1
|
Wang Y, Wu X, Fan X, Han C, Zheng F, Zhang Z. Screening and transcriptomic analysis of anti- Sporothrix globosa targeting AbaA. Front Microbiol 2025; 16:1546020. [PMID: 40365064 PMCID: PMC12069444 DOI: 10.3389/fmicb.2025.1546020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Sporotrichosis is a fungal disease caused by a complex of Sporothrix schenckii, leading to chronic infections of the epidermis and subcutaneous tissue in both humans and animals. Methods Through virtual screening targeting the key gene abaA to screen out the small-molecule drugs to treat Sporotrichosis. To further validate the antifungal activity of small-molecule drugs, growth curves, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) for Sporothrix globosa (S. globosa) and Sporothrix schenckii (S. schenckii) were measured. In addition, we have done animal experiments to explore the function of the drugs. At the same time, qRT-PCR and transcriptome were used to verify the important role of abaA gene in Sporothrix. Results Azelastine and Mefloquine effectively inhibit S. globosa and S. schenckii. MBC, and MIC for S. globosa and S. schenckii confirmed that both Azelastine and Mefloquine inhibited the growth of S. globosa and S. schenckii. Additionally, animal experiments demonstrated that Azelastine and Mefloquine reduced skin lesions in mice; post-treatment observations revealed improvements in inflammatory infiltration and granuloma formation. Through transcriptome analysis and qRT-PCR for validation, our findings demonstrate that the abaA gene plays a crucial role in regulating the attachment of the Sporothrix cell wall to the host matrix and in melanin regulation. Notably, when the abaA gene was inhibited, there was a marked increase in the expression of repair genes. These results emphasize the significance of the abaA gene in the biology of Sporothrix. Discussion Two small-molecule drugs exhibit the ability to inhibit Sporothrix and treat sporotrichosis both in vitro and in murine models, suggesting their potential for development as therapeutic agents for sporotrichosis. And qRT-PCR and transcriptome results underscore the significance of the abaA gene in Sporothrix. Our results lay the foundation for the search for new treatments for other mycosis.
Collapse
Affiliation(s)
- Ying Wang
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Xiaoyan Wu
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xiyuan Fan
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Chanxu Han
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Fangliang Zheng
- Academy of Life Science, Liaoning University, Shenyang, China
| | - Zhenying Zhang
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Predicting gene expression changes from chromatin structure modification. NPJ Syst Biol Appl 2025; 11:34. [PMID: 40234426 PMCID: PMC12000410 DOI: 10.1038/s41540-025-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Spatial organization of chromatin plays a critical role in gene transcription, but connecting population-averaged HiC data to functional outcomes remains a challenge. We present a computational framework linking HiC contact map to gene transcription. Utilizing a bead-spring polymer model informed by HiC contact maps, we generate an ensemble of 3D conformations for a given genomic locus. These conformations are then coupled to gene transcription levels through a Markov chain model, with transition rates derived from molecular dynamics simulations. The efficacy of this framework is demonstrated by simulating the perturbation of a CTCF-mediated TAD boundary, impacting the expression of sox9 and kcnj2. Our model quantitatively reproduces experimentally observed changes in gene expression, revealing that the increased kcnj2 transcription is a consequence of enhancers within the sox9 TAD becoming accessible upon boundary disruption. Quantifying enhancer impact, our model can also identify functional enhancers. This framework enhances our understanding of the relationship between chromosome spatial architecture and gene regulation.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.
| |
Collapse
|
3
|
Liu H, Earley B, Mendoza A, Hunt P, Teng S, Schneider DL, Kornfeld K. A single high-zinc activation enhancer can control two genes orientated head-to-head in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624376. [PMID: 40196504 PMCID: PMC11974713 DOI: 10.1101/2024.11.19.624376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Enhancers play critical roles in gene expression, but a full understanding of their complex functions has yet to be defined. The cellular response to excess zinc levels in C. elegans requires the HIZR-1 transcription factor, which binds the high-zinc activation (HZA) enhancer in the promoters of multiple target genes. Cadmium hijacks the excess zinc response by binding and activating HIZR-1. By analyzing the genome-wide transcriptional response to excess zinc and cadmium, we identified two positions in the genome where head-to-head oriented genes are both induced by metals. In both examples, a single predicted HZA enhancer is positioned between the two translational start sites. We hypothesized that a single enhancer can control both head-to-head genes, an arrangement that has not been extensively characterized. To test this hypothesis, we used CRISPR genome editing to precisely delete the HZAmT enhancer positioned between mtl-2 and T08G5.1; in this mutant, both head-to-head genes display severely reduced zinc-activated transcription, whereas zinc-activated transcription of more distant genes was not strongly affected. Deleting the HZAcF enhancer positioned between cdr-1 and F35E8.10 caused both head-to-head genes to display reduced cadmium-activated transcription, whereas cadmium-activated transcription of more distant genes was not strongly affected. These studies rigorously document that a single HZA enhancer can control two head-to-head genes, advancing our understanding of the diverse functions of enhancers.
