterized.
Collapse
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
19
|
Booysen E, Dicks LMT. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review. Probiotics Antimicrob Proteins 2021; 12:1310-1320. [PMID: 32844362 DOI: 10.1007/s12602-020-09688-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.
Collapse
Affiliation(s)
- E Booysen
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - L M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
20
|
Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, Hertweck C. Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem 2021; 22:1920-1924. [PMID: 33739557 PMCID: PMC8252389 DOI: 10.1002/cbic.202100089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Indexed: 11/15/2022]
Abstract
Sinapigladioside is a rare isothiocyanate-bearing natural product from beetle-associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable-isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including producers of both nitriles and isothiocyanates. Our findings support a model for bacterial isothiocyanate biosynthesis by sulfur transfer into isonitrile precursors.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sophie Shahda
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
21
|
Booysen E, Rautenbach M, Stander MA, Dicks LMT. Profiling the Production of Antimicrobial Secondary Metabolites by Xenorhabdus khoisanae J194 Under Different Culturing Conditions. Front Chem 2021; 9:626653. [PMID: 33859975 PMCID: PMC8042232 DOI: 10.3389/fchem.2021.626653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Species from the genus Xenorhabdus, endosymbiotic bacteria of Steinernema nematodes, produce several antibacterial and antifungal compounds, some of which are anti-parasitic. In this study, we report on the effect growth conditions have on the production of antimicrobial compounds produced by Xenorhabdus khoisanae J194. The strain was cultured in aerated and non-aerated broth, respectively, and on solid media. Production of antimicrobial compounds was detected after 24 h of growth in liquid media, with highest levels recorded after 96 h. Highest antimicrobial activity was obtained from cells cultured on solid media. By using ultraperformance liquid chromatography linked to mass spectrometry and HPLC, a plethora of known Xenorhabdus compounds were identified. These compounds are the PAX lipopeptides (PAX 1', PAX 3', PAX 5, and PAX 7E), xenocoumacins and xenoamicins. Differences observed in the MS-MS fractionation patterns collected in this study, when compared to previous studies indicated that this strain produces novel xenoamicins. Three novel antimicrobial compounds, khoicin, xenopep and rhabdin, were identified and structurally characterized based on MS-MS fractionation patterns, amino acid analysis and whole genome analysis. The various compounds produced under the three different conditions indicates that the secondary metabolism of X. khoisanae J194 may be regulated by oxygen, water activity or both. Based on these findings X. khoisanae J194 produce a variety of antimicrobial compounds that may have application in disease control.
Collapse
Affiliation(s)
- Elzaan Booysen
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A Stander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.,LCMS Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
22
|
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20:200-216. [PMID: 33510482 PMCID: PMC7841765 DOI: 10.1038/s41573-020-00114-z] [Citation(s) in RCA: 2393] [Impact Index Per Article: 598.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche, Florence, Italy.
