1
|
Mauthner SE, Tracey WD. Optogenetic Stimulation of Nociceptive Escape Behaviors in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.prot108128. [PMID: 39095077 PMCID: PMC11787400 DOI: 10.1101/pdb.prot108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In animals, noxious stimuli activate a neural process called nociception. Drosophila larvae perform a rolling escape locomotion behavior in response to nociceptive sensory stimuli. Noxious mechanical, thermal, and chemical stimuli each trigger this same escape response in larvae. The polymodal sensory neurons that initiate the rolling response have been identified based on the expression patterns of genes that are known to be required for nociception responses. The synaptic output of these neurons, known as class IV multidendritic sensory neurons, is required for behavioral responses to thermal, mechanical, and chemical triggers of the rolling escape locomotion. Importantly, optogenetic stimulation of the class IV multidendritic neurons has also shown that the activation of those cells is sufficient to trigger nociceptive rolling. Optogenetics uses light-activated ion channels expressed in neurons of interest to bypass the normal physiological transduction machinery so that the cell may be activated in response to light that is applied by the investigator. This protocol describes an optogenetic technique that uses channelrhodopsin-2 (ChR2) to activate larval nociceptors and trigger nociceptive rolling. First, we explain how to set up the necessary genetic crosses and culture the larval progeny. Next, we describe how to perform the optogenetic nociception assay on third-instar larvae.
Collapse
Affiliation(s)
- Stephanie E Mauthner
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
2
|
Mauthner SE, Tracey WD. Mechanical Nociception Assay in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.prot108125. [PMID: 39095079 PMCID: PMC11787401 DOI: 10.1101/pdb.prot108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nervous system of animals can sense and respond to noxious stimuli, which include noxious thermal, chemical, or mechanical stimuli, through a process called nociception. Here, we describe a simple behavioral assay to measure mechanically induced nociceptive responses in Drosophila larvae. This assay tests larval mechanosensitivity to noxious force with calibrated von Frey filaments. First, we explain how to construct and calibrate the customizable von Frey filaments that can be used to deliver reproducible stimuli of a defined force or pressure. Next, we describe how to perform the mechanical nociception assay on third-instar larvae. Through comparison of the responses of genotypes of interest, this assay can be useful for investigation of molecular, cellular, and circuit mechanisms of mechanical nociception. At the molecular level, prior studies have identified the importance of sensory ion channels such as Pickpocket/Balboa, Piezo, dTRPA1, and Painless. At the cellular level, the class IV multidendritic arborizing (md-da) neurons are the main mechanical nociceptor neurons of the peripheral system, but class III and class II md-da have been found to also play a role. At the circuit level, studies have shown that mechanical nociception relies on interneurons of the abdominal ganglia that integrate inputs from these various md-da neuron classes.
Collapse
Affiliation(s)
- Stephanie E Mauthner
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
3
|
Borjon LJ, Mauthner SE, Tracey WD. Nociception in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.top108172. [PMID: 39095078 PMCID: PMC11787404 DOI: 10.1101/pdb.top108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nociception is the sensory modality by which animals sense stimuli associated with injury or potential tissue damage. When Drosophila larvae encounter a noxious thermal, chemical, or mechanical stimulus, they perform a stereotyped rolling behavior. These noxious stimuli are detected by polymodal nociceptor neurons that tile the larval epidermis. Although several types of sensory neurons feed into the nociceptive behavioral output, the highly branched class IV multidendritic arborization neurons are the most critical. At the molecular level, Drosophila nociception shares many conserved features with vertebrate nociception, making it a useful organism for medically relevant research in this area. Here, we review three larval assays for nociceptive behavior using mechanical stimuli, optogenetic activation, and the naturalistic stimuli of parasitoid wasp attacks. Together, the assays described have been successfully used by many laboratories in studies of the molecular, cellular, and circuit mechanisms of nociception. In addition, the simple nature of the assays we describe can be useful in teaching laboratories for undergraduate students.
Collapse
Affiliation(s)
- Lydia J Borjon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - Stephanie E Mauthner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| |
Collapse
|
4
|
Hattori Y. Nutritional Adaptation and Microbes: Insights From Drosophila. Zoolog Sci 2025; 42. [PMID: 39932752 DOI: 10.2108/zs240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 05/08/2025]
Abstract
Life-history traits such as growth, reproduction, and lifespan in animals are shaped by both genetic and environmental factors, with nutrition being one of the most important environmental factors. However, it remains unclear how and to what extent changes in the nutritional environment affect animals and what molecular mechanisms they employ to adapt to these varying conditions. In recent years, the fruit fly Drosophila melanogaster and related species have been developed as model systems for studying the effects of nutrition and microbes on animals at the molecular level. This review summarizes recent findings on nutritional adaptation in Drosophila species, focusing on nutrition-dependent neuronal developmental mechanisms, carbohydrate-responsive systems that generate differences in adaptabilities among species, and animal-associated microbes that support host growth.
Collapse
Affiliation(s)
- Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan,
- Center for Living Systems Information Science, Kyoto University, Kyoto, Japan
- JST FOREST, Tokyo, Japan
| |
Collapse
|
5
|
Dyson A, Gajjar G, Hoffman KC, Lewis D, Palega S, Rangel Silva E, Auwn J, Bellemer A. A nociceptor-specific RNAi screen in Drosophila larvae identifies RNA-binding proteins that regulate thermal nociception. PeerJ 2025; 13:e18857. [PMID: 39866556 PMCID: PMC11759608 DOI: 10.7717/peerj.18857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity. The larvae of Drosophila melanogaster have been developed as a powerful model for studying mechanisms of nociception, nociceptor plasticity, and nociceptor development. Diverse RNA-binding proteins regulate the development and morphology of larval nociceptors, implying important roles for post-transcriptional regulation of gene expression in these neurons, but the importance of these mechanisms for nociceptive behavior has not been investigated systematically. In this study, we conducted a nociceptor-specific RNAi screen of 112 candidate RNA-binding protein genes to identify those that are required for normal sensitivity to noxious thermal stimuli. The screen and subsequent validation experiments identified nine candidate genes (eIF2α, eIF4A, eIF4AIII, eIF4G2, mbl, SC35, snf, Larp4B and CG10445) that produce defects in nociceptive response latency when knocked down in larval nociceptors. Some of the genes identified have well-understood roles in the regulation of translation initiation and regulation of nociceptor sensitization in vertebrate and invertebrate animal models, suggesting an evolutionarily conserved role for these mechanisms in regulating nociceptor sensitivity. Other screen isolates have previously described roles in regulating nociceptor morphology and mRNA processing, but less clear roles in regulating nociceptor function. Further studies will be necessary to identify the mechanisms by which the identified RNA-binding proteins regulate sensory neuron function and the identities of the mRNAs that they target.
