1
|
Halder S, Dutta A, Mondal R, Chowdhury B, Das BB, Majumder S. Inactivation of the Catalytic Activity of Mps1 Kinase Prevents Its Own Degradation at Centrosomes. Cytoskeleton (Hoboken) 2025. [PMID: 40257068 DOI: 10.1002/cm.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/08/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Mps1 kinase plays important roles in regulating centriole assembly, apart from its essential role in spindle assembly checkpoint. Here we report a novel mode of regulating centrosomal Mps1 level, which is governed by its own catalytic activity that promotes its degradation at centrosomes. A kinase-dead mutant of Mps1 or catalytically inactive Mps1 due to treatment with a specific kinase inhibitor is protected from degradation at centrosomes. This autoregulatory mode of controlling Mps1 activity at centrosomes likely restricts excess centriole production in a dividing cell.
Collapse
Affiliation(s)
- Shrabani Halder
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Arpita Dutta
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rupsa Mondal
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| | - Banhi Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Benu Brata Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shubhra Majumder
- CellBio Lab, Institute of Health Sciences, Presidency University, Kolkata, India
| |
Collapse
|
2
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Toyoda JH, Martino J, Speer RM, Meaza I, Lu H, Williams AR, Bolt AM, Kouokam JC, Aboueissa AEM, Wise JP. Hexavalent Chromium Targets Securin to Drive Numerical Chromosome Instability in Human Lung Cells. Int J Mol Sci 2023; 25:256. [PMID: 38203427 PMCID: PMC10778806 DOI: 10.3390/ijms25010256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Jennifer H. Toyoda
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Julieta Martino
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Rachel M. Speer
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Idoia Meaza
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Haiyan Lu
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Aggie R. Williams
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA;
| | - Joseph Calvin Kouokam
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | | | - John Pierce Wise
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| |
Collapse
|
4
|
Chen YZ, Zimyanin V, Redemann S. Loss of the mitochondrial protein SPD-3 elevates PLK-1 levels and dysregulates mitotic events. Life Sci Alliance 2023; 6:e202302011. [PMID: 37684042 PMCID: PMC10488725 DOI: 10.26508/lsa.202302011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
In metazoans, Polo-like kinase (PLK1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation, spindle assembly and progression through mitosis. Here we show that a mutation in the mitochondria-localized protein SPD-3 affects mitotic events by inducing elevated levels of PLK-1 in early Caenorhabditis elegans embryos. SPD-3 mutant embryos contain abnormally positioned mitotic chromosomes, show a delay in anaphase onset and asymmetrically disassemble the nuclear lamina. We found that more PLK-1 accumulated on centrosomes, nuclear envelope, nucleoplasm, and chromatin before NEBD, suggesting that PLK-1 overexpression is responsible for some of the observed mitotic phenotypes. In agreement with this, the chromosome positioning defects of the spd-3(oj35) mutant could be rescued by reducing PLK-1 levels. Our data suggests that the mitochondrial SPD-3 protein affects chromosome positioning and nuclear envelope integrity by up-regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans This finding suggests a novel link between mitochondria and nuclear envelope dynamics and chromosome positioning by increasing the amount of a key mitotic regulator, PLK-1, providing a novel link between mitochondria and mitosis.
