1
|
Yamashita K, Muramoto T. Efficient endogenous protein labelling in Dictyostelium using CRISPR/Cas9 knock-in and split fluorescent proteins. PLoS One 2025; 20:e0326577. [PMID: 40540504 DOI: 10.1371/journal.pone.0326577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 06/02/2025] [Indexed: 06/22/2025] Open
Abstract
Fluorescent protein tagging is a powerful technique for visualising protein dynamics; however, full-length fluorescent protein knock-in can be inefficient at certain genomic loci, making it challenging to achieve stable and uniform expression. To address this issue, we used CRISPR/Cas9-mediated knock-in strategies with split fluorescent proteins in Dictyostelium discoideum. This approach enabled efficient integration of the short mNeonGreen2 (mNG2) fragment, mNG211, particularly at functionally critical loci such as major histone h2bv3, where full-length tagging was unsuccessful. Our analysis revealed that inserting tandem repeats of mNG211 at the h2bv3 locus progressively impaired cell proliferation, indicating that functional disruption depends on insert size. These findings suggest that using short tags like mNG211 minimises functional interference and facilitates knock-in at sensitive loci. We further optimised the fluorescence intensity by fine-tuning the expression of the long fragment, mNG21-10, and introducing tandem repeats of mNG211. This approach provides a reliable method for precise and stable endogenous protein labelling, facilitating live-cell imaging and functional studies in D. discoideum.
Collapse
Affiliation(s)
- Kensuke Yamashita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. Mol Cell 2025; 85:913-928.e8. [PMID: 39978338 PMCID: PMC11890955 DOI: 10.1016/j.molcel.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms that govern gene-specific stochastic bursting are largely unknown. We have developed a high-throughput-imaging-based screening strategy to identify cellular factors that determine the bursting patterns of native genes in human cells. We identify protein acetylation as a prominent effector of burst frequency and burst size acting via decreasing off-times and gene-specific changes in the on-time. These effects are not correlated with promoter acetylation. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting that alters Integrator interactions with transcription elongation and RNA processing factors but without affecting pausing. Our results suggest a prominent role for non-histone acetylation of a transcription cofactors as a mechanism for modulation of bursting via a far-downstream checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Hashimura H, Kuwana S, Nakagawa H, Abe K, Adachi T, Sugita T, Fujishiro S, Honda G, Sawai S. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell Struct Funct 2024; 49:135-153. [PMID: 39631875 PMCID: PMC11930779 DOI: 10.1247/csf.24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hibiki Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kenichi Abe
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tomoko Adachi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toyoko Sugita
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shoko Fujishiro
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Garnica J, Sole P, Yamanouchi J, Moro J, Mondal D, Fandos C, Serra P, Santamaria P. T-follicular helper cells are epigenetically poised to transdifferentiate into T-regulatory type 1 cells. eLife 2024; 13:RP97665. [PMID: 39576679 PMCID: PMC11584177 DOI: 10.7554/elife.97665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.
Collapse
Affiliation(s)
- Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Patricia Sole
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Cesar Fandos
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| |
Collapse
|
5
|
Zhang Q, Cao W, Wang J, Yin Y, Sun R, Tian Z, Hu Y, Tan Y, Zhang BG. Transcriptional bursting dynamics in gene expression. Front Genet 2024; 15:1451461. [PMID: 39346775 PMCID: PMC11437526 DOI: 10.3389/fgene.2024.1451461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity. Currently, the lack of a comprehensive quantitative model limits the research on transcriptional bursting. This review examines various gene expression models and compares their strengths and weaknesses to guide researchers in selecting the most suitable model for their research context. We also provide a detailed summary of the key metrics related to transcriptional bursting. We compared the temporal dynamics of transcriptional bursting across species and the molecular mechanisms influencing these bursts, and highlighted the spatiotemporal patterns of gene expression differences by utilizing metrics such as burst size and burst frequency. We summarized the strategies for modeling gene expression from both biostatistical and biochemical reaction network perspectives. Single-cell sequencing data and integrated multiomics approaches drive our exploration of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we examined classical methods for parameter estimation that help capture dynamic parameters in gene expression data, assessing their merits and limitations to facilitate optimal parameter estimation. Our comprehensive summary and review of the current transcriptional burst dynamics theories provide deeper insights for promoting research on the nature of cell processes, cell fate determination, and cancer diagnosis.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Wenjie Cao
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Wang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yihao Yin
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Rui Sun
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Zunyi Tian
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yuhan Hu
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yalan Tan
- School of Bioengineering & Health, Wuhan Textile University, Wu Han, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| |
Collapse
|
6
|
Hebenstreit D, Karmakar P. Transcriptional bursting: from fundamentals to novel insights. Biochem Soc Trans 2024; 52:1695-1702. [PMID: 39119657 PMCID: PMC11668302 DOI: 10.1042/bst20231286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Transcription occurs as irregular bursts in a very wide range of systems, including numerous different species and many genes within these. In this review, we examine the underlying theories, discuss how these relate to experimental measurements, and explore some of the discrepancies that have emerged among various studies. Finally, we consider more recent works that integrate novel concepts, such as the involvement of biomolecular condensates in enhancer-promoter interactions and their effects on the dynamics of transcriptional bursting.