Collapse
Affiliation(s)
- Hanwenheng Liu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Brian Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: Blackfoot High School, 870 S. Fisher Avenue, Blackfoot, Idaho 83221, USA
| | - Adelita Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: University of Colorado at Boulder, 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Patrick Hunt
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Sean Teng
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Yu M, Zemke NR, Chen Z, Juric I, Hu R, Raviram R, Abnousi A, Fang R, Zhang Y, Gorkin DU, Li YE, Zhao Y, Lee L, Mishra S, Schmitt AD, Qiu Y, Dickel DE, Visel A, Pennacchio LA, Hu M, Ren B. Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues. Nat Struct Mol Biol 2025; 32:479-490. [PMID: 39681766 PMCID: PMC11919700 DOI: 10.1038/s41594-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics. Integrative analysis of the interactome with previous epigenome and transcriptome datasets from the same tissues revealed a strong correlation between the chromatin contacts and chromatin state at distal enhancers, as well as gene expression patterns at predicted target genes. We predicted target genes of 15,098 candidate enhancers and used them to annotate target genes of homologous candidate enhancers in the human genome that harbor risk variants of human diseases. We present evidence that schizophrenia and other adult disease risk variants are frequently found in fetal enhancers, providing support for the hypothesis of fetal origins of adult diseases.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ziyin Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Center for Immunology and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- New York Genome Center, New York, NY, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Meta, Bellevue, WA, USA
| | - Rongxin Fang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - David U Gorkin
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Neurosurgery and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuan Zhao
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anthony D Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- UCSD Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Arima Genomics, Inc., San Diego, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Sana Biotechnology, Seattle, WA, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
5
|
Batool F, Shireen H, Malik MF, Abrar M, Abbasi AA. The combinatorial binding syntax of transcription factors in forebrain-specific enhancers. Biol Open 2025; 14:BIO061751. [PMID: 39976127 PMCID: PMC11876843 DOI: 10.1242/bio.061751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Tissue-specific gene regulation in mammals involves the coordinated binding of multiple transcription factors (TFs). Using the forebrain as a model, we investigated the syntax of TF occupancy to determine tissue-specific enhancer regions. We analyzed forebrain-exclusive enhancers from the VISTA Enhancer Browser and a curated set of 23 TFs relevant to forebrain development and disease. Our findings revealed multiple distinct patterns of combinatorial TF binding, with the HES5-FOXP2-GATA3 triad being the most frequent in forebrain-specific enhancers. This syntactic structure was detected in 2614 enhancers from a genome-wide catalog of 25,000 predicted human forebrain enhancers. Notably, this catalog represents a computationally predicted dataset, distinct from the in vivo validated set of enhancers obtained from the VISTA Enhancer Browser. The shortlisted 2614 enhancers were further analyzed using genome-wide epigenetic data and evaluated for evolutionary conservation and disease relevance. Our findings highlight the value of these 2614 enhancers in forebrain-specific gene regulation and provide a framework for discovering tissue-specific enhancers, enhancing the understanding of enhancer function.
Collapse
Affiliation(s)
- Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Faizan Malik
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
6
|
Wang Z, Yuan H, Yan J, Liu J. Identification, characterization, and design of plant genome sequences using deep learning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17190. [PMID: 39666835 DOI: 10.1111/tpj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
7
|
Falo-Sanjuan J, Diaz-Tirado Y, Turner MA, Rourke O, Davis J, Medrano C, Haines J, McKenna J, Karshenas A, Eisen MB, Garcia HG. Targeted mutagenesis of specific genomic DNA sequences in animals for the in vivo generation of variant libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598328. [PMID: 38915503 PMCID: PMC11195090 DOI: 10.1101/2024.06.10.598328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how the number, placement and affinity of transcription factor binding sites dictates gene regulatory programs remains a major unsolved challenge in biology, particularly in the context of multicellular organisms. To uncover these rules, it is first necessary to find the binding sites within a regulatory region with high precision, and then to systematically modulate this binding site arrangement while simultaneously measuring the effect of this modulation on output gene expression. Massively parallel reporter assays (MPRAs), where the gene expression stemming from 10,000s of in vitro-generated regulatory sequences is measured, have made this feat possible in high-throughput in single cells in culture. However, because of lack of technologies to incorporate DNA libraries, MPRAs are limited in whole organisms. To enable MPRAs in multicellular organisms, we generated tools to create a high degree of mutagenesis in specific genomic loci in vivo using base editing. Targeting GFP integrated in the genome of Drosophila cell culture and whole animals as a case study, we show that the base editor AIDevoCDA1 stemming from sea lamprey fused to nCas9 is highly mutagenic. Surprisingly, longer gRNAs increase mutation efficiency and expand the mutating window, which can allow the introduction of mutations in previously untargetable sequences. Finally, we demonstrate arrays of >20 gRNAs that can efficiently introduce mutations along a 200bp sequence, making it a promising tool to test enhancer function in vivo in a high throughput manner.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuliana Diaz-Tirado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Meghan A. Turner
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Olivia Rourke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Julian Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jenna Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Arman Karshenas
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Karshenas A, Röschinger T, Garcia HG. Predictive Modeling of Gene Expression and Localization of DNA Binding Site Using Deep Convolutional Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629042. [PMID: 39763851 PMCID: PMC11702772 DOI: 10.1101/2024.12.17.629042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression. To enable the analysis of this data in a manner that accounts for possible correlations between distant bases along a regulatory sequence, we developed the Deep learning Adaptable Regulatory Sequence Identifier (DARSI). This convolutional neural network leverages MPRA data to predict gene expression levels directly from raw regulatory DNA sequences. By harnessing this predictive capacity, DARSI systematically identifies transcription factor binding sites within regulatory regions at single-base pair resolution. To validate its predictions, we benchmarked DARSI against curated databases, confirming its accuracy in predicting transcription factor binding sites. Additionally, DARSI predicted novel unmapped binding sites, paving the way for future experimental efforts to confirm the existence of these binding sites and to identify the transcription factors that target those sites. Thus, by automating and improving the annotation of regulatory regions, DARSI generates experimentally actionable predictions that can feed iterations of the theory-experiment cycle aimed at reaching a predictive understanding of transcriptional control.
Collapse
Affiliation(s)
- Arman Karshenas
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Tom Röschinger
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hernan G. Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Vu L, Xu F, Li T, Hua Q, Kuang X, Jiang Y, Liang Y, Niu X, Chen Y, Huang C, Mo W, Wang K, Tang K, Mo J, Lu KE, Mo Y, Mo S, Yang D, Zhao J. Analysis of immune cell activation in patients with diabetes foot ulcer from the perspective of single cell. Eur J Med Res 2024; 29:606. [PMID: 39702546 PMCID: PMC11657181 DOI: 10.1186/s40001-024-02179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) can cause severe complications, including diabetic foot ulcers (DFU). There is a significant gap in understanding the single-cell ecological atlas of DM and DFU tissues. METHODS Single-cell RNA sequencing data were used to create a detailed single-cell ecological landscape of DM and DFU. Enrichment analysis identified pathways involved in cellular subpopulations, and pseudo-time analysis inferred cell development processes. A gene regulatory network explored the role of transcription factors in DFU progression, and a potential herbal drug-target gene interaction network was constructed. RESULTS In the DFU group, immune cells were activated, with notable changes in several subpopulations. ATP5E was significantly overexpressed in Naive T cells, fibroblasts, endothelial cells, and CD8+ T cells in DM patients. Specific immune cell subsets, such as Naive T_RGCC, CTL_TYROBP_CL4, Mac_SLC40A1, and M1_CCL3L1, likely contribute to DFU formation through overactivation and proliferation, leading to tissue damage and ulcer exacerbation. Key genes TPP1, TLR4, and RIPK2 were identified, and 88 active ingredients in the herbal drug-target network showed strong correlations with these targets. Herbs like Angelica dahurica, Angelica sinensis, Boswellia carterii, liquorice, myrrh, and Semen armeniacae amarae were included. CONCLUSIONS This study offers insights into DM and DFU cytology. T cells in DFU are activated, attacking normal tissues and worsening tissue damage. The ATP5E gene may be related to the ecological remodeling of DM, and TPP1, TLR4, and RIPK2 are potential targets for DFU treatment.