| |
Collapse
|
23
|
Salem HM, Hussein MA, Hafez SE, Hussein MA, Sayed RM. Influence of Gamma Irradiated Steinernema carpocapsae on Some Physiological Aspects of Galleria mellonella Larvae. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
25
|
Thappeta KRV, Ciezki K, Morales-Soto N, Wesener S, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment. MICROBIOLOGY-SGM 2020; 166:1074-1087. [PMID: 33064635 DOI: 10.1099/mic.0.000981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- University of Wisconsin, Milwaukee, WI, USA.,Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore
| | - Kristin Ciezki
- Aurora Health Care, Milwaukee, WI, USA.,University of Wisconsin, Milwaukee, WI, USA
| | - Nydia Morales-Soto
- Eck Institute for Global Health, University of Notre Dame, IN, USA.,University of Wisconsin, Milwaukee, WI, USA
| | | | - Heidi Goodrich-Blair
- University of Tennessee, Knoxville, TN, USA.,University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
26
|
Li J, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jhe‐Hao Li
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | | | - Nam Yoon Kim
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland
| | - Ellen L. Zechner
- Institute of Molecular Biosciences University of Graz 8010 Graz Austria
- BioTechMed-Graz 8010 Graz Austria
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale University School of Medicine New Haven CT 06536 USA
| |
Collapse
|
27
|
Li JH, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020; 59:17872-17880. [PMID: 32609431 DOI: 10.1002/anie.202005506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Leupeptin is a bacterial small molecule that is used worldwide as a protease inhibitor. However, its biosynthesis and genetic distribution remain unknown. We identified a family of leupeptins in gammaproteobacterial pathogens, including Photorhabdus, Xenorhabdus, and Klebsiella species, amongst others. Through genetic, metabolomic, and heterologous expression analyses, we established their construction by discretely expressed ligases and accessory enzymes. In Photorhabdus species, a hypothetical protein required for colonizing nematode hosts was established as a new class of proteases. This enzyme cleaved the tripeptide aldehyde protease inhibitors, leading to the formation of "pro-pyrazinones" featuring a hetero-tricyclic architecture. In Klebsiella oxytoca, the pathway was enriched in clinical isolates associated with respiratory tract infections. Thus, the bacterial production and proteolytic degradation of leupeptins can be associated with animal colonization phenotypes.
Collapse
Affiliation(s)
- Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | | | - Nam Yoon Kim
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.,BioTechMed-Graz, 8010, Graz, Austria
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| |
Collapse
|
28
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
29
|
Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 2020; 10:5855. [PMID: 32246044 PMCID: PMC7125087 DOI: 10.1038/s41598-020-62725-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphorus (P) availability and salinity stress are two major constraints for agriculture productivity. A combination of salinity and P starvation is known to be more deleterious to plant health. Plant growth promoting rhizobacteria are known to ameliorate abiotic stress in plants by increasing the availability of different nutrients. However, interaction mechanisms of plant grown under salinity and P stress condition and effect of beneficial microbe for stress alleviation is still obscure. Earlier we reported the molecular insight of auxin producing, phosphate solubilising Pseudomonas putida MTCC 5279 (RAR) mediated plant growth promotion in Arabidopsis thaliana. In present study new trait of proline and phosphatase production of RAR and its impact on modulation of physiological phenomenon under phosphate starved-salinity stress condition in A. thaliana has been investigated. Different physiological and molecular determinants under RAR- A. thaliana interaction showed that auxin producing RAR shows tryptophan dependence for growth and proline production in ATP dependant manner under salinity stress. However, under P deprived conditions growth and proline production are independent of tryptophan. RAR mediated lateral root branching and root hair density through modulation of abscisic acid signalling was observed. Acidic phosphatase activity under P starved and salinity stress condition was majorly modulated along with ROS metabolism and expression of stress responsive/phosphate transporter genes. A strong correlation of different morpho-physiological factor with RAR + salt conditions, showed We concluded that enhanced adverse effect of salinity with unavailability of P was dampened in presence of P. putida MTCC 5279 (RAR) in A. thaliana, though more efficiently salinity stress conditions. Therefore, alleviation of combined stress of salinity induced phosphate nutrient deficiency by inoculation of beneficial microbe, P. putida MTCC 5279 offer good opportunities for enhancing the agricultural productivity.
Collapse
|
30
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
31
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|
32
|
Kim C, Gatsios A, Cuesta S, Lam YC, Wei Z, Chen H, Russell RM, Shine EE, Wang R, Wyche TP, Piizzi G, Flavell RA, Palm NW, Sperandio V, Crawford JM. Characterization of Autoinducer-3 Structure and Biosynthesis in E. coli. ACS CENTRAL SCIENCE 2020; 6:197-206. [PMID: 32123737 PMCID: PMC7047286 DOI: 10.1021/acscentsci.9b01076] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 05/09/2023]
Abstract
Escherichia coli is a common inhabitant of the human microbiota and a beacon model organism in biology. However, an understanding of its signaling systems that regulate population-level phenotypes known as quorum sensing remain incomplete. Here, we define the structure and biosynthesis of autoinducer-3 (AI-3), a metabolite of previously unknown structure involved in the pathogenesis of enterohemorrhagic E. coli (EHEC). We demonstrate that novel AI-3 analogs are derived from threonine dehydrogenase (Tdh) products and "abortive" tRNA synthetase reactions, and they are distributed across a variety of Gram-negative and Gram-positive bacterial pathogens. In addition to regulating virulence genes in EHEC, we show that the metabolites exert diverse immunological effects on primary human tissues. The discovery of AI-3 metabolites and their biochemical origins now provides a molecular foundation for investigating the diverse biological roles of these elusive yet widely distributed bacterial signaling molecules.