Collapse
Affiliation(s)
| | - Pradip Karmakar
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, U.K
| |
Collapse
|
7
|
Sood V, Holewinski R, Andresson T, Larson DR, Misteli T. Identification of molecular determinants of gene-specific bursting patterns by high-throughput imaging screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597999. [PMID: 38903099 PMCID: PMC11188098 DOI: 10.1101/2024.06.08.597999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Stochastic transcriptional bursting is a universal property of active genes. While different genes exhibit distinct bursting patterns, the molecular mechanisms for gene-specific stochastic bursting are largely unknown. We have developed and applied a high-throughput-imaging based screening strategy to identify cellular factors and molecular mechanisms that determine the bursting behavior of human genes. Focusing on epigenetic regulators, we find that protein acetylation is a strong acute modulator of burst frequency, burst size and heterogeneity of bursting. Acetylation globally affects the Off-time of genes but has gene-specific effects on the On-time. Yet, these effects are not strongly linked to promoter acetylation, which do not correlate with bursting properties, and forced promoter acetylation has variable effects on bursting. Instead, we demonstrate acetylation of the Integrator complex as a key determinant of gene bursting. Specifically, we find that elevated Integrator acetylation decreases bursting frequency. Taken together our results suggest a prominent role of non-histone proteins in determining gene bursting properties, and they identify histone-independent acetylation of a transcription cofactor as an allosteric modulator of bursting via a far-downstream bursting checkpoint.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, Bethesda, MD, USA
| | - Ronald Holewinski
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Tom Misteli
- National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Fourneaux C, Racine L, Koering C, Dussurgey S, Vallin E, Moussy A, Parmentier R, Brunard F, Stockholm D, Modolo L, Picard F, Gandrillon O, Paldi A, Gonin-Giraud S. Differentiation is accompanied by a progressive loss in transcriptional memory. BMC Biol 2024; 22:58. [PMID: 38468285 PMCID: PMC10929117 DOI: 10.1186/s12915-024-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.
Collapse
Affiliation(s)
- Camille Fourneaux
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Laëtitia Racine
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Catherine Koering
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Dussurgey
- Plateforme AniRA-Cytométrie, Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, F-69007, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Romuald Parmentier
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Fanny Brunard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Franck Picard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Gandrillon
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Inria Center, Grenoble Rhone-Alpes, Equipe Dracula, Villeurbanne, F69100, France
| | - Andras Paldi
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Sandrine Gonin-Giraud
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
9
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
10
|
Falkenberry E, Reeves M, Scott A, Myrick D, Fallini C, Bassell G, Katz D. LSD1/KDM1A is essential for neural stem cell differentiation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569711. [PMID: 38076951 PMCID: PMC10705553 DOI: 10.1101/2023.12.02.569711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The proper regulation of neural stem cell differentiation is required for the proper specification of the central nervous system. Here we investigated the function of the H3K4me1/2 demethylase LSD1/KDM1A during neural stem differentiation in mice. Conditional deletion of LSD1 in nestin- positive neural stem cells results in 100% perinatal lethality after birth with severe motor coordination deficits, retarded growth and defects in brain morphology. Despite these severe defects, motor neuron progenitors and the initial motor neuron population are specified normally and motor neurons with normal morphology can be cultured from these mice in vitro. However, motor neurons cultured from mice lacking LSD1 in neural stem cells continue to inappropriately maintain critical neural stem cell proteins. Taken together these results suggest that, as in other mouse stem cell populations, LSD1 is required to deactivate the stem cell program to enable normal neural stem cell differentiation. However, unlike in other mouse stem cell populations, the inappropriate maintenance of the stem cell program during neural stem cell differentiation may compromise neuronal function rather than neuronal specification.
Collapse
Affiliation(s)
- E.C. Falkenberry
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - M. Reeves
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | | | | | - C. Fallini
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - G.J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - D.J. Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
11
|
Mori S, Oya S, Takahashi M, Takashima K, Inagaki S, Kakutani T. Cotranscriptional demethylation induces global loss of H3K4me2 from active genes in Arabidopsis. EMBO J 2023; 42:e113798. [PMID: 37849386 PMCID: PMC10690457 DOI: 10.15252/embj.2023113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Based on studies of animals and yeasts, methylation of histone H3 lysine 4 (H3K4me1/2/3, for mono-, di-, and tri-methylation, respectively) is regarded as the key epigenetic modification of transcriptionally active genes. In plants, however, H3K4me2 correlates negatively with transcription, and the regulatory mechanisms of this counterintuitive H3K4me2 distribution in plants remain largely unexplored. A previous genetic screen for factors regulating plant regeneration identified Arabidopsis LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3), which is a major H3K4me2 demethylase. Here, we show that LDL3-mediated H3K4me2 demethylation depends on the transcription elongation factor Paf1C and phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). In addition, LDL3 binds to phosphorylated RNAPII. These results suggest that LDL3 is recruited to transcribed genes by binding to elongating RNAPII and demethylates H3K4me2 cotranscriptionally. Importantly, the negative correlation between H3K4me2 and transcription is significantly attenuated in the ldl3 mutant, demonstrating the genome-wide impacts of the transcription-driven LDL3 pathway to control H3K4me2 in plants. Our findings implicate H3K4me2 demethylation in plants as chromatin records of transcriptional activity, which ensures robust gene control.
Collapse
Affiliation(s)
- Shusei Mori
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- National Institute of GeneticsShizuokaJapan
| |
Collapse
|
12
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
13
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Aslan Kamil M, Fourneaux C, Yilmaz A, Stavros S, Parmentier R, Paldi A, Gonin-Giraud S, deMello AJ, Gandrillon O. An image-guided microfluidic system for single-cell lineage tracking. PLoS One 2023; 18:e0288655. [PMID: 37527253 PMCID: PMC10393162 DOI: 10.1371/journal.pone.0288655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Cell lineage tracking is a long-standing and unresolved problem in biology. Microfluidic technologies have the potential to address this problem, by virtue of their ability to manipulate and process single-cells in a rapid, controllable and efficient manner. Indeed, when coupled with traditional imaging approaches, microfluidic systems allow the experimentalist to follow single-cell divisions over time. Herein, we present a valve-based microfluidic system able to probe the decision-making processes of single-cells, by tracking their lineage over multiple generations. The system operates by trapping single-cells within growth chambers, allowing the trapped cells to grow and divide, isolating sister cells after a user-defined number of divisions and finally extracting them for downstream transcriptome analysis. The platform incorporates multiple cell manipulation operations, image processing-based automation for cell loading and growth monitoring, reagent addition and device washing. To demonstrate the efficacy of the microfluidic workflow, 6C2 (chicken erythroleukemia) and T2EC (primary chicken erythrocytic progenitors) cells are tracked inside the microfluidic device over two generations, with a cell viability rate in excess of 90%. Sister cells are successfully isolated after division and extracted within a 500 nL volume, which was demonstrated to be compatible with downstream single-cell RNA sequencing analysis.