Collapse
Affiliation(s)
- Lehoanganh Vu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Xu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Ting Li
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Qikai Hua
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaocong Kuang
- Department of Physiology and Pathophysiology, Yulin Campus of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Yongqiang Jiang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
| | - Yanfei Liang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Xing Niu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Yixuan Chen
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Chengyu Huang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Weiliang Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Kejian Wang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Kaihua Tang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Jianwen Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Ke-Er Lu
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Yan Mo
- Department of Pathology, Yulin Campus of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Steven Mo
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China.
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China.
| | - Dengfeng Yang
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning , 530007, Guangxi, China.
| | - Jinmin Zhao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Nasser J, Nam KM, Gunawardena J. A mathematical model clarifies the ABC Score formula used in enhancer-gene prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626072. [PMID: 39677755 PMCID: PMC11642778 DOI: 10.1101/2024.11.29.626072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Enhancers are discrete DNA elements that regulate the expression of eukaryotic genes. They are important not only for their regulatory function, but also as loci that are frequently associated with disease traits. Despite their significance, our conceptual understanding of how enhancers work remains limited. CRISPR-interference methods have recently provided the means to systematically screen for enhancers in cell culture, from which a formula for predicting whether an enhancer regulates a gene, the Activity-by-Contact (ABC) Score, has emerged and has been widely adopted. While useful as a binary classifier, it is less effective at predicting the quantitative effect of an enhancer on gene expression. It is also unclear how the algebraic form of the ABC Score arises from the underlying molecular mechanisms and what assumptions are needed for it to hold. Here, we use the graph-theoretic linear framework, previously introduced to analyze gene regulation, to formulate the default model, a mathematical model of how multiple enhancers independently regulate a gene. We show that the algebraic form of the ABC Score arises from this model. However, the default model assumptions also imply that enhancers act additively on steady-state gene expression. This is known to be false for certain genes and we show how modifying the assumptions can accommodate this discrepancy. Overall, our approach lays a rigorous, biophysical foundation for future studies of enhancer-gene regulation.
Collapse
Affiliation(s)
- Joseph Nasser
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Physics, Brandeis University, Waltham, MA, USA
| | - Kee-Myoung Nam
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
11
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
12
|
Jones BM, Webb AE, Geib SM, Sim S, Schweizer RM, Branstetter MG, Evans JD, Kocher SD. Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee. Mol Biol Evol 2024; 41:msae229. [PMID: 39487572 PMCID: PMC11568387 DOI: 10.1093/molbev/msae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheina Sim
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Rena M Schweizer
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jay D Evans
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Bee Research Laboratory BARC-E, Beltsville, MD 20705, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals. Mol Biol Evol 2024; 41:msae199. [PMID: 39302728 PMCID: PMC11465374 DOI: 10.1093/molbev/msae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Xu L, Chen XJ, Yan Q, Lei XT, Liu HL, Xu JP, Shang WT, Huang JL, Chen ZT, Tan XL, Lin HJ, Fu XH, Zheng LS, Lan P, Huang Y. Zinc finger protein 180 induces an apoptotic phenotype by activating METTL14 transcriptional activity in colorectal cancer. Oncol Rep 2024; 52:125. [PMID: 39054954 PMCID: PMC11294910 DOI: 10.3892/or.2024.8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Zinc finger protein 180 (ZNF180) is a multifunctional protein that interacts with nucleic acids and regulates various cellular processes; however, the function of ZNF180 in colorectal cancer (CRC) remains unclear. The present study investigated the role and function of ZNF180 in CRC, and aimed to reveal the underlying molecular mechanism. The results revealed that ZNF180 was downregulated in CRC tissues and was associated with a good prognosis in patients with CRC. Additionally, the expression of ZNF180 was downregulated by methylation in CRC. In vivo and in vitro experiments revealed that ZNF180 overexpression was functionally associated with the inhibition of cell proliferation and the induction of apoptosis. Mechanistically, chromatin immunoprecipitation‑PCR and luciferase assays demonstrated that ZNF180 markedly regulated the transcriptional activity of methyltransferase 14, N6‑adenosine‑methyltransferase non‑catalytic subunit (METTL14) by directly binding to and activating its promoter region. Simultaneous overexpression of ZNF180 and knockdown of METTL14 indicated that the reduction of METTL14 could suppress the effects of ZNF180 on the induction of apoptosis. Clinically, the present study observed a significant positive correlation between ZNF180 and METTL14 expression levels, and low expression of ZNF180 and METTL14 predicted a poor prognosis in CRC. Overall, these findings revealed a novel mechanism by which the ZNF180/METTL14 axis may modulate apoptosis and cell proliferation in CRC. This evidence suggests that this axis may serve as a prognostic biomarker and therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Liang Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xi-Jie Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Tao Lei
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Hai-Ling Liu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jing-Ping Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wei-Te Shang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jing-Lin Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zhi-Ting Chen
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Li Tan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Han-Jie Lin
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Hui Fu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Li-Sheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510655, P.R. China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
15
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
16
|
Das S, Rai SN. Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research-A Review on the Role of Super-Enhancers. Noncoding RNA 2024; 10:45. [PMID: 39195574 DOI: 10.3390/ncrna10040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Gene regulation is crucial for cellular function and homeostasis. It involves diverse mechanisms controlling the production of specific gene products and contributing to tissue-specific variations in gene expression. The dysregulation of genes leads to disease, emphasizing the need to understand these mechanisms. Computational methods have jointly studied transcription factors (TFs), microRNA (miRNA), and messenger RNA (mRNA) to investigate gene regulatory networks. However, there remains a knowledge gap in comprehending gene regulatory networks. On the other hand, super-enhancers (SEs) have been implicated in miRNA biogenesis and function in recent experimental studies, in addition to their pivotal roles in cell identity and disease progression. However, statistical/computational methodologies harnessing the potential of SEs in deciphering gene regulation networks remain notably absent. However, to understand the effect of miRNA on mRNA, existing statistical/computational methods could be updated, or novel methods could be developed by accounting for SEs in the model. In this review, we categorize existing computational methods that utilize TF and miRNA data to understand gene regulatory networks into three broad areas and explore the challenges of integrating enhancers/SEs. The three areas include unraveling indirect regulatory networks, identifying network motifs, and enriching pathway identification by dissecting gene regulators. We hypothesize that addressing these challenges will enhance our understanding of gene regulation, aiding in the identification of therapeutic targets and disease biomarkers. We believe that constructing statistical/computational models that dissect the role of SEs in predicting the effect of miRNA on gene regulation is crucial for tackling these challenges.