Collapse
Affiliation(s)
- Amber Dyson
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Gita Gajjar
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States
| | - Katherine C. Hoffman
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Dakota Lewis
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Sara Palega
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Erik Rangel Silva
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - James Auwn
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
6
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action for an extremely painful venom. Curr Biol 2025; 35:444-453.e4. [PMID: 39765227 DOI: 10.1016/j.cub.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand."1 The effectiveness of the velvet ant sting against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds.2,3,4 This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals.5,6,7,8 They share features with vertebrate nociceptors, including conserved sensory receptor channels.9,10 We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels, through a single venom peptide, Do6a. Drosophila Ppk/Bba is homologous to mammalian acid-sensing ion channels (ASICs).11 However, Do6a did not produce behavioral signs of nociception in mice, which was instead triggered by other venom peptides that are non-specific and less potent on Drosophila nociceptors. This suggests that Do6a has an insect-specific function. In fact, we further demonstrated that the velvet ant's sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom acts through different molecular mechanisms in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Lydia J Borjon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Luana C de Assis Ferreira
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Sunčica Šašić
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Andrea G Hohmann
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - W Daniel Tracey
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Tann JY, Xu F, Kimura M, Wilkes OR, Yoong LF, Skibbe H, Moore AW. Study of Dendrite Differentiation Using Drosophila Dendritic Arborization Neurons. Cold Spring Harb Protoc 2024; 2024:pdb.top108146. [PMID: 38148165 DOI: 10.1101/pdb.top108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the Drosophila peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Fangke Xu
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Minami Kimura
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
- Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Li-Foong Yoong
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| |
Collapse
|
8
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
9
|
Hamoudi Z, Leung C, Khuong TM, Cooney G, Neely GG. Vitamin B5 is a context-dependent dietary regulator of nociception. G3 (BETHESDA, MD.) 2024; 14:jkae174. [PMID: 39073591 DOI: 10.1093/g3journal/jkae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Chronic pain has an enormous impact on the quality of life of billions of patients, families, and caregivers worldwide. Current therapies do not adequately address pain for most patients. A basic understanding of the conserved genetic framework controlling pain may help us develop better, non-addictive pain therapies. Here, we identify new conserved and druggable analgesic targets using the tissue-specific functional genomic screening of candidate "pain" genes in fly. From these efforts, we describe 23 new pain genes for further consideration. This included Acsl, a fatty acid-metabolizing enzyme, and mammalian orthologs involved in arachidonic acid metabolism. The Acsl knockdown and mutant larvae showed delayed nocifensive responses to localized and global noxious heat. Mechanistically, the Acsl knockdown reduced dendritic branching of nociceptive neurons. Surprisingly, the pain phenotype in these animals could be rescued through dietary intervention with vitamin B5, highlighting the interplay between genetics, metabolism, and nutrient environment to establish sensory perception thresholds. Together, our functional genomic screening within the sensory nociceptor has identified new nociception genes that provide a better understanding of pain biology and can help guide the development of new painkillers.
Collapse
Affiliation(s)
- Zina Hamoudi
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Calvin Leung
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thang Manh Khuong
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gregory Cooney
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - G Gregory Neely
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action of an extremely painful venom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612741. [PMID: 39314321 PMCID: PMC11419154 DOI: 10.1101/2024.09.12.612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Evolutionary arms races between predator and prey can lead to extremely specific and effective defense mechanisms. Such defenses include venoms that deter predators by targeting nociceptive (pain-sensing) pathways. Through co-evolution, venom toxins can become extremely efficient modulators of their molecular targets. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. The intensity of a velvet ant sting has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand." [1] The effectiveness of the velvet ant sting as a deterrent against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds [2-4]. The venom's low toxicity suggests it has a targeted effect on nociceptive sensory mechanisms [5]. This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals [6-9]. These polymodal nociceptors are called class IV multidendritic dendritic arborizing (cIV da) neurons, and they share many features with vertebrate nociceptors, including conserved sensory receptor channels [10,11]. We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels. Furthermore, we found a single venom peptide (Do6a) that activated larval nociceptors at nanomolar concentrations through Ppk/Bba. Drosophila Ppk/Bba is homologous to mammalian Acid Sensing Ion Channels (ASICs) [12]. However, the Do6a peptide did not produce behavioral signs of nociception in mice, which was instead triggered by other non-specific, less potent, peptides within the venom. This suggests that Do6a is an insect-specific venom component that potently activates insect nociceptors. Consistent with this, we showed that the velvet ant's defensive sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom evolved to target nociceptive systems of both vertebrates and invertebrates, but through different molecular mechanisms.
Collapse
Affiliation(s)
- Lydia J. Borjon
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Luana C. de Assis Ferreira
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
| | | | - Sunčica Šašić
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Andrea G. Hohmann
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| | - W. Daniel Tracey
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| |
Collapse
|
11
|
Kaneko T, Li R, He Q, Yang L, Ye B. Transsynaptic BMP Signaling Regulates Fine-Scale Topography between Adjacent Sensory Neurons. eNeuro 2024; 11:ENEURO.0322-24.2024. [PMID: 39137988 PMCID: PMC11360983 DOI: 10.1523/eneuro.0322-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Sensory axons projecting to the central nervous system are organized into topographic maps that represent the locations of sensory stimuli. In some sensory systems, even adjacent sensory axons are arranged topographically, forming "fine-scale" topographic maps. Although several broad molecular gradients are known to instruct coarse topography, we know little about the molecular signaling that regulates fine-scale topography at the level of two adjacent axons. Here, we provide evidence that transsynaptic bone morphogenetic protein (BMP) signaling mediates local interneuronal communication to regulate fine-scale topography in the nociceptive system of Drosophila larvae. We first show that the topographic separation of the axon terminals of adjacent nociceptors requires their common postsynaptic target, the A08n neurons. This phenotype is recapitulated by knockdown of the BMP ligand, Decapentaplegic (Dpp), in these neurons. In addition, removing the Type 2 BMP receptors or their effector (Mad transcription factor) in single nociceptors impairs the fine-scale topography, suggesting the contribution of BMP signaling originated from A08n. This signaling is likely mediated by phospho-Mad in the presynaptic terminals of nociceptors to ensure local interneuronal communication. Finally, reducing Dpp levels in A08n reduces the nociceptor-A08n synaptic contacts. Our data support that transsynaptic BMP signaling establishes the fine-scale topography by facilitating the formation of topographically correct synapses. Local BMP signaling for synapse formation may be a developmental strategy that independently regulates neighboring axon terminals for fine-scale topography.