Collapse
Affiliation(s)
- Chung
Sub Kim
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Alexandra Gatsios
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Santiago Cuesta
- Department
of Microbiology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Yick Chong Lam
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zheng Wei
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department
of Immunobiology, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Haiwei Chen
- Department
of Immunobiology, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Regan M. Russell
- Department
of Microbiology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Emilee E. Shine
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department
of Microbial Pathogenesis, Yale University
School of Medicine, New Haven, Connecticut 06536, United States
| | - Rurun Wang
- Merck Exploratory
Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Thomas P. Wyche
- Merck Exploratory
Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Grazia Piizzi
- Merck Exploratory
Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Richard A. Flavell
- Department
of Immunobiology, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
- Howard
Hughes
Medical Institute, Yale University School
of Medicine, New Haven, Connecticut 06519, United States
| | - Noah W. Palm
- Department
of Immunobiology, Yale University School
of Medicine, New Haven, Connecticut 06520, United States
| | - Vanessa Sperandio
- Department
of Microbiology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Jason M. Crawford
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical
Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department
of Microbial Pathogenesis, Yale University
School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
33
|
Oh J, Kim NY, Chen H, Palm NW, Crawford JM. An Ugi-like Biosynthetic Pathway Encodes Bombesin Receptor Subtype-3 Agonists. J Am Chem Soc 2019; 141:16271-16278. [PMID: 31537063 DOI: 10.1021/jacs.9b04183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isocyanide functional groups can be found in a variety of natural products. Rhabduscin is one such isocyanide-functionalized immunosuppressant produced in Xenorhabdus and Photorhabdus gammaproteobacterial pathogens, and deletion of its biosynthetic gene cluster inhibits virulence in an invertebrate animal infection model. Here, we characterized the first "opine-glycopeptide" class of natural products termed rhabdoplanins, and strikingly, these molecules are spontaneously produced from rhabduscin via an unprecedented multicomponent "Ugi-like" reaction sequence in nature. The rhabdoplanins also represent new lead G protein-coupled receptor (GPCR) agonists, stimulating the bombesin receptor subtype-3 (BB3) GPCR.
Collapse
Affiliation(s)
- Joonseok Oh
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Nam Y Kim
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Haiwei Chen
- Department of Immunobiology , Yale School of Medicine , New Haven , Connecticut 06520 , United States
| | - Noah W Palm
- Department of Immunobiology , Yale School of Medicine , New Haven , Connecticut 06520 , United States
| | - Jason M Crawford
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Microbial Pathogenesis , Yale School of Medicine , New Haven , Connecticut 06536 , United States
| |
Collapse
|
34
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
35
|
Xi X, Lu X, Zhang X, Bi Y, Li X, Yu Z. Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis. J Antibiot (Tokyo) 2019; 72:736-743. [PMID: 31263151 DOI: 10.1038/s41429-019-0203-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022]
Abstract
Two novel depsipeptides xenematides F and G (1, 2), were isolated from entomopathogenic Xenorhabdus budapestensis SN84 along with a known compound xenematide B. The structures of the two new molecules were elucidated using NMR, MS and Marfey's method. The xenematide G (2) contains α-aminoheptanoic acid, a non-protein amino acid that is rarely found in secondary metabolites from entomopathogenic bacteria. Xenematides F and G were tested for antibacterial activity. Xenematide G (2) exhibited moderate antibacterial activity.