Collapse
Affiliation(s)
- Mahmut Aslan Kamil
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Camille Fourneaux
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
| | | | - Stavrakis Stavros
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Romuald Parmentier
- Ecole Pratique des Hautes Etudes, St-Antoine Research Center, Inserm U938, PSL Research University, Paris, France
| | - Andras Paldi
- Ecole Pratique des Hautes Etudes, St-Antoine Research Center, Inserm U938, PSL Research University, Paris, France
| | - Sandrine Gonin-Giraud
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard, Lyon, France
- Inria, France
| |
Collapse
|
15
|
Jain K, Marunde MR, Burg JM, Gloor SL, Joseph FM, Poncha KF, Gillespie ZB, Rodriguez KL, Popova IK, Hall NW, Vaidya A, Howard SA, Taylor HF, Mukhsinova L, Onuoha UC, Patteson EF, Cooke SW, Taylor BC, Weinzapfel EN, Cheek MA, Meiners MJ, Fox GC, Namitz KEW, Cowles MW, Krajewski K, Sun ZW, Cosgrove MS, Young NL, Keogh MC, Strahl BD. An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability. eLife 2023; 12:e82596. [PMID: 37204295 PMCID: PMC10229121 DOI: 10.7554/elife.82596] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | | | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | | | | | | | | | | | | | | | - Spencer W Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | - Bethany C Taylor
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | - Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | | | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, Upstate Medical UniversitySyracuseUnited States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| |
Collapse
|
16
|
Huang Y, Gao BQ, Meng Q, Yang LZ, Ma XK, Wu H, Pan YH, Yang L, Li D, Chen LL. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos. Genome Biol 2023; 24:15. [PMID: 36658633 PMCID: PMC9854193 DOI: 10.1186/s13059-023-02848-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.
Collapse
Affiliation(s)
- Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Bao-Qing Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
17
|
Govindaraj V, Sarma S, Karulkar A, Purwar R, Kar S. Transcriptional Fluctuations Govern the Serum-Dependent Cell Cycle Duration Heterogeneities in Mammalian Cells. ACS Synth Biol 2022; 11:3743-3758. [PMID: 36325971 DOI: 10.1021/acssynbio.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian cells exhibit a high degree of intercellular variability in cell cycle period and phase durations. However, the factors orchestrating the cell cycle duration heterogeneities remain unclear. Herein, by combining cell cycle network-based mathematical models with live single-cell imaging studies under varied serum conditions, we demonstrate that fluctuating transcription rates of cell cycle regulatory genes across cell lineages and during cell cycle progression in mammalian cells majorly govern the robust correlation patterns of cell cycle period and phase durations among sister, cousin, and mother-daughter lineage pairs. However, for the overall cellular population, alteration in the serum level modulates the fluctuation and correlation patterns of cell cycle period and phase durations in a correlated manner. These heterogeneities at the population level can be fine-tuned under limited serum conditions by perturbing the cell cycle network using a p38-signaling inhibitor without affecting the robust lineage-level correlations. Overall, our approach identifies transcriptional fluctuations as the key controlling factor for the cell cycle duration heterogeneities and predicts ways to reduce cell-to-cell variabilities by perturbing the cell cycle network regulations.
Collapse
Affiliation(s)
| | - Subrot Sarma
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Atharva Karulkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Zhang D, Zhou Y, Huang R, Zhai Y, Wu D, An X, Zhang S, Shi L, Li Q, Kong X, Yu H, Li Z. LncRNA affects epigenetic reprogramming of porcine embryo development by regulating global epigenetic modification and the downstream gene SIN3A. Front Physiol 2022; 13:971965. [PMID: 36187791 PMCID: PMC9523245 DOI: 10.3389/fphys.2022.971965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The study of preimplantation development is of great significance to reproductive biology and regenerative medicine. With the development of high-throughput deep sequencing technology, it has been found that lncRNAs play a very important role in the regulation of embryonic development. In this study, key lncRNAs that regulate embryonic development were screened by analyzing the expression pattern of lncRNAs in porcine in vivo fertilization (IVV) embryos. By knocking down lncRNA expression in in vitro fertilization (IVF) embryos, we investigated its function and mechanism of regulating embryonic development. The results showed that the expression pattern of lncRNA was consistent with the time of gene activation. The lncRNAs were highly expressed in the 4-cell to blastocyst stage but barely expressed in the oocytes and 2-cell stage. So we speculated this part of lncRNAs may regulate gene expression. The lncRNA LOC102165808 (named lncT because the gene near this lncRNA is TFAP2C) was one of them. The knockdown (KD) of lncT inhibited embryonic development, resulting in decreased H3K4me3, H3K4me2, and H3K9me3, and increased DNA methylation. Meanwhile, RNAseq showed SIN3A was the top decreased gene in lncT-KD embryos. There was a severe blastocyst formation defect in SIN3A-KD embryos. Both lncT and SIN3A could affect NANOG and induce more cell apoptosis. In conclusion, the knockdown of lncT inhibits embryonic development by regulating H3K4me3, H3K4me2, DNA methylation, pluripotency gene, and apoptosis, and SIN3A is one of the downstream genes of lncT in regulating embryonic development.