Collapse
Affiliation(s)
- Yu-Zen Chen
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Ryu J, Lee SH, Kim S, Jeong JW, Kim KS, Nam S, Kim JE. Urban dust particles disrupt mitotic progression by dysregulating Aurora kinase B-related functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132238. [PMID: 37586242 DOI: 10.1016/j.jhazmat.2023.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Particulate matter (PM), a major component of outdoor air pollution, damages DNA and increases the risk of cancer. Although the harmful effects of PM at the genomic level are known, the detailed mechanism by which PM affects chromosomal stability remains unclear. In this study, we investigated the novel effects of PM on mitotic progression and identified the underlying mechanisms. Gene set enrichment analysis of lung cancer patients residing in countries with high PM concentrations revealed the downregulation of genes associated with mitosis and mitotic structures. We also showed that exposure of lung cancer cells in vitro to urban dust particles (UDPs) inhibits cell proliferation through a prolonged M phase. The mitotic spindles in UDP-treated cells were hyperstabilized, and the number of centrioles increased. The rate of ingression of the cleavage furrow and actin clearance from the polar cortex was reduced significantly. The defects in mitotic progression were attributed to inactivation of Aurora B at kinetochore during early mitosis, and spindle midzone and midbody during late mitosis. While previous studies demonstrated possible links between PM and mitosis, they did not specifically identify the dysregulation of spatiotemporal dynamics of mitotic proteins and structures (e.g., microtubules, centrosomes, cleavage furrow, and equatorial and polar cortex), which results in the accumulation of chromosomal instability, ultimately contributing to carcinogenicity. The data highlight the novel scientific problem of PM-induced mitotic disruption. Additionally, we introduce a practical visual method for assessing the genotoxic outcomes of airborne pollutants, which has implications for future environmental and public health research.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, the Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
6
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484 DOI: 10.5483/bmbrep.2023-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 12/10/2024] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Chen YZ, Zimyanin V, Redemann S. Mitotic events depend on regulation of PLK-1 levels by the mitochondrial protein SPD-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523633. [PMID: 36711457 PMCID: PMC9882028 DOI: 10.1101/2023.01.11.523633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In metazoans, Polo Kinase (Plk1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation and kinetochore assembly. Here we show that mitotic events regulated by Polo Like Kinase (PLK-1) in early C. elegans embryos depend on the mitochondrial-localized protein SPD-3. spd-3 mutant one-cell embryos contain abnormally positioned mitotic chromosomes and prematurely and asymmetrically disassemble the nuclear lamina. Nuclear envelope breakdown (NEBD) in C. elegans requires direct dephosphorylation of lamin by PLK-1. In spd-3 mutants PLK-1 levels are ~6X higher in comparison to control embryos and PLK-1::GFP was highly accumulated at centrosomes, the nuclear envelope, nucleoplasm, and chromosomes prior to NEBD. Partial depletion of plk-1 in spd-3 mutant embryos rescued mitotic chromosome and spindle positioning defects indicating that these phenotypes result from higher PLK-1 levels and thus activity. Our data suggests that the mitochondrial SPD-3 protein controls NEBD and chromosome positioning by regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans . This finding suggests a novel link between mitochondria and mitotic events by controlling the amount of a key mitotic regulator, PLK-1 and thus may have further implications in the context of cancers or age-related diseases and infertility as it provides a novel link between mitochondria and mitosis.
Collapse
Affiliation(s)
- Yu-Zen Chen
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
10
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
11
|
Weier AK, Homrich M, Ebbinghaus S, Juda P, Miková E, Hauschild R, Zhang L, Quast T, Mass E, Schlitzer A, Kolanus W, Burgdorf S, Gruß OJ, Hons M, Wieser S, Kiermaier E. Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. J Cell Biol 2022; 221:e202107134. [PMID: 36214847 PMCID: PMC9555069 DOI: 10.1083/jcb.202107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/01/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.
Collapse
Affiliation(s)
- Ann-Kathrin Weier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Mirka Homrich
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Stephanie Ebbinghaus
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Eliška Miková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Lili Zhang
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Thomas Quast
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences Institute, Cellular Immunology, University of Bonn, Bonn, Germany
| | - Oliver J. Gruß
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Stefan Wieser
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
13
|
Buss G, Stratton MB, Milenkovic L, Stearns T. Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Mol Biol Cell 2022; 33:ar118. [PMID: 36001376 PMCID: PMC9634975 DOI: 10.1091/mbc.e22-05-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA replication is normally coupled with centriole duplication in the cell cycle. Trophoblast giant cells (TGCs) of the placenta undergo endocycles resulting in polyploidy but their centriole state is not known. We used a cell culture model for TGC differentiation to examine centriole and centrosome number and properties. Before differentiation, trophoblast stem cells (TSCs) have either two centrioles before duplication or four centrioles after. We find that the average nuclear area increases approximately eight-fold over differentiation, but most TGCs do not have more than four centrioles. However, these centrioles become disengaged, acquire centrosome proteins, and can nucleate microtubules. In addition, some TGCs undergo further duplication and disengagement of centrioles, resulting in substantially higher numbers. Live imaging revealed that disengagement and separation are centriole autonomous and can occur asynchronously. Centriole amplification, when present, occurs by the standard mechanism of one centriole generating one procentriole. PLK4 inhibition blocks centriole formation in differentiating TGCs but does not affect endocycle progression. In summary, centrioles in TGC endocycles undergo disengagement and conversion to centrosomes. This increases centrosome number but to a limited extent compared with DNA reduplication.