Collapse
Affiliation(s)
- Takuya Kaneko
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- School of Medicine, Dalian University, Dalian 116622, China
| | - Qun He
- School of Medicine, Dalian University, Dalian 116622, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Mukherjee A, Andrés Jeske Y, Becam I, Taïeb A, Brooks P, Aouad J, Monguillon C, Conduit PT. γ-TuRCs and the augmin complex are required for the development of highly branched dendritic arbors in Drosophila. J Cell Sci 2024; 137:jcs261534. [PMID: 38606636 PMCID: PMC11128279 DOI: 10.1242/jcs.261534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Microtubules are nucleated by γ-tubulin ring complexes (γ-TuRCs) and are essential for neuronal development. Nevertheless, γ-TuRC depletion has been reported to perturb only higher-order branching in elaborated Drosophila larval class IV dendritic arborization (da) neurons. This relatively mild phenotype has been attributed to defects in microtubule nucleation from Golgi outposts, yet most Golgi outposts lack associated γ-TuRCs. By analyzing dendritic arbor regrowth in pupae, we show that γ-TuRCs are also required for the growth and branching of primary and secondary dendrites, as well as for higher-order branching. Moreover, we identify the augmin complex (hereafter augmin), which recruits γ-TuRCs to the sides of pre-existing microtubules, as being required predominantly for higher-order branching. Augmin strongly promotes the anterograde growth of microtubules in terminal dendrites and thus terminal dendrite stability. Consistent with a specific role in higher-order branching, we find that augmin is expressed less strongly and is largely dispensable in larval class I da neurons, which exhibit few higher-order dendrites. Thus, γ-TuRCs are essential for various aspects of complex dendritic arbor development, and they appear to function in higher-order branching via the augmin pathway, which promotes the elaboration of dendritic arbors to help define neuronal morphology.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Yaiza Andrés Jeske
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Isabelle Becam
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Anaelle Taïeb
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Paul Brooks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joanna Aouad
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Paul T. Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
13
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
14
|
Carlassara M, Khorramnejad A, Oker H, Bahrami R, Lozada-Chávez AN, Mancini MV, Quaranta S, Body MJA, Lahondère C, Bonizzoni M. Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17226. [PMID: 38454541 DOI: 10.1111/gcb.17226] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.
Collapse
Affiliation(s)
- Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ayda Khorramnejad
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Romina Bahrami
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Stefano Quaranta
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mélanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
15
|
Logan DR, Hall J, Bianchi L. A helping hand: roles for accessory cells in the sense of touch across species. Front Cell Neurosci 2024; 18:1367476. [PMID: 38433863 PMCID: PMC10904576 DOI: 10.3389/fncel.2024.1367476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
During touch, mechanical forces are converted into electrochemical signals by tactile organs made of neurons, accessory cells, and their shared extracellular spaces. Accessory cells, including Merkel cells, keratinocytes, lamellar cells, and glia, play an important role in the sensation of touch. In some cases, these cells are intrinsically mechanosensitive; however, other roles include the release of chemical messengers, the chemical modification of spaces that are shared with neurons, and the tuning of neural sensitivity by direct physical contact. Despite great progress in the last decade, the precise roles of these cells in the sense of touch remains unclear. Here we review the known and hypothesized contributions of several accessory cells to touch by incorporating research from multiple organisms including C. elegans, D. melanogaster, mammals, avian models, and plants. Several broad parallels are identified including the regulation of extracellular ions and the release of neuromodulators by accessory cells, as well as the emerging potential physical contact between accessory cells and sensory neurons via tethers. Our broader perspective incorporates the importance of accessory cells to the understanding of human touch and pain, as well as to animal touch and its molecular underpinnings, which are underrepresented among the animal welfare literature. A greater understanding of touch, which must include a role for accessory cells, is also relevant to emergent technical applications including prosthetics, virtual reality, and robotics.
Collapse
Affiliation(s)
| | | | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Mitchell JW, Midillioglu I, Schauer E, Wang B, Han C, Wildonger J. Coordination of Pickpocket ion channel delivery and dendrite growth in Drosophila sensory neurons. PLoS Genet 2023; 19:e1011025. [PMID: 37943859 PMCID: PMC10662761 DOI: 10.1371/journal.pgen.1011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Sensory neurons enable an organism to perceive external stimuli, which is essential for survival. The sensory capacity of a neuron depends on the elaboration of its dendritic arbor and the localization of sensory ion channels to the dendritic membrane. However, it is not well understood when and how ion channels localize to growing sensory dendrites and whether their delivery is coordinated with growth of the dendritic arbor. We investigated the localization of the DEG/ENaC/ASIC ion channel Pickpocket (Ppk) in the peripheral sensory neurons of developing fruit flies. We used CRISPR-Cas9 genome engineering approaches to tag endogenous Ppk1 and visualize it live, including monitoring Ppk1 membrane localization via a novel secreted split-GFP approach. Fluorescently tagged endogenous Ppk1 localizes to dendrites, as previously reported, and, unexpectedly, to axons and axon terminals. In dendrites, Ppk1 is present throughout actively growing dendrite branches and is stably integrated into the neuronal cell membrane during the expansive growth of the arbor. Although Ppk channels are dispensable for dendrite growth, we found that an over-active channel mutant severely reduces dendrite growth, likely by acting at an internal membrane and not the dendritic membrane. Our data reveal that the molecular motor dynein and recycling endosome GTPase Rab11 are needed for the proper trafficking of Ppk1 to dendrites. Based on our data, we propose that Ppk channel transport is coordinated with dendrite morphogenesis, which ensures proper ion channel density and distribution in sensory dendrites.