Collapse
Affiliation(s)
- Xuedong Xi
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China
| | - Xingzhong Lu
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China
| | - Xiaodong Zhang
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China
| | - Yuhui Bi
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China
| | - Xiaochun Li
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China
| | - Zhiguo Yu
- Department of Plant Protection, Shenyang Agricultural University, 110866, Liaoning Province, China.
| |
Collapse
|
36
|
Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR. Iso-propyl stilbene: a life cycle signal? MICROBIOLOGY-SGM 2019; 165:516-526. [PMID: 30882293 DOI: 10.1099/mic.0.000790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Gram-negative bacterial genus Photorhabdus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm Heterorhabditis. All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of Photorhabdus itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of Photorhabdus bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonatan Mimon Benarroch
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - David James Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nicholas Robin Waterfield
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
37
|
Eugenia Nuñez-Valdez M, Lanois A, Pagès S, Duvic B, Gaudriault S. Inhibition of Spodoptera frugiperda phenoloxidase activity by the products of the Xenorhabdus rhabduscin gene cluster. PLoS One 2019; 14:e0212809. [PMID: 30794697 PMCID: PMC6386379 DOI: 10.1371/journal.pone.0212809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of bacterial rhabduscin synthesis on bacterial virulence and phenoloxidase inhibition in a Spodoptera model. We first showed that the rhabduscin cluster of the entomopathogenic bacterium Xenorhabdus nematophila was not necessary for virulence in the larvae of Spodoptera littoralis and Spodoptera frugiperda. Bacteria with mutations affecting the rhabduscin synthesis cluster (ΔisnAB and ΔGT mutants) were as virulent as the wild-type strain. We then developed an assay for measuring phenoloxidase activity in S. frugiperda and assessed the ability of bacterial culture supernatants to inhibit the insect phenoloxidase. Our findings confirm that the X. nematophila rhabduscin cluster is required for the inhibition of S. frugiperda phenoloxidase activity. The X. nematophila ΔisnAB mutant was unable to inhibit phenoloxidase, whereas ΔGT mutants displayed intermediate levels of phenoloxidase inhibition relative to the wild-type strain. The culture supernatants of Escherichia coli and of two entomopathogenic bacteria, Serratia entomophila and Xenorhabdus poinarii, were unable to inhibit S. frugiperda phenoloxidase activity. Heterologous expression of the X. nematophila rhabduscin cluster in these three strains was sufficient to restore inhibition. Interestingly, we observed pseudogenization of the X. poinarii rhabduscin gene cluster via the insertion of a 120 bp element into the isnA promoter. The inhibition of phenoloxidase activity by X. poinarii culture supernatants was restored by expression of the X. poinarii rhabduscin cluster under the control of an inducible Ptet promoter, consistent with recent pseudogenization. This study paves the way for advances in our understanding of the virulence of several entomopathogenic bacteria in non-model insects, such as the new invasive S. frugiperda species in Africa.
Collapse
Affiliation(s)
| | - Anne Lanois
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Sylvie Pagès
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Bernard Duvic
- DGIMI, INRA, Université de Montpellier, Montpellier, France
| | - Sophie Gaudriault
- DGIMI, INRA, Université de Montpellier, Montpellier, France
- * E-mail: (MENV); (SG)
| |
Collapse
|
38
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
39
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
40
|
Dreyer J, Malan AP, Dicks LMT. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front Microbiol 2018; 9:3177. [PMID: 30619229 PMCID: PMC6305712 DOI: 10.3389/fmicb.2018.03177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
The genus Xenorhabdus of the family Enterobacteriaceae, are mutualistically associated with entomopathogenic nematodes of the genus Steinernema. Although most of the associations are species-specific, a specific Xenorhabdus sp. may infect more than one Steinernema sp. During the Xenorhabdus-Steinernema life cycle, insect larvae are infected and killed, while both mutualists produce bioactive compounds. These compounds act synergistically to ensure reproduction and proliferation of the nematodes and bacteria. A single strain of Xenorhabdus may produce a variety of antibacterial and antifungal compounds, some of which are also active against insects, nematodes, protozoa, and cancer cells. Antimicrobial compounds produced by Xenorhabdus spp. have not been researched to the same extent as other soil bacteria and they may hold the answer to novel antibacterial and antifungal compounds. This review summarizes the bioactive secondary metabolites produced by Xenorhabdus spp. and their application in disease control. Gene regulation and increasing the production of a few of these antimicrobial compounds are discussed. Aspects limiting future development of these novel bioactive compounds are also pointed out.