Collapse
Affiliation(s)
- Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Rong Huang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Di Wu
- Department of Emergency Medicine, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Lijing Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangjie Kong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- *Correspondence: Ziyi Li,
| |
Collapse
|
19
|
Oya S, Takahashi M, Takashima K, Kakutani T, Inagaki S. Transcription-coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nat Commun 2022; 13:4521. [PMID: 35953471 PMCID: PMC9372134 DOI: 10.1038/s41467-022-32165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mono-, di-, and trimethylation of histone H3 lysine 4 (H3K4me1/2/3) are associated with transcription, yet it remains controversial whether H3K4me1/2/3 promote or result from transcription. Our previous characterizations of Arabidopsis H3K4 demethylases suggest roles for H3K4me1 in transcription. However, the control of H3K4me1 remains unexplored in Arabidopsis, in which no methyltransferase for H3K4me1 has been identified. Here, we identify three Arabidopsis methyltransferases that direct H3K4me1. Analyses of their genome-wide localization using ChIP-seq and machine learning reveal that one of the enzymes cooperates with the transcription machinery, while the other two are associated with specific histone modifications and DNA sequences. Importantly, these two types of localization patterns are also found for the other H3K4 methyltransferases in Arabidopsis and mice. These results suggest that H3K4me1/2/3 are established and maintained via interplay with transcription as well as inputs from other chromatin features, presumably enabling elaborate gene control.
Collapse
Affiliation(s)
- Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | | | | | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- National Institute of Genetics, Mishima, Japan.
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
20
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
21
|
Pascual-Garcia P, Little SC, Capelson M. Nup98-dependent transcriptional memory is established independently of transcription. eLife 2022; 11:e63404. [PMID: 35289742 PMCID: PMC8923668 DOI: 10.7554/elife.63404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cellular ability to mount an enhanced transcriptional response upon repeated exposure to external cues is termed transcriptional memory, which can be maintained epigenetically through cell divisions and can depend on a nuclear pore component Nup98. The majority of mechanistic knowledge on transcriptional memory has been derived from bulk molecular assays. To gain additional perspective on the mechanism and contribution of Nup98 to memory, we used single-molecule RNA FISH (smFISH) to examine the dynamics of transcription in Drosophila cells upon repeated exposure to the steroid hormone ecdysone. We combined smFISH with mathematical modeling and found that upon hormone exposure, cells rapidly activate a low-level transcriptional response, but simultaneously begin a slow transition into a specialized memory state characterized by a high rate of expression. Strikingly, our modeling predicted that this transition between non-memory and memory states is independent of the transcription stemming from initial activation. We confirmed this prediction experimentally by showing that inhibiting transcription during initial ecdysone exposure did not interfere with memory establishment. Together, our findings reveal that Nup98's role in transcriptional memory is to stabilize the forward rate of conversion from low to high expressing state, and that induced genes engage in two separate behaviors - transcription itself and the establishment of epigenetically propagated transcriptional memory.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
22
|
Bellec M, Dufourt J, Hunt G, Lenden-Hasse H, Trullo A, Zine El Aabidine A, Lamarque M, Gaskill MM, Faure-Gautron H, Mannervik M, Harrison MM, Andrau JC, Favard C, Radulescu O, Lagha M. The control of transcriptional memory by stable mitotic bookmarking. Nat Commun 2022; 13:1176. [PMID: 35246556 PMCID: PMC8897465 DOI: 10.1038/s41467-022-28855-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - George Hunt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Hélène Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marie Lamarque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heloïse Faure-Gautron
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Ovidiu Radulescu
- LPHI, UMR CNRS 5235, University of Montpellier, Place E. Bataillon - Bât. 24 cc 107, Montpellier, 34095, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France.
| |
Collapse
|
23
|
The genetic architecture underlying prey-dependent performance in a microbial predator. Nat Commun 2022; 13:319. [PMID: 35031602 PMCID: PMC8760311 DOI: 10.1038/s41467-021-27844-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator. What prevents a generalist predator from evolving and outperforming specialist predators? By combing analyses of natural variation with experimental evolution, Stewart et al. suggest that predator variation persists because most mutations have prey-specific effects, which results in relaxed selection
Collapse
|
24
|
Özdemir I, Steiner FA. Transmission of chromatin states across generations in C. elegans. Semin Cell Dev Biol 2021; 127:133-141. [PMID: 34823984 DOI: 10.1016/j.semcdb.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.
Collapse
Affiliation(s)
- Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Williams RSB, Chubb JR, Insall R, King JS, Pears CJ, Thompson E, Weijer CJ. Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells 2021; 10:3036. [PMID: 34831258 PMCID: PMC8616412 DOI: 10.3390/cells10113036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
The social amoeba Dictyostelium discoideum provides an excellent model for research across a broad range of disciplines within biology. The organism diverged from the plant, yeast, fungi and animal kingdoms around 1 billion years ago but retains common aspects found in these kingdoms. Dictyostelium has a low level of genetic complexity and provides a range of molecular, cellular, biochemical and developmental biology experimental techniques, enabling multidisciplinary studies to be carried out in a wide range of areas, leading to research breakthroughs. Numerous laboratories within the United Kingdom employ Dictyostelium as their core research model. This review introduces Dictyostelium and then highlights research from several leading British research laboratories, covering their distinct areas of research, the benefits of using the model, and the breakthroughs that have arisen due to the use of Dictyostelium as a tractable model system.
Collapse
Affiliation(s)
- Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jonathan R. Chubb
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK;
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK;
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK;
| | - Catherine J. Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Elinor Thompson
- School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK;
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| |
Collapse
|
26
|
Abstract
To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.
Collapse
Affiliation(s)
- Feiyue Lu
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| |
Collapse
|
27
|
Pears CJ, Brustel J, Lakin ND. Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Front Cell Dev Biol 2021; 9:752175. [PMID: 34692705 PMCID: PMC8529158 DOI: 10.3389/fcell.2021.752175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.