Collapse
Affiliation(s)
- Josephine W. Mitchell
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
| | - Ipek Midillioglu
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Ethan Schauer
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
17
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
18
|
Trombley S, Powell J, Guttipatti P, Matamoros A, Lin X, O'Harrow T, Steinschaden T, Miles L, Wang Q, Wang S, Qiu J, Li Q, Li F, Song Y. Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila. Nat Commun 2023; 14:6490. [PMID: 37838791 PMCID: PMC10576831 DOI: 10.1038/s41467-023-42306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
A neuron's regenerative capacity is governed by its intrinsic and extrinsic environment. Both peripheral and central neurons exhibit cell-type-dependent axon regeneration, but the underlying mechanism is unclear. Glia provide a milieu essential for regeneration. However, the routes of glia-neuron signaling remain underexplored. Here, we show that regeneration specificity is determined by the axotomy-induced Ca2+ transients only in the fly regenerative neurons, which is mediated by L-type calcium channels, constituting the core intrinsic machinery. Peripheral glia regulate axon regeneration via a three-layered and balanced modulation. Glia-derived tumor necrosis factor acts through its neuronal receptor to maintain calcium channel expression after injury. Glia sustain calcium channel opening by enhancing membrane hyperpolarization via the inwardly-rectifying potassium channel (Irk1). Glia also release adenosine which signals through neuronal adenosine receptor (AdoR) to activate HCN channels (Ih) and dampen Ca2+ transients. Together, we identify a multifaceted glia-neuron coupling which can be hijacked to promote neural repair.
Collapse
Affiliation(s)
- Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pavithran Guttipatti
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaohui Lin
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Tristan O'Harrow
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leann Miles
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingyang Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China.
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557275. [PMID: 37745567 PMCID: PMC10515945 DOI: 10.1101/2023.09.14.557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P. Luedke
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jiro Yoshino
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Chang Yin
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jessica M. Huang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Kevin Huynh
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Ravenscroft TA, Jacobs A, Gu M, Eberl DF, Bellen HJ. The Voltage-Gated Sodium Channel in Drosophila, Para, Localizes to Dendrites As Well As Axons in Mechanosensitive Chordotonal Neurons. eNeuro 2023; 10:ENEURO.0105-23.2023. [PMID: 37328295 PMCID: PMC10316460 DOI: 10.1523/eneuro.0105-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
The fruit fly Drosophila melanogaster has provided important insights into how sensory information is transduced by transient receptor potential (TRP) channels in the peripheral nervous system (PNS). However, TRP channels alone have not been able to completely model mechanosensitive transduction in mechanoreceptive chordotonal neurons (CNs). Here, we show that, in addition to TRP channels, the sole voltage-gated sodium channel (NaV) in Drosophila, Para, is localized to the dendrites of CNs. Para is localized to the distal tip of the dendrites in all CNs, from embryos to adults, and is colocalized with the mechanosensitive TRP channels No mechanoreceptor potential C (NompC) and Inactive/Nanchung (Iav/Nan). Para localization also demarcates spike initiation zones (SIZs) in axons and the dendritic localization of Para is indicative of a likely dendritic SIZ in fly CNs. Para is not present in the dendrites of other peripheral sensory neurons. In both multipolar and bipolar neurons in the PNS, Para is present in a proximal region of the axon, comparable to the axonal initial segment (AIS) in vertebrates, 40-60 μm from the soma in multipolar neurons and 20-40 μm in bipolar neurons. Whole-cell reduction of para expression using RNAi in CNs of the adult Johnston's organ (JO) severely affects sound-evoked potentials (SEPs). However, the duality of Para localization in the CN dendrites and axons identifies a need to develop resources to study compartment-specific roles of proteins that will enable us to better understand Para's role in mechanosensitive transduction.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Ashleigh Jacobs
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Mingxue Gu
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Hugo J Bellen
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
22
|
Zhu J, Boivin JC, Pang S, Xu CS, Lu Z, Saalfeld S, Hess HF, Ohyama T. Comparative connectomics and escape behavior in larvae of closely related Drosophila species. Curr Biol 2023:S0960-9822(23)00675-9. [PMID: 37285846 DOI: 10.1016/j.cub.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Jean-Christophe Boivin
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Tomoko Ohyama
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Alan Edwards Center for Research on Pain, McGill University, University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
23
|
Pan G, Li R, Xu G, Weng S, Yang XL, Yang L, Ye B. Cross-modal modulation gates nociceptive inputs in Drosophila. Curr Biol 2023; 33:1372-1380.e4. [PMID: 36893758 PMCID: PMC10089977 DOI: 10.1016/j.cub.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Animals' response to a stimulus in one sensory modality is usually influenced by other modalities.1 One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals' perception and for understanding sensory processing disorders.2,3,4 However, the synaptic and circuit mechanisms that underlie cross-modal modulation are poorly understood. This is due to the difficulty of separating cross-modal modulation from multisensory integrations in neurons that receive excitatory inputs from two or more sensory modalities5-in which case it is unclear what the modulating or modulated modality is. In this study, we report a unique system for studying cross-modal modulation by taking advantage of the genetic resources in Drosophila. We show that gentle mechanical stimuli inhibit nociceptive responses in Drosophila larvae. Low-threshold mechanosensory neurons inhibit a key second-order neuron in the nociceptive pathway through metabotropic GABA receptors on nociceptor synaptic terminals. Strikingly, this cross-modal inhibition is only effective when nociceptor inputs are weak, thus serving as a gating mechanism for filtering out weak nociceptive inputs. Our findings unveil a novel cross-modal gating mechanism for sensory pathways.
Collapse
Affiliation(s)
- Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Guozhong Xu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Goodman MB, Haswell ES, Vásquez V. Mechanosensitive membrane proteins: Usual and unusual suspects in mediating mechanotransduction. J Gen Physiol 2023; 155:e202213248. [PMID: 36696153 PMCID: PMC9930137 DOI: 10.1085/jgp.202213248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This Viewpoint, which accompanies a Special Issue focusing on membrane mechanosensors, discusses unifying and unique features of both established and emerging mechanosensitive (MS) membrane proteins, their distribution across protein families and phyla, and current and future challenges in the study of these important proteins and their partners. MS membrane proteins are essential for tissue development, cellular motion, osmotic homeostasis, and sensing external and self-generated mechanical cues like those responsible for touch and proprioception. Though researchers' attention and this Viewpoint focus on a few famous ion channels that are considered the usual suspects as MS mechanosensors, we also discuss some of the more unusual suspects, such as G-protein coupled receptors. As the field continues to grow, so too will the list of proteins suspected to function as mechanosensors and the diversity of known MS membrane proteins.