Collapse
Affiliation(s)
- Sarmistha Das
- Biostatistics and Informatics Shared Resource, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Biostatistics and Bioinformatics, Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shesh N Rai
- Biostatistics and Informatics Shared Resource, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Biostatistics and Bioinformatics, Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Titus KR, Simandi Z, Chandrashekar H, Paquet D, Phillips-Cremins JE. Cell-type-specific loops linked to RNA polymerase II elongation in human neural differentiation. CELL GENOMICS 2024; 4:100606. [PMID: 38991604 PMCID: PMC11406193 DOI: 10.1016/j.xgen.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitor cells (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNA Pol II initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops or promoter-promoter loops or when unlooped. Genes transitioning from repression to RNA Pol II initiation exhibit a slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNA Pol II-mediated elongation during neural cell fate transitions.
Collapse
Affiliation(s)
- Katelyn R Titus
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harshini Chandrashekar
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Yao L, Xie P, Guan J, Chung CR, Huang Y, Pang Y, Wu H, Chiang YC, Lee TY. CapsEnhancer: An Effective Computational Framework for Identifying Enhancers Based on Chaos Game Representation and Capsule Network. J Chem Inf Model 2024; 64:5725-5736. [PMID: 38946113 PMCID: PMC11267569 DOI: 10.1021/acs.jcim.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Enhancers are a class of noncoding DNA, serving as crucial regulatory elements in governing gene expression by binding to transcription factors. The identification of enhancers holds paramount importance in the field of biology. However, traditional experimental methods for enhancer identification demand substantial human and material resources. Consequently, there is a growing interest in employing computational methods for enhancer prediction. In this study, we propose a two-stage framework based on deep learning, termed CapsEnhancer, for the identification of enhancers and their strengths. CapsEnhancer utilizes chaos game representation to encode DNA sequences into unique images and employs a capsule network to extract local and global features from sequence "images". Experimental results demonstrate that CapsEnhancer achieves state-of-the-art performance in both stages. In the first and second stages, the accuracy surpasses the previous best methods by 8 and 3.5%, reaching accuracies of 94.5 and 95%, respectively. Notably, this study represents the pioneering application of computer vision methods to enhancer identification tasks. Our work not only contributes novel insights to enhancer identification but also provides a fresh perspective for other biological sequence analysis tasks.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen 518172, China
| | - Peilin Xie
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahui Guan
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department
of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Yixian Huang
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Division
of Health Medical Intelligence, Human Genome Center, The Institute
of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Huacong Wu
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
19
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Rosales Larios MF, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biol 2024; 25:156. [PMID: 38872220 PMCID: PMC11170920 DOI: 10.1186/s13059-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Division of Molecular Genetics and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Zoetis, Inc, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Kristina M Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Struhl K. Non-canonical functions of enhancers: regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination. Trends Genet 2024; 40:471-479. [PMID: 38643034 PMCID: PMC11152991 DOI: 10.1016/j.tig.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.
Collapse
Affiliation(s)
- Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Gahan JM, Helfrich LW, Wetzel LA, Bhanu NV, Yuan ZF, Garcia BA, Klose R, Booth DS. Chromatin profiling identifies putative dual roles for H3K27me3 in regulating transposons and cell type-specific genes in choanoflagellates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596151. [PMID: 38854040 PMCID: PMC11160669 DOI: 10.1101/2024.05.28.596151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gene expression is tightly controlled during animal development to allow the formation of specialized cell types. Our understanding of how animals evolved this exquisite regulatory control remains elusive, but evidence suggests that changes in chromatin-based mechanisms may have contributed. To investigate this possibility, here we examine chromatin-based gene regulatory features in the closest relatives of animals, choanoflagellates. Using Salpingoeca rosetta as a model system, we examined chromatin accessibility and histone modifications at the genome scale and compared these features to gene expression. We first observed that accessible regions of chromatin are primarily associated with gene promoters and found no evidence of distal gene regulatory elements resembling the enhancers that animals deploy to regulate developmental gene expression. Remarkably, a histone modification deposited by polycomb repressive complex 2, histone H3 lysine 27 trimethylation (H3K27me3), appeared to function similarly in S. rosetta to its role in animals, because this modification decorated genes with cell type-specific expression. Additionally, H3K27me3 marked transposons, retaining what appears to be an ancestral role in regulating these elements. We further uncovered a putative new bivalent chromatin state at cell type-specific genes that consists of H3K27me3 and histone H3 lysine 4 mono-methylation (H3K4me1). Together, our discoveries support the scenario that gene-associated histone modification states that underpin development emerged before the evolution of animal multicellularity.