Collapse
Affiliation(s)
- Garrison Buss
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Tim Stearns
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305,*Address correspondence to: Tim Stearns ()
| |
Collapse
|
14
|
Kim S, Chien YH, Ryan A, Kintner C. Emi2 enables centriole amplification during multiciliated cell differentiation. SCIENCE ADVANCES 2022; 8:eabm7538. [PMID: 35363516 PMCID: PMC10938574 DOI: 10.1126/sciadv.abm7538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Massive centriole amplification during multiciliated cell (MCC) differentiation is a notable example of organelle biogenesis. This process is thought to be enabled by a derived cell cycle state, but the key cell cycle components required for centriole amplification in MCC progenitors remain poorly defined. Here, we show that emi2 (fbxo43) expression is up-regulated and acts in MCC progenitors after cell cycle exit to transiently inhibit anaphase-promoting complex/cyclosome (APC/C)cdh1 activity. We find that this inhibition is required for the phosphorylation and activation of a key cell cycle kinase, plk1, which acts, in turn, to promote different steps required for centriole amplification and basal body formation, including centriole disengagement, apical migration, and maturation into basal bodies. This emi2-APC/C-plk1 axis is also required to down-regulate gene expression essential for centriole amplification after differentiation is complete. These results identify an emi2-APC/C-plk1 axis that promotes and then terminates centriole assembly and basal body formation during MCC differentiation.
Collapse
Affiliation(s)
- Seongjae Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuan-Hung Chien
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amy Ryan
- Hastings Center for Pulmonary Research, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
15
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
16
|
Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. J Cell Biol 2022; 221:e202102110. [PMID: 34787650 PMCID: PMC8719716 DOI: 10.1083/jcb.202102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.
Collapse
Affiliation(s)
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Ziqiu Wang
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Christopher J. Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | | |
Collapse
|
17
|
Agborbesong E, Zhou JX, Li LX, Calvet JP, Li X. Antioxidant enzyme peroxiredoxin 5 regulates cyst growth and ciliogenesis via modulating Plk1 stability. FASEB J 2022; 36:e22089. [PMID: 34888938 PMCID: PMC9060392 DOI: 10.1096/fj.202101270rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Oxidative stress is emerging as a contributing factor to the homeostasis in cystic diseases. However, the role antioxidant enzymes play in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Peroxiredoxin 5 (Prdx5) is an antioxidant enzyme that catalyzes the reduction of H2 O2 and alkyl hydroperoxide and plays an important role in different biological processes. In this study, we show that Prdx5 is downregulated in a PKD mutant mouse model and ADPKD patient kidneys. Knockdown of Prdx5 resulted in the formation of cysts in a three-dimensional mouse inner medullar collecting duct (IMCD) cell Matrigel culture system. The mechanisms of Prdx5 deficiency mediated cyst growth include: (1) induction of oxidative stress as indicated by increased mRNA expression of heme oxygenase-1, an oxidant stress marker; (2) activation of Erk, S6 and mTORC1, which contribute to cystic renal epithelial cell proliferation and cyst growth; (3) abnormal centrosome amplification and multipolar spindle formation which result in genome instability; (4) upregulation of Polo-like kinase 1 (Plk1) and Aurora kinase A, important mitotic kinases involved in cell proliferation and ciliogenesis; (5) impaired formation of primary cilia in mouse IMCD3 and retinal pigment epithelial cells, which could be rescued by inhibiting Plk1 activity; and (6) restraining the effect of Wnt3a and Wnt5a ligands on primary cilia in mouse IMCD3 cells, while regulating the activity of the canonical and non-canonical Wnt signaling in a separate cilia independent mechanism, respectively. Importantly, we found that targeting Plk1 with its inhibitor, volasertib, delayed cyst growth in Pkd1 conditional knockout mouse kidneys. Together, these findings indicate that Prdx5 is an important antioxidant that regulates cyst growth via diverse mechanisms, in particular, the Prdx5-Plk1 axis, and that induction and activation of Prdx5, alone or together with inhibition of Plk1, represent a promising strategy for combatting ADPKD.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
18
|
Roles of RACK1 in centrosome regulation and carcinogenesis. Cell Signal 2021; 90:110207. [PMID: 34843916 DOI: 10.1016/j.cellsig.2021.110207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) regulates various cellular functions and signaling pathways by interacting with different proteins. Recently, we showed that RACK1 interacts with breast cancer gene 1 (BRCA1), which regulates centrosome duplication. RACK1 localizes to centrosomes and spindle poles and is involved in the proper centrosomal localization of BRCA1. The interaction between RACK1 and BRCA1 is critical for the regulation of centrosome number. In addition, RACK1 contributes to centriole duplication by regulating polo-like kinase 1 (PLK1) activity in S phase. RACK1 binds directly to PLK1 and Aurora A, promoting the phosphorylation of PLK1 and activating the Aurora A/PLK1 signaling axis. Overexpression of RACK1 causes centrosome amplification, especially in mammary gland epithelial cells, inducing overactivation of PLK1 followed by premature centriole disengagement and centriole re-duplication. Other proteins, including hypoxia-inducible factor α, von Hippel-Lindau protein, heat-shock protein 90, β-catenin, and glycogen synthase kinase-3β, interact with RACK1 and play roles in centrosome regulation. In this review, we focus on the roles and underlying molecular mechanisms of RACK1 in centrosome regulation mediated by its interaction with different proteins and the modulation of their functions.