Collapse
Affiliation(s)
- Catherine J. Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
28
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Asano Y, Yamashita K, Hasegawa A, Ogasawara T, Iriki H, Muramoto T. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Sci Rep 2021; 11:11163. [PMID: 34045481 PMCID: PMC8159936 DOI: 10.1038/s41598-021-89546-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
The powerful genome editing tool Streptococcus pyogenes Cas9 (SpCas9) requires the trinucleotide NGG as a protospacer adjacent motif (PAM). The PAM requirement is limitation for precise genome editing such as single amino-acid substitutions and knock-ins at specific genomic loci since it occurs in narrow editing window. Recently, SpCas9 variants (i.e., xCas9 3.7, SpCas9-NG, and SpRY) were developed that recognise the NG dinucleotide or almost any other PAM sequences in human cell lines. In this study, we evaluated these variants in Dictyostelium discoideum. In the context of targeted mutagenesis at an NG PAM site, we found that SpCas9-NG and SpRY were more efficient than xCas9 3.7. In the context of NA, NT, NG, and NC PAM sites, the editing efficiency of SpRY was approximately 60% at NR (R = A and G) but less than 22% at NY (Y = T and C). We successfully used SpRY to generate knock-ins at specific gene loci using donor DNA flanked by 60 bp homology arms. In addition, we achieved point mutations with efficiencies as high as 97.7%. This work provides tools that will significantly expand the gene loci that can be targeted for knock-out, knock-in, and precise point mutation in D. discoideum.
Collapse
Affiliation(s)
- Yuu Asano
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Kensuke Yamashita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Aoi Hasegawa
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Takanori Ogasawara
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
30
|
Wotherspoon D, Rogerson C, O’Shaughnessy RF. Perspective: Controlling Epidermal Terminal Differentiation with Transcriptional Bursting and RNA Bodies. J Dev Biol 2020; 8:E29. [PMID: 33291764 PMCID: PMC7768391 DOI: 10.3390/jdb8040029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The outer layer of the skin, the epidermis, is the principal barrier to the external environment: post-mitotic cells terminally differentiate to form a tough outer cornified layer of enucleate and flattened cells that confer the majority of skin barrier function. Nuclear degradation is required for correct cornified envelope formation. This process requires mRNA translation during the process of nuclear destruction. In this review and perspective, we address the biology of transcriptional bursting and the formation of ribonuclear particles in model organisms including mammals, and then examine the evidence that these phenomena occur as part of epidermal terminal differentiation.
Collapse
Affiliation(s)
- Duncan Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | | | - Ryan F.L. O’Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
31
|
Siwek W, Tehrani SSH, Mata JF, Jansen LET. Activation of Clustered IFNγ Target Genes Drives Cohesin-Controlled Transcriptional Memory. Mol Cell 2020; 80:396-409.e6. [PMID: 33108759 PMCID: PMC7657446 DOI: 10.1016/j.molcel.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Cytokine activation of cells induces gene networks involved in inflammation and immunity. Transient gene activation can have a lasting effect even in the absence of ongoing transcription, known as long-term transcriptional memory. Here we explore the nature of the establishment and maintenance of interferon γ (IFNγ)-induced priming of human cells. We find that, although ongoing transcription and local chromatin signatures are short-lived, the IFNγ-primed state stably propagates through at least 14 cell division cycles. Single-cell analysis reveals that memory is manifested by an increased probability of primed cells to engage in target gene expression, correlating with the strength of initial gene activation. Further, we find that strongly memorized genes tend to reside in genomic clusters and that long-term memory of these genes is locally restricted by cohesin. We define the duration, stochastic nature, and molecular mechanisms of IFNγ-induced transcriptional memory, relevant to understanding enhanced innate immune signaling.
Collapse
Affiliation(s)
- Wojciech Siwek
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| | - Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Abstract
Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.
Collapse
Affiliation(s)
- Joseph Rodriguez
- National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Daniel R. Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
33
|
Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer MW. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes Dev 2020; 34:913-930. [PMID: 32499403 PMCID: PMC7328517 DOI: 10.1101/gad.335794.119] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.
Collapse
Affiliation(s)
- Hyeseon Kang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), Salk Institute for Biological Studies, 92037 La Jolla, California, USA
| | - Zhichao Xu
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Sahaana Chandran
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
34
|
Hu XL, Tang YY, Kwok ML, Chan KM, Chu KH. Impact of juvenile hormone analogue insecticides on the water flea Moina macrocopa: Growth, reproduction and transgenerational effect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105402. [PMID: 31927065 DOI: 10.1016/j.aquatox.2020.105402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The increasing quantities of insecticides that leach into water bodies severely affect the health of the aquatic environment. Juvenile hormone analogue (JHA) insecticides are endocrine disrupters that interfere with hormonal activity in insects by mimicking juvenile hormones (JHs). Because the structure and functions of methyl farnesoate in crustaceans are similar to the insect JHs, exogenous JHA insecticides may cause adverse effects on the growth and reproduction in crustaceans similar to those observed in insects. This study examined the toxic effects of two JHA insecticides, methoprene and fenoxycarb, on the water flea Moina macrocopa. The 24-h and 48-h LC50 values for fenoxycarb and methoprene were 0.53 and 0.32 mg/L and 0.70 and 0.54 mg/L, respectively. Chronic exposure to the two JHAs caused a series of toxic effects in M. macrocopa, including shortening of life expectancy, repression of body growth, reduction in fecundity, and disturbed the expression of genes involved in the JH signaling pathway, in cuticle development, and in the carbohydrate, amino acid, and ATP metabolic processes. Moreover, JHA exposure impaired the growth and reproduction of the offspring of M. macrocopa exposed to JHAs, even when the neonates were not exposed to the chemicals. In addition, changes in the expression of genes related to histone methylation indicate that epigenetic changes may promote transgenerational impairment in M. macrocopa. These results demonstrate the toxic effects of fenoxycarb and methoprene on non-target aquatic organisms. The damages done by these JHA insecticides to the aquatic environment is worthy of our attention and further studies.