Collapse
Affiliation(s)
- Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Elizabeth S. Haswell
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
26
|
Kanaoka Y, Onodera K, Watanabe K, Hayashi Y, Usui T, Uemura T, Hattori Y. Inter-organ Wingless/Ror/Akt signaling regulates nutrient-dependent hyperarborization of somatosensory neurons. eLife 2023; 12:79461. [PMID: 36647607 PMCID: PMC9844989 DOI: 10.7554/elife.79461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/11/2022] [Indexed: 01/18/2023] Open
Abstract
Nutrition in early life has profound effects on an organism, altering processes such as organogenesis. However, little is known about how specific nutrients affect neuronal development. Dendrites of class IV dendritic arborization neurons in Drosophila larvae become more complex when the larvae are reared on a low-yeast diet compared to a high-yeast diet. Our systematic search for key nutrients revealed that the neurons increase their dendritic terminal densities in response to a combined deficiency in vitamins, metal ions, and cholesterol. The deficiency of these nutrients upregulates Wingless in a closely located tissue, body wall muscle. Muscle-derived Wingless activates Akt in the neurons through the receptor tyrosine kinase Ror, which promotes the dendrite branching. In larval muscles, the expression of wingless is regulated not only in this key nutrient-dependent manner, but also by the JAK/STAT signaling pathway. Additionally, the low-yeast diet blunts neuronal light responsiveness and light avoidance behavior, which may help larvae optimize their survival strategies under low-nutritional conditions. Together, our studies illustrate how the availability of specific nutrients affects neuronal development through inter-organ signaling.
Collapse
Affiliation(s)
| | - Koun Onodera
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Yusaku Hayashi
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Research Center for Dynamic Living Systems, Kyoto UniversityKyotoJapan
- AMED-CRESTTokyoJapan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- JST FORESTTokyoJapan
| |
Collapse
|
27
|
Jang W, Lim JY, Kang S, Kim M, Hwang SW, Kim C. Drosophila ppk19 encodes a proton-gated and mechanosensitive ion channel. Sci Rep 2022; 12:18346. [PMID: 36319833 PMCID: PMC9626565 DOI: 10.1038/s41598-022-23236-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
In Drosophila larvae, nociceptive mdIV sensory neurons detect diverse noxious stimuli and prompt a nociceptive rolling response. Intriguingly, the same neurons also regulate stereotyped larval movement. The channels responsible for transducing these stimuli into electric signals are not yet fully identified. Here we undertook genetic and electrophysiological analysis of Ppk19, a member of the Deg/ENaC family of cationic channels. ppk19 mutants exhibited an impaired nociceptive rolling response upon mechanical force and acid, but no impairment in response to noxious temperature and gentle touch. Mutants also exhibited defective larval movement. RNAi against ppk19 in mdIV neurons likewise produced larvae with defects in mechanical and acid nociception and larval movement, but no impairment in detection of heat and gentle touch. Cultured cells transfected with ppk19 produced currents in acid and hypotonic solution, suggesting that ppk19 encodes an ion channel that responds to acid and cell swelling. Taken together, these findings suggest that Ppk19 acts in mdIV neurons as a proton- and mechano-gated ion channel to mediate acid- and mechano-responsive nociception and larval movement.
Collapse
Affiliation(s)
- Wijeong Jang
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Ji Yeon Lim
- grid.222754.40000 0001 0840 2678Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, 02841 Korea
| | - Seyoung Kang
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Minseok Kim
- grid.222754.40000 0001 0840 2678Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, 02841 Korea
| | - Sun Wook Hwang
- grid.222754.40000 0001 0840 2678Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, 02841 Korea
| | - Changsoo Kim
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
28
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
29
|
Abstract
Insects are traditionally thought to respond to noxious stimuli in an inflexible manner, without the ability to modulate their behavior according to context. We investigated whether bumblebees’ attraction to high sucrose solution concentrations reduces their avoidance of noxious heat. Bees were given the choice between either unheated or noxiously heated (55 °C) feeders with different sucrose concentrations and marked by different colors. Bees avoided noxious feeders when the unheated feeders contained high sucrose concentrations, but progressively increased feeding from noxious feeders when the sucrose concentration at unheated feeders decreased. This shows a motivational trade-off of nociceptive responses. Bees used learned color cues for their decisions, and thus the trade-off was based on processing in the brain, rather than just peripheral processing. Therefore, bees can use contextual information to modulate nociceptive behavior. This ability is consistent with a capacity for pain experiences in insects.
Collapse
|
30
|
Ma Y, Guo Z, Wang L, Wang B, Huang T, Tang B, Zhang G, Zhou Q. The genome of the rice planthopper egg parasitoid wasps Anagrus nilaparvatae casts light on the chemo- and mechanosensation in parasitism. BMC Genomics 2022; 23:541. [PMID: 35902811 PMCID: PMC9331105 DOI: 10.1186/s12864-022-08656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mymaridae is an ancient insect group and is a basal lineage of the superfamily Chalcidoidea. Species of Mymaridae have great potential for biological control. Anagrus nilaparvatae, a representative species of Mymaridae, is ideal for controlling rice planthopper due to its high rate of parasitism and ability to find hosts efficiently in paddy ridges and fields. RESULTS Using both PacBio single-molecule real-time and Illumina sequencing, we sequenced and assembled the whole genome of A. nilaparvatae, a first for the family Mymaridae. The assembly consists of 394 scaffolds, totaling 488.8 Mb. The assembly is of high continuity and completeness, indicated by the N50 value of 25.4 Mb and 98.2% mapping rate of Benchmarking Universal Single-Copy Orthologs. In total, 16,894 protein-coding genes in the genome were annotated. A phylogenomic tree constructed for A. nilaparvatae and other 12 species of Hymenoptera confirmed that the family Mymaridae is sister to all remaining chalcidoids. The divergence time between A. nilaparvatae and the other seven Chalcidoidea species was dated at ~ 126.9 Mya. Chemoreceptor and mechanoreceptor genes are important in explaining parasitic behavior. We identified 17 odorant binding proteins, 11 chemosensory proteins, four Niemann-Pick type C2 proteins, 88 olfactory receptors, 12 gustatory receptors, 22 ionotropic receptors and 13 sensory neuron membrane proteins in the genome of A. nilaparvatae, which are associated with the chemosensory functions. Strikingly, there is only one pickpocket receptors and nine transient receptor potential genes in the genome that have a mechanosensory function. CONCLUSIONS We obtained a high-quality genome assembly for A. nilaparvatae using PacBio single-molecule real-time sequencing, which provides phylogenomic insights for its evolutionary history. The small numbers of chemo- and mechanosensory genes in A. nilaparvatae indicate the species-specific host detection and oviposition behavior of A. nilaparvatae might be regulated by relatively simple molecular pathways.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,School of Agriculture, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liyang Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bingyang Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Tingfa Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bingjie Tang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guren Zhang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiang Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Satterfield LK, De J, Wu M, Qiu T, Joiner WJ. Inputs to the Sleep Homeostat Originate Outside the Brain. J Neurosci 2022; 42:5695-5704. [PMID: 35680412 PMCID: PMC9302467 DOI: 10.1523/jneurosci.2113-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