Collapse
Affiliation(s)
- Jönike Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Antoinette P. Malan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
41
|
Zhang S, Fang X, Tang Q, Ge J, Wang Y, Zhang X. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila. Microbiologyopen 2018; 8:e00674. [PMID: 29888873 PMCID: PMC6391269 DOI: 10.1002/mbo3.674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 11/10/2022] Open
Abstract
Xenocoumacin 1 (Xcn1), a major antimicrobial compound produced by Xenorhabdus nematophila, has great potential for use in agricultural productions. In this study, we evaluated the effects of CpxR, a global response regulator associated with the mutualism and pathogenesis of X. nematophila, on the antimicrobial activity and Xcn1 production. The mutation of cpxR could promote the production of Xcn1 significantly with its level in ΔcpxR mutant being 3.07 times higher than that in the wild type. Additionally, the expression levels of xcnA‐L genes, which are responsible for the production of Xcn1, were increased in ΔcpxR mutant while the expression levels of xcnMN, which are required for the conversion of Xcn1 into Xcn2 was reduced. Noticeably, Xcn2 was also enhanced on account of the conversion of excessive Xcn1 in spite of low expression levels of xcnM and xcnN in ΔcpxR mutant. The transcriptional levels of ompR and lrp, encoding the global response regulators OmpR and Lrp which negatively and positively regulate the production of Xcn1 were concurrently decreased and increased, respectively. Correspondingly, ΔcpxR mutant also exhibited increased antimicrobial activities in vitro and in vivo. Together, these findings suggest that CpxR negatively regulates xcnA‐L genes expression while positively regulating xcnMN expression in X. nematophila YL001, which led to a high yield of Xcn1 in ΔcpxR mutant.
Collapse
Affiliation(s)
- Shujing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A &F University, Yangling, Shaanxi, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Qian Tang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A &F University, Yangling, Shaanxi, China
| | - Jing Ge
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A &F University, Yangling, Shaanxi, China
| | - Yonghong Wang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A &F University, Yangling, Shaanxi, China
| | - Xing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A &F University, Yangling, Shaanxi, China
| |
Collapse
|
42
|
Oh J, Patel J, Park HB, Crawford JM. β-Lactam Biotransformations Activate Innate Immunity. J Org Chem 2018; 83:7173-7179. [PMID: 29616809 DOI: 10.1021/acs.joc.8b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotics are widely prescribed to treat bacterial infections, but many of these drugs also affect patient immune responses. While the molecular mechanisms regulating these diverse immunomodulatory interactions are largely unknown, recent studies support two primary models: (1) antibiotics can alter immune function by directly interacting with human targets; and/or (2) antibiotics can indirectly affect immune responses via alteration of the human microbiota composition. Here, we describe results that could support a third model in which a nonimmunostimulatory antibiotic can be biotransformed by human microbiota members into an immunostimulatory product that lacks antibacterial activity. Specifically, we identified, characterized, and semisynthesized new biotransformation products derived from the β-lactams amoxicillin and ampicillin, antibiotics regularly prescribed in the clinic. The drug metabolism products were identified in bacterial cultures harboring β-lactamase, a common resistance determinant. One of the amoxicillin biotransformation products activated innate immunity, as assessed by NF-κB signaling in human leukemic monocytes, whereas amoxicillin itself exhibited no effect. Amoxicillin has previously been shown to have minimal long-term impact on human microbiota composition in clinical trial studies. Taken together, our results could support a broader immunomodulatory mechanism whereby antibiotics could indirectly regulate immune function in a stable, microbiome-dependent manner.