Collapse
|
19
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
21
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
22
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
23
|
Dias Louro MA, Bettencourt-Dias M, Bank C. Patterns of selection against centrosome amplification in human cell lines. PLoS Comput Biol 2021; 17:e1008765. [PMID: 33979341 PMCID: PMC8143425 DOI: 10.1371/journal.pcbi.1008765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/24/2021] [Accepted: 02/03/2021] [Indexed: 11/18/2022] Open
Abstract
The presence of extra centrioles, termed centrosome amplification, is a hallmark of cancer. The distribution of centriole numbers within a cancer cell population appears to be at an equilibrium maintained by centriole overproduction and selection, reminiscent of mutation-selection balance. It is unknown to date if the interaction between centriole overproduction and selection can quantitatively explain the intra- and inter-population heterogeneity in centriole numbers. Here, we define mutation-selection-like models and employ a model selection approach to infer patterns of centriole overproduction and selection in a diverse panel of human cell lines. Surprisingly, we infer strong and uniform selection against any number of extra centrioles in most cell lines. Finally we assess the accuracy and precision of our inference method and find that it increases non-linearly as a function of the number of sampled cells. We discuss the biological implications of our results and how our methodology can inform future experiments.
Collapse
Affiliation(s)
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
25
|
Wellard SR, Zhang Y, Shults C, Zhao X, McKay M, Murray SA, Jordan PW. Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes. EMBO Rep 2021; 22:e51023. [PMID: 33615678 PMCID: PMC8024899 DOI: 10.15252/embr.202051023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell-specific conditional knockout strategy, we show that Polo-like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Yujiao Zhang
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Chris Shults
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Xueqi Zhao
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Philip W Jordan
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
26
|
Porter AP, Reed H, White GRM, Ogg EL, Whalley HJ, Malliri A. The RAC1 activator Tiam1 regulates centriole duplication through controlling PLK4 levels. J Cell Sci 2021; 134:jcs252502. [PMID: 33758078 PMCID: PMC8075378 DOI: 10.1242/jcs.252502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Centriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. Key to this is the regulated degradation of PLK4, the master regulator of centriole duplication. Here, we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for the maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4 and centriole overduplication, whereas overexpression of Tiam1 can restrict centriole overduplication. Ultimately, Tiam1 depletion leads to lagging chromosomes at anaphase and aneuploidy, which are potential drivers of malignant progression. The effects of Tiam1 depletion on centrosomal PLK4 levels and centriole overduplication can be rescued by re-expression of both wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein βTRCP (also known as F-box/WD repeat-containing protein 1A) implying that Tiam1 regulates PLK4 levels through promoting βTRCP-mediated degradation independently of Rac1 activation.
Collapse
Affiliation(s)
- Andrew P. Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | | | | | | | | | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| |
Collapse
|
27
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Ito KK, Watanabe K, Ishida H, Matsuhashi K, Chinen T, Hata S, Kitagawa D. Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. J Cell Biol 2021; 220:e202005153. [PMID: 33492359 PMCID: PMC7836272 DOI: 10.1083/jcb.202005153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.