Collapse
Affiliation(s)
- Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuan Yuan Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
35
|
Tunnacliffe E, Chubb JR. What Is a Transcriptional Burst? Trends Genet 2020; 36:288-297. [PMID: 32035656 DOI: 10.1016/j.tig.2020.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
The idea that gene activity can be discontinuous will not surprise many biologists - many genes are restricted in when and where they can be expressed. Yet during the past 15 years, a collection of observations compiled under the umbrella term 'transcriptional bursting' has received considerable interest. Direct visualization of the dynamics of discontinuous transcription has expanded our understanding of basic transcriptional mechanisms and their regulation and provides a real-time readout of gene activity during the life of a cell. In this review, we try to reconcile the different views of the transcriptional process emerging from studies of bursting, and how this work contextualizes the relative importance of different regulatory inputs to normal dynamic ranges of gene activity.
Collapse
Affiliation(s)
- Edward Tunnacliffe
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
36
|
Foreman R, Wollman R. Mammalian gene expression variability is explained by underlying cell state. Mol Syst Biol 2020; 16:e9146. [PMID: 32043799 PMCID: PMC7011657 DOI: 10.15252/msb.20199146] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Gene expression variability in mammalian systems plays an important role in physiological and pathophysiological conditions. This variability can come from differential regulation related to cell state (extrinsic) and allele-specific transcriptional bursting (intrinsic). Yet, the relative contribution of these two distinct sources is unknown. Here, we exploit the qualitative difference in the patterns of covariance between these two sources to quantify their relative contributions to expression variance in mammalian cells. Using multiplexed error robust RNA fluorescent in situ hybridization (MERFISH), we measured the multivariate gene expression distribution of 150 genes related to Ca2+ signaling coupled with the dynamic Ca2+ response of live cells to ATP. We show that after controlling for cellular phenotypic states such as size, cell cycle stage, and Ca2+ response to ATP, the remaining variability is effectively at the Poisson limit for most genes. These findings demonstrate that the majority of expression variability results from cell state differences and that the contribution of transcriptional bursting is relatively minimal.
Collapse
Affiliation(s)
- Robert Foreman
- Institute for Quantitative and Computational BiosciencesUniversity of California, Los AngelesLos AngelesCAUSA
- Program in Bioinformatics and Systems BiologyUniversity of California, San DiegoSan DiegoCAUSA
| | - Roy Wollman
- Institute for Quantitative and Computational BiosciencesUniversity of California, Los AngelesLos AngelesCAUSA
- Program in Bioinformatics and Systems BiologyUniversity of California, San DiegoSan DiegoCAUSA
- Department of Integrative Biology and PhysiologyDepartment of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
37
|
Hansel, Gretel, and the Consequences of Failing to Remove Histone Methylation Breadcrumbs. Trends Genet 2020; 36:160-176. [PMID: 32007289 PMCID: PMC10047806 DOI: 10.1016/j.tig.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Like breadcrumbs in the forest, cotranscriptionally acquired histone methylation acts as a memory of prior transcription. Because it can be retained through cell divisions, transcriptional memory allows cells to coordinate complex transcriptional programs during development. However, if not reprogrammed properly during cell fate transitions, it can also disrupt cellular identity. In this review, we discuss the consequences of failure to reprogram histone methylation during three crucial epigenetic reprogramming windows: maternal reprogramming at fertilization, embryonic stem cell (ESC) differentiation, and the continuous maintenance of cell identity in differentiated cells. In addition, we discuss how following the wrong breadcrumb trail of transcriptional memory provides a framework for understanding how heterozygous loss-of-function mutations in histone-modifying enzymes may cause severe neurodevelopmental disorders.
Collapse
|
38
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
39
|
Iriki H, Kawata T, Muramoto T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS One 2019; 14:e0224128. [PMID: 31622451 PMCID: PMC6797129 DOI: 10.1371/journal.pone.0224128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system enables targeted genome modifications across a range of eukaryotes. Although we have reported that transient introduction of all-in-one vectors that express both Cas9 and sgRNAs can efficiently induce multiple gene knockouts in Dictyostelium discoideum, concerns remain about off-target effects and false-positive amplification during mutation detection via PCR. To minimise these effects, we modified the system to permit gene deletions of greater than 1 kb via use of paired sgRNAs and Cas9 nickase. An all-in-one vector expressing the Cas9 nickase and sgRNAs was transiently introduced into D. discoideum, and the resulting mutants showed long deletions with a relatively high efficiency of 10-30%. By further improving the vector, a new dual sgRNA expression vector was also constructed to allow simultaneous insertion of two sgRNAs via one-step cloning. By applying this system, precise point mutations and genomic deletions were generated in the target locus via simultaneous introduction of the vector and a single-stranded oligonucleotide template without integrating a drug resistance cassette. These systems enable simple and straightforward genome editing that requires high specificity, and they can serve as an alternative to the conventional homologous recombination-based gene disruption method in D. discoideum.
Collapse
Affiliation(s)
- Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
40
|
Abstract
Numerous studies based on new single-cell and single-gene techniques show that individual genes can be transcribed in short bursts or pulses accompanied by changes in pulsing frequencies. Since so many examples of such discontinuous or fluctuating transcription have been found from prokaryotes to mammals, it now seems to be a common mode of gene expression. In this review we discuss the occurrence of the transcriptional fluctuations, the techniques used for their detection, their putative causes, kinetic characteristics, and probable physiological significance.