Collapse
Affiliation(s)
- James M. Gahan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
- Present Address: Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Lily W. Helfrich
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: Benchling
| | - Laura A. Wetzel
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: BioMarin Pharmaceutical Inc
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Rob Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Gu Y, Wei K, Wang J. Phase separation and transcriptional regulation in cancer development. J Biomed Res 2024; 38:307-321. [PMID: 39113127 PMCID: PMC11300516 DOI: 10.7555/jbr.37.20230214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/10/2024] Open
Abstract
Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
Collapse
Affiliation(s)
- Yan Gu
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
23
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Sabarís G, Ortíz DM, Laiker I, Mayansky I, Naik S, Cavalli G, Stern DL, Preger-Ben Noon E, Frankel N. The Density of Regulatory Information Is a Major Determinant of Evolutionary Constraint on Noncoding DNA in Drosophila. Mol Biol Evol 2024; 41:msae004. [PMID: 38364113 PMCID: PMC10871701 DOI: 10.1093/molbev/msae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.
Collapse
Affiliation(s)
- Gonzalo Sabarís
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
- Institute of Human Genetics, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Daniela M Ortíz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Ian Laiker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Ignacio Mayansky
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel
| | - Nicolás Frankel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| |
Collapse
|
25
|
de Almeida BP, Schaub C, Pagani M, Secchia S, Furlong EEM, Stark A. Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo. Nature 2024; 626:207-211. [PMID: 38086418 PMCID: PMC10830412 DOI: 10.1038/s41586-023-06905-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control gene expression and have crucial roles in development and homeostasis1-3. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Collapse
Affiliation(s)
- Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- InstaDeep, Paris, France
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
26
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary innovation in conserved regulatory elements across the mammalian tree of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578197. [PMID: 38352419 PMCID: PMC10862883 DOI: 10.1101/2024.01.31.578197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Evolution of enhancer sequences can alter target gene expression without causing detrimental misexpression in other contexts. It has long been thought that this modularity allows evolutionary changes in enhancers to escape pleiotropic constraints, which is especially important for evolutionary constrained developmental patterning genes. However, there is still little data supporting this hypothesis. Here we identified signatures of accelerated evolution in conserved enhancer elements across the mammalian phylogeny. We found that pleiotropic genes involved in gene regulatory and developmental processes were enriched for accelerated sequence evolution within their enhancer elements. These genes were associated with an excess number of enhancers compared to other genes, and due to this they exhibit a substantial degree of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. We studied one acceleration event in depth and found that its sequence evolution led to the emergence of a new enhancer activity domain that may be involved in the evolution of digit reduction in hoofed mammals. Our results provide tangible evidence that enhancer evolution has been a frequent contributor to modifications involving constrained developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Present address: Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven CT, USA
- Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
27
|
Gomez Ramos B, Ohnmacht J, de Lange N, Valceschini E, Ginolhac A, Catillon M, Ferrante D, Rakovic A, Halder R, Massart F, Arena G, Antony P, Bolognin S, Klein C, Krause R, Schulz MH, Sauter T, Krüger R, Sinkkonen L. Multiomics analysis identifies novel facilitators of human dopaminergic neuron differentiation. EMBO Rep 2024; 25:254-285. [PMID: 38177910 PMCID: PMC10897179 DOI: 10.1038/s44319-023-00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.
Collapse
Affiliation(s)
- Borja Gomez Ramos
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Nikola de Lange
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Elena Valceschini
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marie Catillon
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Daniele Ferrante
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site Rhein-Main, 60590, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), L-1210, Luxembourg, Luxembourg
- Luxembourg Institute of Health (LIH), L-1445, Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg.
| |
Collapse
|
28
|
Li M, Ni QY, Yu SY. Integration of single-cell transcriptomics and epigenetic analysis reveals enhancer-controlled TIMP1 as a regulator of ferroptosis in colorectal cancer. Genes Genomics 2024; 46:121-133. [PMID: 38032469 DOI: 10.1007/s13258-023-01474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Ferroptosis is an iron-dependent non-apoptotic programmed cell death. However, the regulatory mechanism of ferroptosis in colorectal cancer (CRC) is still unclear. OBJECTIVE The aim of this study was to investigate the role and mechanism of enhancer-controlled genes in ferroptosis in CRC. METHODS Dimensionality reduction and differentially expressed genes (DEGs) identification were conducted using Seurat algorithm based on single-cell RNA sequencing (scRNA-seq) data from the GSE200997 dataset. Ferroptosis-related pathway enrichment analysis was performed using the FerrDb V2 database. Enhancers were identified using HOMER algorithm based on H3K27ac ChIP-seq data from the GSE166254 dataset. Kaplan-Meier Plotter online tool was used to analyze prognosis and gene expression correlation. Transcription factors were predicted using the transcription factor affinity prediction web tool. The binding of enhancer to transcription factor and H3K27ac enrichment were detected by ChIP-qPCR. RSL3 was used to induce ferroptosis in CRC cells. Gene transcription was detected by qRT-PCR. Cell proliferation was detected by CCK8 assay. RESULTS Nine cell clusters including T cells, natural killer cells, macrophages, mast cells, epithelial cells, fibroblasts, goblet cells, B cells and dendritic cells were identified in CRC and normal colonic tissue samples. Compared to normal colonic tissue-derived epithelial cells, 1075 DEGs were screened in CRC tissue-derived epithelial cells. Ferroptosis-related pathway enrichment suggested that DEGs were associated with the regulation of ferroptosis. DPEP1, ETV4, CEBPG, TIMP1, DUOX2 and LCN2 were identified as the significantly upregulated genes enriched in the "ferroptosis regulator" term, and their H3K27ac signals were significantly higher in CRC tissues than in normal colonic tissues. Of these, only the expression of TIMP1 predicted a poor prognosis of CRC patients. Transcription factor SPI1 drove TIMP1 transcription by binding to its enhancer. Overexpression of TIMP1 significantly promoted the resistance to ferroptosis induced by RSL3 in CRC cells, which was partially restored by SPI1 knockdown. CONCLUSION Transcription of TIMP1 was driven by transcription factor SPI1 in combination with its enhancer, consequently promoting CRC cells against ferroptosis. The SPI1/TIMP1 axis confers ferroptosis resistance in CRC, and thus has the potential to be the molecular targets for CRC treatment.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Qian-Yang Ni
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Su-Yang Yu
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
29
|
Johnson MR, Mallarino R. Genome-Wide Profiling of Cis-regulatory Elements in Mammalian Skin. Methods Mol Biol 2024; 2805:127-135. [PMID: 39008178 DOI: 10.1007/978-1-0716-3854-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The modulation of cis-regulatory elements (e.g., enhancers and promoters) is a major mechanism by which gene expression can be controlled in a temporal and spatially restricted manner. However, methods for both identifying these elements and inferring their activity are limited and often require a substantial investment of time, money, and resources. Here, using mammalian skin as a model, we demonstrate a streamlined protocol by which these hurdles can be overcome using a novel chromatin profiling technique (CUT&RUN) to map histone modifications genome-wide. This protocol can be used to map the location and activity of putative cis-regulatory elements, providing mechanistic insight into how differential gene expression is controlled in mammalian tissues.