Collapse
Affiliation(s)
- Kei K. Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Haruki Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
29
|
Balestra FR, Domínguez-Calvo A, Wolf B, Busso C, Buff A, Averink T, Lipsanen-Nyman M, Huertas P, Ríos RM, Gönczy P. TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. eLife 2021; 10:62640. [PMID: 33491649 PMCID: PMC7870141 DOI: 10.7554/elife.62640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease with impaired organ growth and increased tumor formation. TRIM37 depletion from tissue culture cells results in supernumerary foci bearing the centriolar protein Centrin. Here, we characterize these centriolar protein assemblies (Cenpas) to uncover the mechanism of action of TRIM37. We find that an atypical de novo assembly pathway can generate Cenpas that act as microtubule-organizing centers (MTOCs), including in Mulibrey patient cells. Correlative light electron microscopy reveals that Cenpas are centriole-related or electron-dense structures with stripes. TRIM37 regulates the stability and solubility of Centrobin, which accumulates in elongated entities resembling the striped electron dense structures upon TRIM37 depletion. Furthermore, Cenpas formation upon TRIM37 depletion requires PLK4, as well as two parallel pathways relying respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37 prevents Cenpas formation, which would otherwise threaten genome integrity.
Collapse
Affiliation(s)
- Fernando R Balestra
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrés Domínguez-Calvo
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alizée Buff
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Tessa Averink
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marita Lipsanen-Nyman
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Yoshino Y, Kobayashi A, Qi H, Endo S, Fang Z, Shindo K, Kanazawa R, Chiba N. RACK1 regulates centriole duplication through promoting the activation of polo-like kinase 1 by Aurora A. J Cell Sci 2020; 133:jcs238931. [PMID: 32788231 DOI: 10.1242/jcs.238931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Breast cancer gene 1 (BRCA1) contributes to the regulation of centrosome number. We previously identified receptor for activated C kinase 1 (RACK1) as a BRCA1-interacting partner. RACK1, a scaffold protein that interacts with multiple proteins through its seven WD40 domains, directly binds to BRCA1 and localizes to centrosomes. RACK1 knockdown suppresses centriole duplication, whereas RACK1 overexpression causes centriole overduplication in a subset of mammary gland-derived cells. In this study, we showed that RACK1 binds directly to polo-like kinase 1 (PLK1) and Aurora A, and promotes the Aurora A-PLK1 interaction. RACK1 knockdown decreased phosphorylated PLK1 (p-PLK1) levels and the centrosomal localization of Aurora A and p-PLK1 in S phase, whereas RACK1 overexpression increased p-PLK1 level and the centrosomal localization of Aurora A and p-PLK1 in interphase, resulting in an increase of cells with abnormal centriole disengagement. Overexpression of cancer-derived RACK1 variants failed to enhance the Aurora A-PLK1 interaction, PLK1 phosphorylation and the centrosomal localization of p-PLK1. These results suggest that RACK1 functions as a scaffold protein that promotes the activation of PLK1 by Aurora A in order to promote centriole duplication.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Kobayashi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shino Endo
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kazuha Shindo
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Ryo Kanazawa
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
31
|
Patel S, Wilkinson CJ, Sviderskaya EV. Loss of Both CDKN2A and CDKN2B Allows for Centrosome Overduplication in Melanoma. J Invest Dermatol 2020; 140:1837-1846.e1. [PMID: 32067956 PMCID: PMC7435684 DOI: 10.1016/j.jid.2020.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes duplicate only once in coordination with the DNA replication cycle and have an important role in segregating genetic material. In contrast, most cancer cells have centrosome aberrations, including supernumerary centrosomes, and this correlates with aneuploidy and genetic instability. The tumor suppressors p16 (CDKN2A) and p15 (CDKN2B) (encoded by the familial melanoma CDKN2 locus) inhibit CDK4/6 activity and have important roles in cellular senescence. p16 is also associated with suppressing centrosomal aberrations in breast cancer; however, the role of p15 in centrosome amplification is unknown. Here, we investigated the relationship between p15 and p16 expression, centrosome number abnormalities, and melanoma progression in cell lines derived from various stages of melanoma progression. We found that normal human melanocyte lines did not exhibit centrosome number abnormalities, whereas those from later stages of melanoma did. Additionally, under conditions of S-phase block, p15 and p16 status determined whether centrosome overduplication would occur. Indeed, removal of p15 from p16-negative cell lines derived from various stages of melanoma progression changed cells that previously would not overduplicate their centrosomes into cells that did. Although this study used cell lines in vitro, it suggests that, during clinical melanoma progression, sequential loss of p15 and p16 provides conditions for centrosome duplication to become deregulated with consequences for genome instability.