Collapse
Affiliation(s)
- Evgeny Smirnov
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Matúš Hornáček
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Tomáš Vacík
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Dušan Cmarko
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
41
|
Sun P, Wu T, Sun X, Cui Z, Zhang H, Xia Q, Zhang D. KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes. Biomed Pharmacother 2019; 115:108924. [PMID: 31100540 DOI: 10.1016/j.biopha.2019.108924] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
KMT2D, a kind of histone H3 lysine 4 (H3K4) methyltransferase, its abnormal expression confirmed to be associated with diverse tumors, but is lack of defined role in bladder cancer (BC). KMT2D mutation was analyzed using several databases. Immunohistochemistry and clinicopathological analysis of KMT2D in 51 paired of BC tissues and corresponding normal tissues were used to evaluate the relationship between KMT2D and BC. The effects of silencing or over-expressing KMT2D on HTB-9 and T24 cell viability, migration and invasion were performed using MTT, wound scratch and Transwell, respectively. Also, bladder cancer mouse model was established by hypodermic injection of the BC cells. Associated expressions of methylation genes, oncogenes and tumor suppressors were assessed by western blot and quantitative real-time PCR. KMT2D was frequent mutation in various tumors, including BC. It was negative expression in BC tissues and cells, also implicated with tumor stages and lymph node metastasis. In silencing KMT2D HTB-9 and T24 cells, cell viability, migration and invasion were notably promoted. Meanwhile, knockdown of KMT2D benefited to solid tumor formation in vivo. However, over-expressing KMT2D represented contrary results. Especially, KMT2D over-expression induced the activity of H3K4 monomethylation (me1), and effectively enhanced PTEN and p53 expressions as well as repressed STAG2 expression. Meanwhile, KMT2D had no obvious effect on Survivin. This work suggested an anti-tumor role for KMT2D in vitro and in vivo, as well as provided a possible tumor inhibition mechanism in which KMT2D enhanced H3K4me1 activity to support the expressions of tumor suppressors.
Collapse
Affiliation(s)
- Peng Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Tong Wu
- Department of Chinese Medicine, Shandong Provincial Western Hospital, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Zilian Cui
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Haiyang Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China.
| |
Collapse
|
42
|
Abstract
In addition to the pivotal roles for histone methylation in the transcriptional regulation, emerging evidence suggests important roles for methylation of non-histone proteins in response to extra-cellular stimulatory events, with implications in governing tumorigenesis. Among the increasing list of non-histone proteins targeted for methylation, the tri-lysine-methylation modification of AKT has been recently identified to fine-tune its kinase activity and oncogenic functions. Moreover, our results implicate the histone methyltransferase SETDB1 as the methyltransferase modifying and activating AKT in a PI3K dependent manner. As such, the oncogenic function of SETDB1 in various cancers may be attributed to tumorigenesis, at least in part, through activating AKT. Therefore, targeting SETDB1, which modulates both epigenetic marks and AKT kinase activity simultaneously, is a potential strategy for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jianping Guo
- a Precision Medicine Institute, The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong , China.,b Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Wenyi Wei
- b Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
43
|
Phillips NE, Mandic A, Omidi S, Naef F, Suter DM. Memory and relatedness of transcriptional activity in mammalian cell lineages. Nat Commun 2019; 10:1208. [PMID: 30872573 PMCID: PMC6418128 DOI: 10.1038/s41467-019-09189-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 12/03/2022] Open
Abstract
Phenotypically identical mammalian cells often display considerable variability in transcript levels of individual genes. How transcriptional activity propagates in cell lineages, and how this varies across genes is poorly understood. Here we combine live-cell imaging of short-lived transcriptional reporters in mouse embryonic stem cells with mathematical modelling to quantify the propagation of transcriptional activity over time and across cell generations in phenotypically homogenous cells. In sister cells we find mean transcriptional activity to be strongly correlated and transcriptional dynamics tend to be synchronous; both features control how quickly transcriptional levels in sister cells diverge in a gene-specific manner. Moreover, mean transcriptional activity is transmitted from mother to daughter cells, leading to multi-generational transcriptional memory and causing inter-family heterogeneity in gene expression.
Collapse
Affiliation(s)
- Nicholas E Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Aleksandra Mandic
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Saeed Omidi
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David M Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
Viitaniemi HM, Verhagen I, Visser ME, Honkela A, van Oers K, Husby A. Seasonal Variation in Genome-Wide DNA Methylation Patterns and the Onset of Seasonal Timing of Reproduction in Great Tits. Genome Biol Evol 2019; 11:970-983. [PMID: 30840074 PMCID: PMC6447391 DOI: 10.1093/gbe/evz044] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
In seasonal environments, timing of reproduction is a trait with important fitness consequences, but we know little about the molecular mechanisms that underlie the variation in this trait. Recently, several studies put forward DNA methylation as a mechanism regulating seasonal timing of reproduction in both plants and animals. To understand the involvement of DNA methylation in seasonal timing of reproduction, it is necessary to examine within-individual temporal changes in DNA methylation, but such studies are very rare. Here, we use a temporal sampling approach to examine changes in DNA methylation throughout the breeding season in female great tits (Parus major) that were artificially selected for early timing of breeding. These females were housed in climate-controlled aviaries and subjected to two contrasting temperature treatments. Reduced representation bisulfite sequencing on red blood cell derived DNA showed genome-wide temporal changes in more than 40,000 out of the 522,643 CpG sites examined. Although most of these changes were relatively small (mean within-individual change of 6%), the sites that showed a temporal and treatment-specific response in DNA methylation are candidate sites of interest for future studies trying to understand the link between DNA methylation patterns and timing of reproduction.