Collapse
Affiliation(s)
- Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
30
|
Syed S, Lim B. Multi-labeling Live Imaging to Quantify Gene Expression Dynamics During Drosophila Embryonic Development. Methods Mol Biol 2024; 2805:137-151. [PMID: 39008179 DOI: 10.1007/978-1-0716-3854-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.
Collapse
Affiliation(s)
- Sahla Syed
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Titus KR, Simandi Z, Chandrashekar H, Paquet D, Phillips-Cremins JE. Cell type-specific loops linked to RNA polymerase II elongation in human neural differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569731. [PMID: 38106199 PMCID: PMC10723365 DOI: 10.1101/2023.12.04.569731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitors (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNAPolII initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops, promoter-promoter loops, or unlooped. Genes transitioning from repression to RNAPolII initiation exhibit slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNAPolII-mediated elongation during neural cell fate transitions.
Collapse
Affiliation(s)
- Katelyn R Titus
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Zoltan Simandi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Harshini Chandrashekar
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Dominik Paquet
- Institute for Stroke and Dementia Research, Ludwig Maximilians Universitat, Munich, Germany
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
32
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Tan Y, Yan X, Sun J, Wan J, Li X, Huang Y, Li L, Niu L, Hou C. Genome-wide enhancer identification by massively parallel reporter assay in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:234-250. [PMID: 37387536 DOI: 10.1111/tpj.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Enhancers are critical cis-regulatory elements controlling gene expression during cell development and differentiation. However, genome-wide enhancer characterization has been challenging due to the lack of a well-defined relationship between enhancers and genes. Function-based methods are the gold standard for determining the biological function of cis-regulatory elements; however, these methods have not been widely applied to plants. Here, we applied a massively parallel reporter assay on Arabidopsis to measure enhancer activities across the genome. We identified 4327 enhancers with various combinations of epigenetic modifications distinctively different from animal enhancers. Furthermore, we showed that enhancers differ from promoters in their preference for transcription factors. Although some enhancers are not conserved and overlap with transposable elements forming clusters, enhancers are generally conserved across thousand Arabidopsis accessions, suggesting they are selected under evolution pressure and could play critical roles in the regulation of important genes. Moreover, comparison analysis reveals that enhancers identified by different strategies do not overlap, suggesting these methods are complementary in nature. In sum, we systematically investigated the features of enhancers identified by functional assay in A. thaliana, which lays the foundation for further investigation into enhancers' functional mechanisms in plants.
Collapse
Affiliation(s)
- Yongjun Tan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohao Yan
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jialei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Wan
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxin Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingzhang Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Li
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longjian Niu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunhui Hou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
34
|
Bragdon MDJ, Patel N, Chuang J, Levien E, Bashor CJ, Khalil AS. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 2023; 186:3810-3825.e18. [PMID: 37552983 PMCID: PMC10528910 DOI: 10.1016/j.cell.2023.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.
Collapse
Affiliation(s)
- Meghan D J Bragdon
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Nikit Patel
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James Chuang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ethan Levien
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Yan M, Tsukasaki M, Muro R, Ando Y, Nakamura K, Komatsu N, Nitta T, Okamura T, Okamoto K, Takayanagi H. Identification of an intronic enhancer regulating RANKL expression in osteocytic cells. Bone Res 2023; 11:43. [PMID: 37563119 PMCID: PMC10415388 DOI: 10.1038/s41413-023-00277-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
The bony skeleton is continuously renewed throughout adult life by the bone remodeling process, in which old or damaged bone is removed by osteoclasts via largely unknown mechanisms. Osteocytes regulate bone remodeling by producing the osteoclast differentiation factor RANKL (encoded by the TNFSF11 gene). However, the precise mechanisms underlying RANKL expression in osteocytes are still elusive. Here, we explored the epigenomic landscape of osteocytic cells and identified a hitherto-undescribed osteocytic cell-specific intronic enhancer in the TNFSF11 gene locus. Bioinformatics analyses showed that transcription factors involved in cell death and senescence act on this intronic enhancer region. Single-cell transcriptomic data analysis demonstrated that cell death signaling increased RANKL expression in osteocytic cells. Genetic deletion of the intronic enhancer led to a high-bone-mass phenotype with decreased levels of RANKL in osteocytic cells and osteoclastogenesis in the adult stage, while RANKL expression was not affected in osteoblasts or lymphocytes. These data suggest that osteocytes may utilize a specialized regulatory element to facilitate osteoclast formation at the bone surface to be resorbed by linking signals from cellular senescence/death and RANKL expression.
Collapse
Affiliation(s)
- Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Microbiology, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Nakamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
37
|
Phan LT, Oh C, He T, Manavalan B. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome. Proteomics 2023; 23:e2200409. [PMID: 37021401 DOI: 10.1002/pmic.202200409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.
Collapse
Affiliation(s)
- Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
38
|
Brückner DB, Chen H, Barinov L, Zoller B, Gregor T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. Science 2023; 380:1357-1362. [PMID: 37384691 PMCID: PMC10439308 DOI: 10.1126/science.adf5568] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the pairwise motion of distal chromosomal elements such as enhancers and promoters is essential and necessitates dynamic fluidity. Here, we used a live-imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output while systematically varying the genomic separation between these two DNA loci. Our analysis reveals the coexistence of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation leading to long-ranged correlations. Thus, encounter times of DNA loci are much less dependent on genomic distance than predicted by existing polymer models, with potential consequences for eukaryotic gene expression.