Collapse
Affiliation(s)
- Shyamal Patel
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom.
| |
Collapse
|
32
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
33
|
Kong D, Sahabandu N, Sullenberger C, Vásquez-Limeta A, Luvsanjav D, Lukasik K, Loncarek J. Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J Cell Biol 2020; 219:e201910019. [PMID: 32271878 PMCID: PMC7265320 DOI: 10.1083/jcb.201910019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are precisely built microtubule-based structures that assemble centrosomes and cilia. Aberrations in centriole structure are common in tumors, yet how these aberrations arise is unknown. Analysis of centriole structure is difficult because it requires demanding electron microscopy. Here we employ expansion microscopy to study the origins of centriole structural aberrations in large populations of human cells. We discover that centrioles do not have an elongation monitoring mechanism, which renders them prone to over-elongation, especially during prolonged mitosis induced by various factors, importantly including supernumerary centrioles. We identify that mitotic centriole over-elongation is dependent on mitotic Polo-like kinase 1, which we uncover as a novel regulator of centriole elongation in human cycling cells. While insufficient Plk1 levels lead to the formation of shorter centrioles lacking a full set of microtubule triplets, its overactivity results in over-elongated and structurally aberrant centrioles. Our data help explain the origin of structurally aberrant centrioles and why centriole numerical and structural defects coexist in tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD
| |
Collapse
|
34
|
Frye K, Renda F, Fomicheva M, Zhu X, Gong L, Khodjakov A, Kaverina I. Cell Cycle-Dependent Dynamics of the Golgi-Centrosome Association in Motile Cells. Cells 2020; 9:cells9051069. [PMID: 32344866 PMCID: PMC7290758 DOI: 10.3390/cells9051069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Here, we characterize spatial distribution of the Golgi complex in human cells. In contrast to the prevailing view that the Golgi compactly surrounds the centrosome throughout interphase, we observe characteristic differences in the morphology of Golgi ribbons and their association with the centrosome during various periods of the cell cycle. The compact Golgi complex is typical in G1; during S-phase, Golgi ribbons lose their association with the centrosome and extend along the nuclear envelope to largely encircle the nucleus in G2. Interestingly, pre-mitotic separation of duplicated centrosomes always occurs after dissociation from the Golgi. Shortly before the nuclear envelope breakdown, scattered Golgi ribbons reassociate with the separated centrosomes restoring two compact Golgi complexes. Transitions between the compact and distributed Golgi morphologies are microtubule-dependent. However, they occur even in the absence of centrosomes, which implies that Golgi reorganization is not driven by the centrosomal microtubule asters. Cells with different Golgi morphology exhibit distinct differences in the directional persistence and velocity of migration. These data suggest that changes in the radial distribution of the Golgi around the nucleus define the extent of cell polarization and regulate cell motility in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa Gong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Correspondence: ; Tel.: +1-615-936-5567
| |
Collapse
|
35
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
36
|
Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat Commun 2019; 10:931. [PMID: 30804344 PMCID: PMC6389942 DOI: 10.1038/s41467-019-08862-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with cep57 mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease pericentrin mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM. Centriole disengagement occurs towards mitotic exit and involves cleavage of pericentrin, a component of the pericentriolar material. Here the authors show that depletion of the centrosomal protein Cep57 leads to precocious centriole disengagement, and that Cep57 binds pericentrin.
Collapse
Affiliation(s)
- Koki Watanabe
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Takao
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kei K Ito
- Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan. .,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Arnandis T, Monteiro P, Adams SD, Bridgeman VL, Rajeeve V, Gadaleta E, Marzec J, Chelala C, Malanchi I, Cutillas PR, Godinho SA. Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion. Dev Cell 2018; 47:409-424.e9. [PMID: 30458137 PMCID: PMC6251975 DOI: 10.1016/j.devcel.2018.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Centrosomal abnormalities, in particular centrosome amplification, are recurrent features of human tumors. Enforced centrosome amplification in vivo plays a role in tumor initiation and progression. However, centrosome amplification occurs only in a subset of cancer cells, and thus, partly due to this heterogeneity, the contribution of centrosome amplification to tumors is unknown. Here, we show that supernumerary centrosomes induce a paracrine-signaling axis via the secretion of proteins, including interleukin-8 (IL-8), which leads to non-cell-autonomous invasion in 3D mammary organoids and zebrafish models. This extra centrosomes-associated secretory phenotype (ECASP) promotes invasion of human mammary cells via HER2 signaling activation. Further, we demonstrate that centrosome amplification induces an early oxidative stress response via increased NOX-generated reactive oxygen species (ROS), which in turn mediates secretion of pro-invasive factors. The discovery that cells with extra centrosomes can manipulate the surrounding cells highlights unexpected and far-reaching consequences of these abnormalities in cancer.