Collapse
Affiliation(s)
- Joonseok Oh
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Jaymin Patel
- Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Molecular, Cellular, and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Hyun Bong Park
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Jason M Crawford
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Microbial Pathogenesis , Yale School of Medicine , New Haven , Connecticut 06536 , United States
| |
Collapse
|
43
|
Pyrazines from bacteria and ants: convergent chemistry within an ecological niche. Sci Rep 2018; 8:2595. [PMID: 29416082 PMCID: PMC5803209 DOI: 10.1038/s41598-018-20953-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
Ants use pheromones to coordinate their communal activity. Volatile pyrazines, for instance, mediate food resource gathering and alarm behaviors in different ant species. Here we report that leaf-cutter ant-associated bacteria produce a family of pyrazines that includes members previously identified as ant trail and alarm pheromones. We found that L-threonine induces the bacterial production of the trail pheromone pyrazines, which are common for the host leaf-cutter ants. Isotope feeding experiments revealed that L-threonine along with sodium acetate were the biosynthetic precursors of these natural products and a biosynthetic pathway was proposed.
Collapse
|
44
|
Sétamou M, Alabi OJ, Simpson CR, Jifon JL. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing. PLoS One 2017; 12:e0187921. [PMID: 29236706 PMCID: PMC5728503 DOI: 10.1371/journal.pone.0187921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs.
Collapse
Affiliation(s)
- Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, United States of America
| | - Olufemi J. Alabi
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| | - Catherine R. Simpson
- Texas A&M University-Kingsville Citrus Center, Weslaco, United States of America
| | - John L. Jifon
- Department of Horticultural Sciences, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| |
Collapse
|
45
|
Guo S, Zhang S, Fang X, Liu Q, Gao J, Bilal M, Wang Y, Zhang X. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Microb Cell Fact 2017; 16:203. [PMID: 29141647 PMCID: PMC5688692 DOI: 10.1186/s12934-017-0813-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Xenocoumacin 1 (Xcn1) and Xenocoumacin 2 (Xcn2) are the main antimicrobial compounds produced by Xenorhabdus nematophila. Culture conditions, including pH, had remarkably distinct effects on the antimicrobial activity of X. nematophila. However, the regulatory mechanism of pH on the antimicrobial activity and antibiotic production of this bacterium is still lacking. RESULTS With the increase of initial pH, the antimicrobial activity of X. nematophila YL001 was improved. The levels of Xcn1 and nematophin at pH 8.5 were significantly (P < 0.05) higher than that at pH 5.5 and 7.0. In addition, the expression of xcnA-L, which are responsible for the production of Xcn1 was increased and the expression of xcnMN, which are required for the conversion of Xcn1 to Xcn2 was reduced at pH 8.5. Also, the expression of ompR and cpxR were decreased at pH 8.5. CONCLUSION The alkaline pH environment was found to be beneficial for the production of Xcn1 and nematophin, which in turn led to high antimicrobial activity of X. nematophila at pH 8.5.
Collapse
Affiliation(s)
- Shuqi Guo
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.,School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Qi Liu
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiangtao Gao
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonghong Wang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China. .,Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xing Zhang
- Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
46
|
Wesche F, He Y, Bode HB. Solid-phase enrichment and analysis of electrophilic natural products. Beilstein J Org Chem 2017; 13:405-409. [PMID: 28382178 PMCID: PMC5355884 DOI: 10.3762/bjoc.13.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
In search for new natural products, which may lead to the development of new drugs for all kind of applications, novel methods are needed. Here we describe the identification of electrophilic natural products in crude extracts via their reactivity against azide as a nucleophile followed by their subsequent enrichment using a cleavable azide-reactive resin (CARR). Using this approach, natural products carrying epoxides and α,β-unsaturated enones as well as several unknown compounds were identified in crude extracts from entomopathogenic Photorhabdus bacteria.