Collapse
Affiliation(s)
- David B. Brückner
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hongtao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lev Barinov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| |
Collapse
|
39
|
Ziyani C, Delaneau O, Ribeiro DM. Multimodal single cell analysis infers widespread enhancer co-activity in a lymphoblastoid cell line. Commun Biol 2023; 6:563. [PMID: 37237005 PMCID: PMC10219981 DOI: 10.1038/s42003-023-04954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-coding regulatory elements such as enhancers are key in controlling the cell-type specificity and spatio-temporal expression of genes. To drive stable and precise gene transcription robust to genetic variation and environmental stress, genes are often targeted by multiple enhancers with redundant action. However, it is unknown whether enhancers targeting the same gene display simultaneous activity or whether some enhancer combinations are more often co-active than others. Here, we take advantage of recent developments in single cell technology that permit assessing chromatin status (scATAC-seq) and gene expression (scRNA-seq) in the same single cells to correlate gene expression to the activity of multiple enhancers. Measuring activity patterns across 24,844 human lymphoblastoid single cells, we find that the majority of enhancers associated with the same gene display significant correlation in their chromatin profiles. For 6944 expressed genes associated with enhancers, we predict 89,885 significant enhancer-enhancer associations between nearby enhancers. We find that associated enhancers share similar transcription factor binding profiles and that gene essentiality is linked with higher enhancer co-activity. We provide a set of predicted enhancer-enhancer associations based on correlation derived from a single cell line, which can be further investigated for functional relevance.
Collapse
Affiliation(s)
- Chaymae Ziyani
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
40
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Larios MFR, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540063. [PMID: 37214934 PMCID: PMC10197647 DOI: 10.1101/2023.05.09.540063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. Here we show that turnover of CpG islands (CGIs), which contribute to enhancer activation, is broadly associated with changes in enhancer activity across mammals, including humans. We integrated maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and found that CGI content in enhancers was strongly associated with increased histone modification levels. CGIs showed widespread turnover across species and species-specific CGIs were strongly enriched for enhancers exhibiting species-specific activity across all tissues and species we examined. Genes associated with enhancers with species-specific CGIs showed concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A. Kocher
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | - Emily V. Dutrow
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
- Present address: Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | - Kristina M. Yim
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P. Noonan
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
41
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
42
|
Khatoon H, Raza RZ, Saleem S, Batool F, Arshad S, Abrar M, Ali S, Hussain I, Shubin NH, Abbasi AA. Evolutionary relevance of single nucleotide variants within the forebrain exclusive human accelerated enhancer regions. BMC Mol Cell Biol 2023; 24:13. [PMID: 36991330 PMCID: PMC10053400 DOI: 10.1186/s12860-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
Results
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
Conclusion
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might.
have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
Methods
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
Collapse
|
43
|
Alamos S, Reimer A, Westrum C, Turner MA, Talledo P, Zhao J, Luu E, Garcia HG. Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Syst 2023; 14:220-236.e3. [PMID: 36696901 PMCID: PMC10125799 DOI: 10.1016/j.cels.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Clay Westrum
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Meghan A Turner
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Paul Talledo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Luu
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA; Department of Physics, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
44
|
Chen X, Liu Z, Lou C, Guan Y, Ouyang Q, Xiang Y. Improving cooperativity of transcription activators by oligomerization domains in mammalian cells. Synth Syst Biotechnol 2023; 8:114-120. [PMID: 36605704 PMCID: PMC9804245 DOI: 10.1016/j.synbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cooperative activation is critical for the applications of synthetic biology in mammalian cells. In this study, we have developed cooperative transcription factor by fusing oligomerization domain in mammalian cells. Firstly, we demonstrated that two oligomerized domains (CI434 and CI) successfully improved transcription factor cooperativity in bacterial cells but failed to increase cooperativity in mammalian cells, possibly because the additional mammalian activation domain disrupted their oligomerization capability. Therefore, we chose a different type of oligomerized domain (CarHC), whose ability to oligomerize is not dependent on its C-terminal domains, to fuse with a transcription factor (RpaR) and activation domain (VTR3), forming a potential cooperative transcription activator RpaR-CarH-VTR3 for mammalian regulatory systems. Compared with RpaR-VTR3, the cooperativity of RpaR-CarH-VTR3 was significantly improved with higher Hill coefficient and a narrower input range in the inducible switch system in mammalian cells. Moreover, a mathematical model based on statistical mechanics model was developed and the simulation results supported the hypothesis that the tetramer of the CarH domain in mammalian cells was the reason for the cooperative capacity of RpaR-CarH-VTR3.
Collapse
Affiliation(s)
- Xinmao Chen
- School of Physics, Peking University, Beijing, 100871, China
| | - Ziming Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Guan
- School of Physics, Peking University, Beijing, 100871, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100871, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing, 100871, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
45
|
Reiter F, de Almeida BP, Stark A. Enhancers display constrained sequence flexibility and context-specific modulation of motif function. Genome Res 2023; 33:346-358. [PMID: 36941077 PMCID: PMC10078294 DOI: 10.1101/gr.277246.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023]
Abstract
The information about when and where each gene is to be expressed is mainly encoded in the DNA sequence of enhancers, sequence elements that comprise binding sites (motifs) for different transcription factors (TFs). Most of the research on enhancer sequences has been focused on TF motif presence, whereas the enhancer syntax, that is, the flexibility of important motif positions and how the sequence context modulates the activity of TF motifs, remains poorly understood. Here, we explore the rules of enhancer syntax by a two-pronged approach in Drosophila melanogaster S2 cells: we (1) replace important TF motifs by all possible 65,536 eight-nucleotide-long sequences and (2) paste eight important TF motif types into 763 positions within 496 enhancers. These complementary strategies reveal that enhancers display constrained sequence flexibility and the context-specific modulation of motif function. Important motifs can be functionally replaced by hundreds of sequences constituting several distinct motif types, but these are only a fraction of all possible sequences and motif types. Moreover, TF motifs contribute with different intrinsic strengths that are strongly modulated by the enhancer sequence context (the flanking sequence, the presence and diversity of other motif types, and the distance between motifs), such that not all motif types can work in all positions. The context-specific modulation of motif function is also a hallmark of human enhancers, as we demonstrate experimentally. Overall, these two general principles of enhancer sequences are important to understand and predict enhancer function during development, evolution, and in disease.