Collapse
Affiliation(s)
- Heidi M Viitaniemi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antti Honkela
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Finland
- Department of Public Health, University of Helsinki, Finland
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Arild Husby
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland
- Department of Ecology and Genetics, EBC, Uppsala University, Sweden
- Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| |
Collapse
|
45
|
A cell cycle-coordinated Polymerase II transcription compartment encompasses gene expression before global genome activation. Nat Commun 2019; 10:691. [PMID: 30741925 PMCID: PMC6370886 DOI: 10.1038/s41467-019-08487-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Most metazoan embryos commence development with rapid, transcriptionally silent cell divisions, with genome activation delayed until the mid-blastula transition (MBT). However, a set of genes escapes global repression and gets activated before MBT. Here we describe the formation and the spatio-temporal dynamics of a pair of distinct transcription compartments, which encompasses the earliest gene expression in zebrafish. 4D imaging of pri-miR430 and zinc-finger-gene activities by a novel, native transcription imaging approach reveals transcriptional sharing of nuclear compartments, which are regulated by homologous chromosome organisation. These compartments carry the majority of nascent-RNAs and active Polymerase II, are chromatin-depleted and represent the main sites of detectable transcription before MBT. Transcription occurs during the S-phase of increasingly permissive cleavage cycles. It is proposed, that the transcription compartment is part of the regulatory architecture of embryonic nuclei and offers a transcriptionally competent environment to facilitate early escape from repression before global genome activation. Transcription is globally repressed in early stage of embryo development, but a set of genes including pri-miR-430 and zinc finger genes is known to escape the repression. Here the authors image the very first transcriptional activities in the living zebra fish embryo, demonstrating a cell cycle-coordinated polymerase II transcription compartment.
Collapse
|
46
|
Bellec M, Radulescu O, Lagha M. Remembering the past: Mitotic bookmarking in a developing embryo. ACTA ACUST UNITED AC 2018; 11:41-49. [PMID: 30417158 PMCID: PMC6218673 DOI: 10.1016/j.coisb.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to ‘bookmark’ specific loci, thereby providing a mitotic memory. Here we review mechanisms of mitotic bookmarking and discuss their impact on transcriptional dynamics in the context of multicellular developing embryos. We document recent discoveries and technological advances, and present current mathematical models of short-term transcriptional memory. Mitotically retained factors are able to ‘bookmark’ specific loci during embryogenesis. Mitotic bookmarking can elicit rapid post-mitotic transcriptional re-activation. Mathematical models relating transcriptional memory predict that efficient memory requires slow dynamics. Mitotic memory leads to a spectrum of consequences: stability, flexibility or plasticity.
Collapse
Affiliation(s)
- Maelle Bellec
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- DIMNP, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Corresponding author: Lagha, Mounia
| |
Collapse
|
47
|
Huan Q, Mao Z, Chong K, Zhang J. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. THE NEW PHYTOLOGIST 2018; 219:1373-1387. [PMID: 30063801 DOI: 10.1111/nph.15288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/20/2018] [Indexed: 05/21/2023]
Abstract
Vernalization, the requirement of plants for long-term exposure to low environmental temperature for flowering, is an epigenetic phenomenon. Histone modification regulation has been revealed in vernalization, but is limited to key genes. Now, we know that VRN1 is epigenetically critical for monocots. Genome-wide analysis is still unavailable, however. We performed chromatin immunoprecipitation-sequencing for H3K4me3/H3K27me3 in Brachypodium distachyon to obtain a global view of histone modifications in vernalization on a genome-wide scale and for different pathways/genes. Our data showed that H3K4me3 and H3K27me3 play distinct roles in vernalization. Unlike H3K4me3, H3K27me3 exhibited regional regulation, showed main regulation targets in vernalization and contributed to epigenetic memory. For genes in four flowering regulation pathways, only FT2 (functional ortholog of VRN3 in B. distachyon) and VRN1 showed coordinated changes in H3K4me3/H3K27me3. The epigenetic response at VRN3 was weaker under short-day than under long-day conditions. VRN3 was revealed as an epigenetic regulation point integrating vernalization and day length signals. We globally identified genes maintaining vernalization-induced epigenetic changes. Most of these genes showed dose-dependent vernalization responses, revealing a quantitative 'recording system' for vernalization. Our studies shed light on the epigenetic role of VRN3 and H3K4me3/H3K27me3 in vernalization and reveal genes underlying epigenetic memory, laying the foundation for further study.
Collapse
Affiliation(s)
- Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiwei Mao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
48
|
Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M. Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 2018; 9:346. [PMID: 30214456 PMCID: PMC6125400 DOI: 10.3389/fgene.2018.00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic mental illness in which patients often achieve protracted periods of abstinence prior to relapse. Epigenetic mechanisms may provide an explanation for the persisting gene expression changes that can be observed even after long periods of abstinence and may contribute to relapse. In this study, we examined two histone modifications, histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3), in the prefrontal cortex of Withdrawal Seizure Resistant (WSR) mice 21 days after 72 h of ethanol vapor exposure. These histone modifications were selected because they are associated with active promoters (H3K4me3) and repressed gene expression in a euchromatic environment (H3K27me3). We performed a genome-wide analysis to identify differences in H3K4me3 and H3K27me3 levels in post-ethanol exposure vs. control mice by ChIP-seq. We detected a global reduction in H3K4me3 peaks and increase in H3K27me3 peaks in post-ethanol exposure mice compared to controls, these changes are consistent with persistent reductions in gene expression. Pathway analysis of genes displaying changes in H3K4me3 and H3K27me3 revealed enrichment for genes involved in proteoglycan and calcium signaling pathways, respectively. Microarray analysis of 7,683 genes and qPCR analysis identified eight genes displaying concordant regulation of gene expression and H3K4me3/H3K27me3. We also compared changes in H3K4me3 and/or H3K27me3 from our study with changes in gene expression in response to ethanol from published literature and we found that the expression of 52% of the genes with altered H3K4me3 binding and 40% of genes with H3K27me3 differences are altered by ethanol exposure. The chromatin changes associated with the 21-day post-exposure period suggest that this period is a unique state in the addiction cycle that differs from ethanol intoxication and acute withdrawal. These results provide insights into the enduring effects of ethanol on proteoglycan and calcium signaling genes in the brain.
Collapse
Affiliation(s)
- David P. Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Nathan H. Lazar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Lucia Carbone
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
49
|
Pichon X, Lagha M, Mueller F, Bertrand E. A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Mol Cell 2018; 71:468-480. [DOI: 10.1016/j.molcel.2018.07.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
|
50
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|