Collapse
Affiliation(s)
- Teresa Arnandis
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Monteiro
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophie D Adams
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Vinothini Rajeeve
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacek Marzec
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claude Chelala
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Susana A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
39
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
40
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
41
|
Xie S, Reinecke JB, Farmer T, Bahl K, Yeow I, Nichols BJ, McLamarrah TA, Naslavsky N, Rogers GC, Caplan S. Vesicular trafficking plays a role in centriole disengagement and duplication. Mol Biol Cell 2018; 29:2622-2631. [PMID: 30188792 PMCID: PMC6249839 DOI: 10.1091/mbc.e18-04-0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Centrosomes are the major microtubule-nucleating and microtubule-organizing centers of cells and play crucial roles in microtubule anchoring, organelle positioning, and ciliogenesis. At the centrosome core lies a tightly associated or “engaged” mother–daughter centriole pair. During mitotic exit, removal of centrosomal proteins pericentrin and Cep215 promotes “disengagement” by the dissolution of intercentriolar linkers, ensuring a single centriole duplication event per cell cycle. Herein, we explore a new mechanism involving vesicular trafficking for the removal of centrosomal Cep215. Using small interfering RNA and CRISPR/Cas9 gene-edited cells, we show that the endocytic protein EHD1 regulates Cep215 transport from centrosomes to the spindle midbody, thus facilitating disengagement and duplication. We demonstrate that EHD1 and Cep215 interact and show that Cep215 displays increased localization to vesicles containing EHD1 during mitosis. Moreover, Cep215-containing vesicles are positive for internalized transferrin, demonstrating their endocytic origin. Thus, we describe a novel relationship between endocytic trafficking and the centrosome cycle, whereby vesicles of endocytic origin are used to remove key regulatory proteins from centrosomes to control centriole duplication.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - James B Reinecke
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Trey Farmer
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Kriti Bahl
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Ivana Yeow
- MRC-Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | - Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| |
Collapse
|
42
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
43
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
44
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
45
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
46
|
Abstract
Differentiation and proliferation are usually considered to be antagonistic partners in development. However, in a recent issue of Science, Al Jord et al. (2017) show that key regulators of the mitotic cycle are redeployed in differentiating multiciliated cells to promote ciliogenesis without mitotic progression.
Collapse
|
47
|
Wolf B, Diop F, Ferraris P, Wichit S, Busso C, Missé D, Gönczy P. Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open Biol 2017; 7:rsob.160231. [PMID: 28100662 PMCID: PMC5303270 DOI: 10.1098/rsob.160231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) causes congenital microcephaly. Although ZIKV can impair cell cycle progression and provoke apoptosis, which probably contributes to disease aetiology through depletion of neural progenitor cells, additional cellular mechanisms may be important. Here, we investigated whether ZIKV infection alters centrosome number and spindle positioning, because such defects are thought to be at the root of inherited primary autosomal recessive microcephaly (MCPH). In addition to HeLa cells, in which centrosome number and spindle positioning can be well monitored, we analysed retinal epithelial cells (RPE-1), as well as brain-derived microglial (CHME-5) and neural progenitor (ReN) cells, using immunofluorescence. We established that ZIKV infection leads to supernumerary foci containing centriolar proteins that in some cases drive multipolar spindle assembly, as well as spindle positioning defects in HeLa, RPE-1 and CHME-5 cells, but not in ReN cells. We uncovered similar phenotypes in HeLa cells upon infection with dengue virus (DENV-2), another flavivirus that does not target brain cells and does not cause microcephaly. We conclude that infection with Flaviviridae can increase centrosome numbers and impair spindle positioning, thus potentially contributing to microcephaly in the case of Zika.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Fodé Diop
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, 34394 Montpellier, France
| | - Pauline Ferraris
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, 34394 Montpellier, France
| | | | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Dorothée Missé
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, 34394 Montpellier, France
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
48
|