The need to sleep is sensed and discharged in a poorly understood process that is homeostatically controlled over time. In flies, different contributions to this process have been attributed to peripheral ppk and central brain neurons, with the former serving as hypothetical inputs to the sleep homeostat and the latter reportedly serving as the homeostat itself. Here we re-evaluate these distinctions in light of new findings using female flies. First, activating neurons targeted by published ppk and brain drivers elicits similar phenotypes, namely, sleep deprivation followed by rebound sleep. Second, inhibiting activity or synaptic output with one type of driver suppresses sleep homeostasis induced using the other type of driver. Third, drivers previously used to implicate central neurons in sleep homeostasis unexpectedly also label ppk neurons. Fourth, activating only this subset of colabeled neurons is sufficient to elicit sleep homeostasis. Thus, many published contributions of central neurons to sleep homeostasis can be explained by previously unrecognized expression of brain drivers in peripheral ppk neurons, most likely those in the legs, which promote walking. Last, we show that activation of certain non-ppk neurons can also induce sleep homeostasis. Notably, axons of these as well as ppk neurons terminate in the same ventral brain region, suggesting that a previously undefined neural circuit element of a sleep homeostat may lie nearby.SIGNIFICANCE STATEMENT The biological needs that sleep fulfills are unknown, but they are reflected by the ability of an animal to compensate for prior sleep loss in a process called sleep homeostasis. Researchers have searched for the neural circuitry that comprises the sleep homeostat so that the information it conveys can shed light on the nature of sleep need. Here we demonstrate that neurons originating outside of the brain are responsible for phenotypes previously attributed to the proposed central brain sleep homeostat in flies. Our results support a revised neural circuit model for sensing and discharging sleep need in which peripheral inputs connect to a sleep homeostat through previously unrecognized neural circuit elements in the ventral brain.
Collapse
Affiliation(s)
- Lawrence K Satterfield
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Joydeep De
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Tianhao Qiu
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - William J Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
32
|
Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022; 5:687. [PMID: 35810216 PMCID: PMC9271052 DOI: 10.1038/s42003-022-03636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision. Aion is an anion-conducting, bistable channelrhodopsin that enables long-term silencing of neuronal networks, as demonstrated in organotypic hippocampal cultures and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Neena Dhiman
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
33
|
Hale C, Moulton JK, Otis Y, Ganter G. ARMADILLO REGULATES NOCICEPTIVE SENSITIVITY IN THE ABSENCE OF INJURY. Mol Pain 2022; 18:17448069221111155. [PMID: 35712882 PMCID: PMC9500252 DOI: 10.1177/17448069221111155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. Mammalian models have provided evidence of β-catenin signaling involvement in neuropathic pain development. By capitalizing on the conserved nature of β-catenin functions in the fruit fly, here we describe a role for Armadillo, the fly homolog to mammalian β-catenin, in regulating baseline sensitivity in the primary nociceptor of the fly, in the absence of injury, using under- and over-expression of Armadillo in a cell-specific manner. Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.
Collapse
Affiliation(s)
- Christine Hale
- Graduate School of Biomedical Science and Engineering6251University of Maine System
| | | | - Yvonne Otis
- School of Biological Sciences172741University of New England College of Arts and Sciences
| | | |
Collapse
|
34
|
Frey N, Sönmez UM, Minden J, LeDuc P. Microfluidics for understanding model organisms. Nat Commun 2022; 13:3195. [PMID: 35680898 PMCID: PMC9184607 DOI: 10.1038/s41467-022-30814-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
New microfluidic systems for whole organism analysis and experimentation are catalyzing biological breakthroughs across many fields, from human health to fundamental biology principles. This perspective discusses recent microfluidic tools to study intact model organisms to demonstrate the tremendous potential for these integrated approaches now and into the future. We describe these microsystems' technical features and highlight the unique advantages for precise manipulation in areas including immobilization, automated alignment, sorting, sensory, mechanical and chemical stimulation, and genetic and thermal perturbation. Our aim is to familiarize technologically focused researchers with microfluidics applications in biology research, while providing biologists an entrée to advanced microengineering techniques for model organisms.
Collapse
Affiliation(s)
- Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Utku M Sönmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Philip LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Computation Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Wertheim B. Adaptations and counter-adaptations in Drosophila host-parasitoid interactions: advances in the molecular mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100896. [PMID: 35240335 DOI: 10.1016/j.cois.2022.100896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Both hosts and parasitoids evolved a diverse array of traits and strategies for their antagonistic interactions, affecting their chances of encounter, attack and survival after parasitoid attack. This review summarizes the recent progress that has been made in elucidating the molecular mechanisms of these adaptations and counter-adaptations in various Drosophila host-parasitoid interactions. For the hosts, it focuses on the neurobiological and genetic control of strategies in Drosophila adults and larvae of avoidance or escape behaviours upon sensing the parasitoids, and the immunological defences involving diverse classes of haemocytes. For the parasitoids, it highlights their behavioural strategies in host finding, as well as the rich variety of venom components that evolved and were partially acquired through horizontal gene transfer. Recent studies revealed the mechanisms by which these venom components manipulate their parasitized hosts in exhibiting escape behaviour to avoid superparasitism, and their counter-strategies to evade or obstruct the hosts' immunological defences.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
36
|
Li H, Gavis ER. The Drosophila fragile X mental retardation protein modulates the neuronal cytoskeleton to limit dendritic arborization. Development 2022; 149:275257. [DOI: 10.1242/dev.200379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 01/02/2023]
Abstract
ABSTRACT
Dendritic arbor development is a complex, highly regulated process. Post-transcriptional regulation mediated by RNA-binding proteins plays an important role in neuronal dendrite morphogenesis by delivering on-site, on-demand protein synthesis. Here, we show how the Drosophila fragile X mental retardation protein (FMRP), a conserved RNA-binding protein, limits dendrite branching to ensure proper neuronal function during larval sensory neuron development. FMRP knockdown causes increased dendritic terminal branch growth and a resulting overelaboration defect due, in part, to altered microtubule stability and dynamics. FMRP also controls dendrite outgrowth by regulating the Drosophila profilin homolog chickadee (chic). FMRP colocalizes with chic mRNA in dendritic granules and regulates its dendritic localization and protein expression. Whereas RNA-binding domains KH1 and KH2 are both crucial for FMRP-mediated dendritic regulation, KH2 specifically is required for FMRP granule formation and chic mRNA association, suggesting a link between dendritic FMRP granules and FMRP function in dendrite elaboration. Our studies implicate FMRP-mediated modulation of both the neuronal microtubule and actin cytoskeletons in multidendritic neuronal architecture, and provide molecular insight into FMRP granule formation and its relevance to FMRP function in dendritic patterning.