Collapse
Affiliation(s)
- Franziska Reiter
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology, Vienna BioCenter, Campus-Vienna-BioCenter 1, 1030 Vienna, Austria;
- Medical University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| |
Collapse
|
46
|
Song BP, Ragsac MF, Tellez K, Jindal GA, Grudzien JL, Le SH, Farley EK. Diverse logics and grammar encode notochord enhancers. Cell Rep 2023; 42:112052. [PMID: 36729834 PMCID: PMC10387507 DOI: 10.1016/j.celrep.2023.112052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
The notochord is a defining feature of all chordates. The transcription factors Zic and ETS regulate enhancer activity within the notochord. We conduct high-throughput screens of genomic elements within developing Ciona embryos to understand how Zic and ETS sites encode notochord activity. Our screen discovers an enhancer located near Lama, a gene critical for notochord development. Reversing the orientation of an ETS site within this enhancer abolishes expression, indicating that enhancer grammar is critical for notochord activity. Similarly organized clusters of Zic and ETS sites occur within mouse and human Lama1 introns. Within a Brachyury (Bra) enhancer, FoxA and Bra, in combination with Zic and ETS binding sites, are necessary and sufficient for notochord expression. This binding site logic also occurs within other Ciona and vertebrate Bra enhancers. Collectively, this study uncovers the importance of grammar within notochord enhancers and discovers signatures of enhancer logic and grammar conserved across chordates.
Collapse
Affiliation(s)
- Benjamin P Song
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Krissie Tellez
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Granton A Jindal
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
48
|
Mohammed Ismail W, Mazzone A, Ghiraldini FG, Kaur J, Bains M, Munankarmy A, Bagwell MS, Safgren SL, Moore-Weiss J, Buciuc M, Shimp L, Leach KA, Duarte LF, Nagi CS, Carcamo S, Chung CY, Hasson D, Dadgar N, Zhong J, Lee JH, Couch FJ, Revzin A, Ordog T, Bernstein E, Gaspar-Maia A. MacroH2A histone variants modulate enhancer activity to repress oncogenic programs and cellular reprogramming. Commun Biol 2023; 6:215. [PMID: 36823213 PMCID: PMC9950461 DOI: 10.1038/s42003-023-04571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Considerable efforts have been made to characterize active enhancer elements, which can be annotated by accessible chromatin and H3 lysine 27 acetylation (H3K27ac). However, apart from poised enhancers that are observed in early stages of development and putative silencers, the functional significance of cis-regulatory elements lacking H3K27ac is poorly understood. Here we show that macroH2A histone variants mark a subset of enhancers in normal and cancer cells, which we coined 'macro-Bound Enhancers', that modulate enhancer activity. We find macroH2A variants localized at enhancer elements that are devoid of H3K27ac in a cell type-specific manner, indicating a role for macroH2A at inactive enhancers to maintain cell identity. In following, reactivation of macro-bound enhancers is associated with oncogenic programs in breast cancer and their repressive role is correlated with the activity of macroH2A2 as a negative regulator of BRD4 chromatin occupancy. Finally, through single cell epigenomic profiling of normal mammary stem cells derived from mice, we show that macroH2A deficiency facilitates increased activity of transcription factors associated with stem cell activity.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jagneet Kaur
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Manvir Bains
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amik Munankarmy
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Monique S Bagwell
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie L Safgren
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - John Moore-Weiss
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Marina Buciuc
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Lynzie Shimp
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Kelsey A Leach
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Luis F Duarte
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandandeep S Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neda Dadgar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre Gaspar-Maia
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
49
|
Hamamoto K, Umemura Y, Makino S, Fukaya T. Dynamic interplay between non-coding enhancer transcription and gene activity in development. Nat Commun 2023; 14:826. [PMID: 36805453 PMCID: PMC9941499 DOI: 10.1038/s41467-023-36485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Non-coding transcription at the intergenic regulatory regions is a prevalent feature of metazoan genomes, but its biological function remains uncertain. Here, we devise a live-imaging system that permits simultaneous visualization of gene activity along with intergenic non-coding transcription at single-cell resolution in Drosophila. Quantitative image analysis reveals that elongation of RNA polymerase II across the internal core region of enhancers leads to suppression of transcriptional bursting from linked genes. Super-resolution imaging and genome-editing analysis further demonstrate that enhancer transcription antagonizes molecular crowding of transcription factors, thereby interrupting the formation of a transcription hub at the gene locus. We also show that a certain class of developmental enhancers are structurally optimized to co-activate gene transcription together with non-coding transcription effectively. We suggest that enhancer function is flexibly tunable through the modulation of hub formation via surrounding non-coding transcription during development.
Collapse
Affiliation(s)
- Kota Hamamoto
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Umemura
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shiho Makino
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Ling L, Mühling B, Jaenichen R, Gompel N. Increased chromatin accessibility promotes the evolution of a transcriptional silencer in Drosophila. SCIENCE ADVANCES 2023; 9:eade6529. [PMID: 36800429 PMCID: PMC9937571 DOI: 10.1126/sciadv.ade6529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The loss of discrete morphological traits, the most common evolutionary transition, is typically driven by changes in developmental gene expression. Mutations accumulating in regulatory elements of these genes can disrupt DNA binding sites for transcription factors patterning their spatial expression, or delete entire enhancers. Regulatory elements, however, may be silenced through changes in chromatin accessibility or the emergence of repressive elements. Here, we show that increased chromatin accessibility at the gene yellow, combined with the gain of a repressor site, underlies the loss of a wing spot pigmentation pattern in a Drosophila species. The gain of accessibility of this repressive element is regulated by E93, a transcription factor governing the progress of metamorphosis. This convoluted evolutionary scenario contrasts with the parsimonious mutational paths generally envisioned and often documented for morphological losses. It illustrates how evolutionary changes in chromatin accessibility may directly contribute to morphological diversification.
Collapse
|