Li Z, Cui Q, Xu J, Cheng D, Wang X, Li B, Lee JM, Xia Q, Kusakabe T, Zhao P. SUMOylation regulates the localization and activity of Polo-like kinase 1 during cell cycle in the silkworm, Bombyx mori. Sci Rep 2017; 7:15536. [PMID: 29138491 PMCID: PMC5686133 DOI: 10.1038/s41598-017-15884-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a crucial cell cycle regulator by its specific localization and activity during cell cycle. It has been shown that the phosphorylation and ubiquitylation of Plk1 are required for its own activation and localization. Here, we report that SUMOylation regulates the activity of Plk1 in the lepidopteran insect of Bombyx mori. In the absence of SUMOylation, it causes the lost localization of Plk1 on centrosomes and kinetochores, as well as an uneven distribution in midzone. We further identify that the putative SUMOylation site of Bombyx Plk1 at lysine 466 is required for its localization on centrosomes, and K466 mutation in Plk1 could influence its interaction with Smt3/Ubc9 complex. These findings are also confirmed by Drosophila Polo and human Plk1, which together reveals a conserved role of Plk1 SUMOylation in mammals. Moreover, conjugation of Smt3 to Plk1 SUMOylation mutant promotes its localization on centrosomes and kinetochores, and rescues functional defects of chromosome alignment in cells depleted of endogenous Plk1. Altogether, the present data indicate that the SUMOylation of Plk1 could participate in proper chromosome alignment and segregation during mitosis, and provides a novel layer for the regulation of Plk1 localization and activity throughout cell cycle.
Collapse
Affiliation(s)
- Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Qixin Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Xiaoyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingqian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China.
| |
Collapse
|
49
|
Rhys AD, Monteiro P, Smith C, Vaghela M, Arnandis T, Kato T, Leitinger B, Sahai E, McAinsh A, Charras G, Godinho SA. Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. J Cell Biol 2017; 217:195-209. [PMID: 29133484 PMCID: PMC5748979 DOI: 10.1083/jcb.201704102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Centrosome clustering is essential for the survival of cells containing supernumerary centrosomes. Rhys et al. show that centrosome clustering is a two-step mechanism in which increased cortical contractility, driven by loss of E-cadherin, restricts centrosome movement, facilitating HSET-mediated clustering. Centrosome amplification is a common feature of human tumors. To survive, cancer cells cluster extra centrosomes during mitosis, avoiding the detrimental effects of multipolar divisions. However, it is unclear whether clustering requires adaptation or is inherent to all cells. Here, we show that cells have varied abilities to cluster extra centrosomes. Epithelial cells are innately inefficient at clustering even in the presence of HSET/KIFC1, which is essential but not sufficient to promote clustering. The presence of E-cadherin decreases cortical contractility during mitosis through a signaling cascade leading to multipolar divisions, and its knockout promotes clustering and survival of cells with multiple centrosomes. Cortical contractility restricts centrosome movement at a minimal distance required for HSET/KIFC1 to exert its function, highlighting a biphasic model for centrosome clustering. In breast cancer cell lines, increased levels of centrosome amplification are accompanied by efficient clustering and loss of E-cadherin, indicating that this is an important adaptation mechanism to centrosome amplification in cancer.
Collapse
Affiliation(s)
- Alexander D Rhys
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Pedro Monteiro
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Christopher Smith
- Centre for Mechanochemical Cell Biology, Division of Biomedical Science, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Malti Vaghela
- London Centre for Nanotechnology, University College London, London, England, UK
| | - Teresa Arnandis
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Takuya Kato
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, England, UK
| | - Birgit Leitinger
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, England, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, England, UK
| | - Andrew McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Science, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, England, UK
| | - Susana A Godinho
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| |
Collapse
|
50
|
Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell 2017; 37:545-57. [PMID: 27326932 PMCID: PMC4918730 DOI: 10.1016/j.devcel.2016.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic “centriole conversion” is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome. Cdk1 phosphorylates Sas-4 to initiate Polo/Plk1 recruitment to daughter centrioles Polo recruitment promotes Asterless (Asl) incorporation into daughter centrioles Asl incorporation licenses new centrioles to duplicate and organize centrosomes These observations help explain why centriole conversion is tied to mitosis
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|