Collapse
Affiliation(s)
- Frank Wesche
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Yue He
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
47
|
Tørring T, Shames SR, Cho W, Roy CR, Crawford JM. Acyl Histidines: New N-Acyl Amides from Legionella pneumophila. Chembiochem 2017; 18:638-646. [PMID: 28116768 PMCID: PMC5546091 DOI: 10.1002/cbic.201600618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/11/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a Gram-negative gammaproteobacterial pathogen that infects and intracellularly replicates in human macrophages and a variety of protozoa. L. pneumophila encodes an orphan biosynthetic gene cluster (BGC) that contains isocyanide-associated biosynthetic genes and is upregulated during infection. Because isocyanide-functionalized metabolites are known to harbor invertebrate innate immunosuppressive activities in bacterial pathogen-insect interactions, we used pathway-targeted molecular networking and tetrazine-based chemoseletive ligation chemistry to characterize the metabolites from the orphan pathway in L. pneumophila. We also assessed their intracellular growth contributions in an amoeba and in murine bone-marrow-derived macrophages. Unexpectedly, two distinct groups of aromatic amino acid-derived metabolites were identified from the pathway, including a known tyrosine-derived isocyanide and a family of new N-acyl-l-histidine metabolites.
Collapse
Affiliation(s)
- Thomas Tørring
- Interdiscplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Stephanie R Shames
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Wooyoung Cho
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
- Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
- Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| |
Collapse
|
48
|
Park HB, Perez CE, Barber KW, Rinehart J, Crawford JM. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. eLife 2017; 6. [PMID: 28431213 PMCID: PMC5384830 DOI: 10.7554/elife.25229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
Abstract
Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Corey E Perez
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Karl W Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|
49
|
Wang R, Seyedsayamdost MR. Opinion: Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. J Biol Chem 2017; 292:6680-6694. [PMID: 28246174 DOI: 10.1074/jbc.m116.762542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Members of the gammaproteobacterial Photorhabdus genus share mutualistic relationships with Heterorhabditis nematodes, and the pairs infect a wide swath of insect larvae. Photorhabdus species produce a family of stilbenes, with two major components being 3,5-dihydroxy-4-isopropyl-trans-stilbene (compound 1) and its stilbene epoxide (compound 2). This family of molecules harbors antimicrobial and immunosuppressive activities, and its pathway is responsible for producing a nematode "food signal" involved in nematode development. However, stilbene epoxidation biosynthesis and its biological roles remain unknown. Here, we identified an orphan protein (Plu2236) from Photorhabdus luminescens that catalyzes stilbene epoxidation. Structural, mutational, and biochemical analyses confirmed the enzyme adopts a fold common to FAD-dependent monooxygenases, contains a tightly bound FAD prosthetic group, and is required for the stereoselective epoxidation of compounds 1 and 2. The epoxidase gene was dispensable in a nematode-infective juvenile recovery assay, indicating the oxidized compound is not required for the food signal. The epoxide exhibited reduced cytotoxicity toward its producer, suggesting this may be a natural route for intracellular detoxification. In an insect infection model, we also observed two stilbene-derived metabolites that were dependent on the epoxidase. NMR, computational, and chemical degradation studies established their structures as new stilbene-l-proline conjugates, prolbenes A (compound 3) and B (compound 4). The prolbenes lacked immunosuppressive and antimicrobial activities compared with their stilbene substrates, suggesting a metabolite attenuation mechanism in the animal model. Collectively, our studies provide a structural view for stereoselective stilbene epoxidation and functionalization in an invertebrate animal infection model and provide new insights into stilbene cellular detoxification.
Collapse
Affiliation(s)
- Hyun Bong Park
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520.,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | | | - Corey E Perez
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520.,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Joon Ha Lee
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095, and
| | - Jeannie Tran
- the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Jeffrey B Bonanno
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elissa A Hallem
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095, and
| | - Steven C Almo
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jason M Crawford
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520, .,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516.,the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|