Collapse
Affiliation(s)
- Hui Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
37
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Jaszczak JS, DeVault L, Jan LY, Jan YN. Steroid hormone signaling activates thermal nociception during Drosophila peripheral nervous system development. eLife 2022; 11:e76464. [PMID: 35353036 PMCID: PMC8967384 DOI: 10.7554/elife.76464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Sensory neurons enable animals to detect environmental changes and avoid harm. An intriguing open question concerns how the various attributes of sensory neurons arise in development. Drosophila melanogaster larvae undergo a behavioral transition by robustly activating a thermal nociceptive escape behavior during the second half of larval development (third instar). The Class IV dendritic arborization (C4da) neurons are multimodal sensors which tile the body wall of Drosophila larvae and detect nociceptive temperature, light, and mechanical force. In contrast to the increase in nociceptive behavior in the third instar, we find that ultraviolet light-induced Ca2+ activity in C4da neurons decreases during the same period of larval development. Loss of ecdysone receptor has previously been shown to reduce nociception in third instar larvae. We find that ligand-dependent activation of ecdysone signaling is sufficient to promote nociceptive responses in second instar larvae and suppress expression of subdued (encoding a TMEM16 channel). Reduction of subdued expression in second instar C4da neurons not only increases thermal nociception but also decreases the response to ultraviolet light. Thus, steroid hormone signaling suppresses subdued expression to facilitate the sensory switch of C4da neurons. This regulation of a developmental sensory switch through steroid hormone regulation of channel expression raises the possibility that ion channel homeostasis is a key target for tuning the development of sensory modalities.
Collapse
Affiliation(s)
- Jacob S Jaszczak
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Laura DeVault
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Developmental Biology, Washington University Medical SchoolSaint LouisUnited States
| | - Lily Yeh Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
39
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
40
|
Nemeth Z, Ryan MJ, Granger JP, Drummond HA. Expression of Exogenous Epithelial Sodium Channel Beta Subunit in the Mouse Middle Cerebral Artery Increases Pressure-Induced Constriction. Am J Hypertens 2021; 34:1227-1235. [PMID: 34161569 PMCID: PMC9526803 DOI: 10.1093/ajh/hpab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pressure-induced constriction (PIC) is inherent to small arteries and arterioles, in which intraluminal pressure-induced vascular smooth muscle cell stretch elicits vasoconstriction. Degenerin (Deg) proteins, such as beta-epithelial Na+ channel (βENaC), have been studied in the PIC response because they are evolutionarily linked to known mechanosensors. While loss of Deg function phenotypes are plentiful, a gain-of-function phenotype has not been studied. The aim of this study was to determine if expression of exogenous βENaC in the isolated middle cerebral artery (MCA) enhances the PIC response. METHODS Isolated MCA segments from female mice (24 weeks, n = 5) were transfected with enhanced green fluorescent protein-βENaC (EGFP-βENaC) or with EGFP alone, incubated overnight at 37 °C, then studied in a pressure myograph. RESULTS Mechanical/morphological properties and vasoconstrictor responses to KCl and phenylephrine were identical in EGFP-βENaC and EGFP MCAs. In contrast, PIC responses were greater in EGFP-βENaC segments with ~2-fold greater peak myogenic tone. CONCLUSIONS These data confirm previous findings that βENaC is critical in the PIC response. These data provide proof-of-concept that upregulating βENaC can enhance PIC responses and lay the foundation to test the hypothesis that inflammation-mediated downregulation of βENaC contributes to cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
41
|
Yang S, Constantin OM, Sachidanandan D, Hofmann H, Kunz TC, Kozjak-Pavlovic V, Oertner TG, Nagel G, Kittel RJ, Gee CE, Gao S. PACmn for improved optogenetic control of intracellular cAMP. BMC Biol 2021; 19:227. [PMID: 34663304 PMCID: PMC8522238 DOI: 10.1186/s12915-021-01151-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.
Collapse
Affiliation(s)
- Shang Yang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Divya Sachidanandan
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany
| | - Hannes Hofmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany
| | - Tobias C Kunz
- Department of Microbiology, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Robert J Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany. .,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany.
| | - Christine E Gee
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany.
| |
Collapse
|
42
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
43
|
Dabbara H, Schultz A, Im SH. Drosophila insulin receptor regulates diabetes-induced mechanical nociceptive hypersensitivity. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34549177 PMCID: PMC8449261 DOI: 10.17912/micropub.biology.000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Painful diabetic neuropathy (PDN) is one of the predominant complications of diabetes that causes numbness, tingling, and extreme pain sensitivity. Understanding the mechanisms of PDN pathogenesis is important for patient treatments. Here we report Drosophila models of diabetes-induced mechanical nociceptive hypersensitivity. Type 2 diabetes-like conditions and loss of insulin receptor function in multidendritic sensory neurons lead to mechanical nociceptive hypersensitivity. Furthermore, we also found that restoring insulin signaling in multidendritic sensory neurons can block diabetes-induced mechanical nociceptive hypersensitivity. Our work highlights the critical role of insulin signaling in nociceptive sensory neurons in the regulation of diabetes-induced nociceptive hypersensitivities.
Collapse
Affiliation(s)
| | | | - Seol Hee Im
- Department of Biology, Haverford College, Haverford, PA
| |
Collapse
|
44
|
Latorre-Estivalis JM, Almeida FC, Pontes G, Dopazo H, Barrozo RB, Lorenzo MG. Evolution of the insect PPK gene family. Genome Biol Evol 2021; 13:6352500. [PMID: 34390578 PMCID: PMC8438182 DOI: 10.1093/gbe/evab185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/12/2022] Open
Abstract
Insect pickpocket (PPK) receptors mediate diverse functions, among them the detection of mechano- and chemo-sensory stimuli. Notwithstanding their relevance, studies on their evolution only focused on Drosophila. We have analyzed the genomes of 26 species of 8 orders including holometabolous and hemimetabolous insects (Blattodea, Orthoptera, Hemiptera, Phthiraptera, Hymenoptera, Lepidoptera, Coleoptera, and Diptera), to characterize the evolution of this gene family. PPKs were detected in all genomes analyzed, with 578 genes distributed in 7 subfamilies. According to our phylogeny ppk17 is the most divergent member, composing the new subfamily VII. PPKs evolved under a gene birth-and-death model that generated lineage-specific expansions usually located in clusters, while purifying selection affected several orthogroups. Subfamily V was the largest, including a mosquito-specific expansion that can be considered a new target for pest control. PPKs present a high gene turnover generating considerable variation. On one hand, Musca domestica (59), Aedes albopictus (51), Culex quinquefasciatus (48), and Blattella germanica (41) presented the largest PPK repertoires. On the other hand, Pediculus humanus (only ppk17), bees and ants (6-9) had the smallest PPK sets. A subset of prevalent PPKs was identified, indicating very conserved functions for these receptors. Finally, at least twenty percent of the sequences presented calmodulin-binding motifs, suggesting that these PPKs may amplify sensory responses similarly as proposed for D. melanogaster ppk25. Overall, this work characterized the evolutionary history of these receptors revealing relevant unknown gene sequence features and clade-specific expansions.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Francisca C Almeida
- Laboratorio de Genética Evolutiva, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gina Pontes
- Laboratorio de Eco-Fisiología de Insectos del Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Dopazo
- Laboratorio de Genómica de Poblaciones y Evolución. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA). CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Argentina
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA - UBA - CONICET), Departamento de Biología y Biodiversidad Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
45
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
46
|
Focal laser stimulation of fly nociceptors activates distinct axonal and dendritic Ca 2+ signals. Biophys J 2021; 120:3222-3233. [PMID: 34175294 PMCID: PMC8390926 DOI: 10.1016/j.bpj.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Drosophila class IV neurons are polymodal nociceptors that detect noxious mechanical, thermal, optical, and chemical stimuli. Escape behaviors in response to attacks by parasitoid wasps are dependent on class IV cells, whose highly branched dendritic arbors form a fine meshwork that is thought to enable detection of the wasp’s needle-like ovipositor barb. To understand how mechanical stimuli trigger cellular responses, we used a focused 405-nm laser to create highly localized lesions to probe the precise position needed to evoke responses. By imaging calcium signals in dendrites, axons, and soma in response to stimuli of varying positions, intensities, and spatial profiles, we discovered that there are two distinct nociceptive pathways. Direct stimulation to dendrites (the contact pathway) produces calcium responses in axons, dendrites, and the cell body, whereas stimulation adjacent to the dendrite (the noncontact pathway) produces calcium responses in the axons only. We interpret the noncontact pathway as damage to adjacent cells releasing diffusible molecules that act on the dendrites. Axonal responses have higher sensitivities and shorter latencies. In contrast, dendritic responses have lower sensitivities and longer latencies. Stimulation of finer, distal dendrites leads to smaller responses than stimulation of coarser, proximal dendrites, as expected if the contact response depends on the geometric overlap of the laser profile and the dendrite diameter. Because the axon signals to the central nervous system to trigger escape behaviors, we propose that the density of the dendritic meshwork is high not only to enable direct contact with the ovipositor but also to enable neuronal activation via diffusing signals from damaged surrounding cells. Dendritic contact evokes responses throughout the dendritic arbor, even to regions distant and distal from the stimulus. These dendrite-wide calcium signals may facilitate hyperalgesia or cellular morphological changes after dendritic damage.
Collapse
|
47
|
Insights into the genomic evolution of insects from cricket genomes. Commun Biol 2021; 4:733. [PMID: 34127782 PMCID: PMC8203789 DOI: 10.1038/s42003-021-02197-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.
Collapse
|
48
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
49
|
Min S, Oh Y, Verma P, Whitehead SC, Yapici N, Van Vactor D, Suh GS, Liberles S. Control of feeding by Piezo-mediated gut mechanosensation in Drosophila. eLife 2021; 10:63049. [PMID: 33599608 PMCID: PMC7920550 DOI: 10.7554/elife.63049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns and identify a key role for Drosophila Piezo in internal organ mechanosensation.
Collapse
Affiliation(s)
- Soohong Min
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Yangkyun Oh
- Skirball Institute, NYU School of Medicine, New York, United States
| | - Pushpa Verma
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | | | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Greg Sb Suh
- Skirball Institute, NYU School of Medicine, New York, United States.,KAIST, Department of Biological Sciences, Daejeon, Republic of Korea
| | - Stephen Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| |
Collapse
|
50
|
Bush KM, Barber KR, Martinez JA, Tang SJ, Wairkar YP. Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity. Biol Open 2021; 10:bio.054635. [PMID: 33504470 PMCID: PMC7860131 DOI: 10.1242/bio.054635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The success of antiretroviral therapy (ART) has improved the survival of HIV-infected patients significantly. However, significant numbers of patients on ART whose HIV disease is well controlled show peripheral sensory neuropathy (PSN), suggesting that ART may cause PSN. Although the nucleoside reverse transcriptase inhibitors (NRTIs), one of the vital components of ART, are thought to contribute to PSN, the mechanisms underlying the PSN induced by NRTIs are unclear. In this study, we developed a Drosophila model of NRTI-induced PSN that recapitulates the salient features observed in patients undergoing ART: PSN and nociceptive hypersensitivity. Furthermore, our data demonstrate that pathways known to suppress PSN induced by chemotherapeutic drugs are ineffective in suppressing the PSN or nociception induced by NRTIs. Instead, we found that increased dynamics of a peripheral sensory neuron may possibly underlie NRTI-induced PSN and nociception. Our model provides a solid platform in which to investigate further mechanisms of ART-induced PSN and nociceptive hypersensitivity. This article has an associated First Person interview with the first author of the paper. Summary: Nucleoside reverse transcriptase inhibitors (NRTIs) that are important components of anti-retroviral therapies also cause peripheral sensory neuropathies (PSN). This article investigates ways in which NRTIs may cause PSN and outlines ways to better understand the mechanisms underlying it.
Collapse
Affiliation(s)
- Keegan M Bush
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kara R Barber
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jade A Martinez
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yogesh P Wairkar
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|