1
|
Zhang C, Zhou H, He K, Xiao Y, Chen M, Zuo Z, Shu R, Geng Y, Jin S, Mei Y, He B, Li F. The interaction of Serratia bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge. Proc Natl Acad Sci U S A 2025; 122:e2417873121. [PMID: 39793111 PMCID: PMC11745345 DOI: 10.1073/pnas.2417873121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
The harlequin ladybird, Harmonia axyridis, is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown. In this study, a feeding assay revealed that while harlequin ladybirds survive feeding on seven-spotted ladybird eggs, the reverse is not true. However, seven-spotted ladybirds that had fed on harlequin ladybird eggs were able to survive the feeding assay when treated with penicillin. Microbiome sequencing and whole genome analysis of harlequin ladybird eggs revealed a newly discovered pathogenic bacterium strain named Serratia harmoniae. The median lethal concentration (LC50) of S. harmoniae was found to be 2.1 × 105 times higher in the harlequin ladybird compared to the seven-spotted ladybird. The high tolerance observed in harlequin ladybirds was attributed to harmonine, specifically produced in the fat body of this species. Silencing three key genes in the harmonine biosynthesis pathway-Spidey, Sca2, and Desat-reduced the production of the compound, leading to increased S. harmoniae levels and higher mortality. Treating RNAi-altered individuals with penicillin reversed this effect, successfully reducing S. harmoniae presence and increasing insect survival. Taken together, these findings demonstrate that S. harmoniae, a newly identified pathogenic bacterium carried by harlequin ladybirds, interacts with harmonine to confer an interspecies competitive advantage over native ladybird species in nonnative regions.
Collapse
Affiliation(s)
- Chaowei Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Hang Zhou
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Kang He
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yiqi Xiao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Mengyao Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Zhangqi Zuo
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Runguo Shu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, China
| | - Yuhang Geng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shuo Jin
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yang Mei
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Bingbing He
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Fei Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, China
| |
Collapse
|
2
|
Jarne P. The Anthropocene and the biodiversity crisis: an eco-evolutionary perspective. C R Biol 2025; 348:1-20. [PMID: 39780736 DOI: 10.5802/crbiol.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
A major facet of the Anthropocene is global change, such as climate change, caused by human activities, which drastically affect biodiversity with all-scale declines and homogenization of biotas. This crisis does not only affect the ecological dynamics of biodiversity, but also its evolutionary dynamics, including genetic diversity, an aspect that is generally neglected. My tenet is therefore to consider biodiversity dynamics from an eco-evolutionary perspective, i.e. explicitly accounting for the possibility of rapid evolution and its feedback on ecological processes and the environment. I represent the impact of the various avatars of global change in a temporal perspective, from pre-industrial time to the near future, allowing to visualize their dynamics and to set desired values that should not be trespassed for a given time (e.g., +2 °C for 50 years from now). After presenting the impact of various stressors (e.g., climate change) on biodiversity, this representation is used to heuristically show the relevance of an eco-evolutionary perspective: (i) to analyze how biodiversity will respond to the stressors, for example by seeking out more suitable conditions or adapting to new conditions; (ii) to serve in predictive exercises to envision future dynamics (decades to centuries) under stressor impact; (iii) to propose nature-based solutions to the crisis. Significant obstacles stand in the way of the development of such an approach, in particular the general lack of interest in intraspecific diversity, and perhaps more generally a lack of understanding that, we, humans, are only a modest part of biodiversity.
Collapse
|
3
|
Leung K, Beukeboom LW, Zwaan BJ. Inbreeding and Outbreeding Depression in Wild and Captive Insect Populations. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:271-292. [PMID: 39874143 DOI: 10.1146/annurev-ento-022924-020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to (a) more comprehensively account for important variables in insect inbreeding and outbreeding depression, (b) standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and (c) outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Hoffman JI, Vendrami DLJ, Hench K, Chen RS, Stoffel MA, Kardos M, Amos W, Kalinowski J, Rickert D, Köhrer K, Wachtmeister T, Goebel ME, Bonin CA, Gulland FMD, Dasmahapatra KK. Genomic and fitness consequences of a near-extinction event in the northern elephant seal. Nat Ecol Evol 2024; 8:2309-2324. [PMID: 39333394 PMCID: PMC11618080 DOI: 10.1038/s41559-024-02533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species' unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0-7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks.
Collapse
Affiliation(s)
- Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- British Antarctic Survey, Cambridge, UK.
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany.
| | - David L J Vendrami
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
| | - Kosmas Hench
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rebecca S Chen
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Martin A Stoffel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Alan Turing Institute, British Library, London, UK
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jörn Kalinowski
- Department of Microbial Genomics and Biotechnology, CeBiTec, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Rickert
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mike E Goebel
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Carolina A Bonin
- Department of Marine and Environmental Sciences, Hampton University, Hampton, VA, USA
| | - Frances M D Gulland
- Karen C. Drayer Wildlife Health Center, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
5
|
Vaughan AL, Dhami MK. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Mol Ecol 2024:e17583. [PMID: 39545269 DOI: 10.1111/mec.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
When a species invades a novel environment, it must bridge the environment-phenotype mismatch in its new range to persist. Contemporary invasion biology research has focused on the role that trait variation and adaptation, and their underlying genomic factors, play in a species' adaptive potential, and thus facilitating invasion. Empirical studies have provided valuable insights into phenotypes that persist and arise in novel environments, coupled with 'omics tools that further the understanding of the contributions of genomic architecture in species establishment. Particularly, the use of transcriptomics to explore the role of plasticity in the initial stages of an invasion is growing. Here, we assess the role of various mechanisms relating to regulation and functional adaptation (often measured via the transcriptome) that support trait-specific plasticity in invasive species, allowing phenotypic variability without directly altering genomic diversity. First, we present a comprehensive review of the studies utilising transcriptomics in invasion biology. Second, we collate the evidence for and against the role of a range of regulatory processes in contributing to invasive species plasticity. Finally, we pose open questions in invasion biology where the use of transcriptome data may be valuable, as well as discuss the methodological limitations.
Collapse
Affiliation(s)
- Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Batova ON, Markov NI, Titov SV, Tchabovsky AV. Does the Colonizing Population Exhibit a Reduced Genetic Diversity and Allele Surfing? A Case Study of the Midday Gerbil ( Meriones meridianus Pallas) Expanding Its Range. Animals (Basel) 2024; 14:2720. [PMID: 39335309 PMCID: PMC11429244 DOI: 10.3390/ani14182720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Colonizing populations at the leading edge of range expansion are expected to have a reduced genetic diversity and strong genetic structure caused by genetic drift and allele surfing. Until now, few studies have found the genetic signatures of allele surfing in expanding wild populations. Using mtDNA markers, we studied the genetic structure of the population of midday gerbils (Meriones meridianus) expanding their range to the west in Kalmykia (southern Russia) following the new cycle of desertification, re-colonizing areas abandoned in the mid-2010s. In the colonizing population, we found a reduced genetic diversity, the redistribution of haplotype frequencies-in particular, in favor of variants rare in the core population-and strong genetic structure combined with strong differentiation from the core population-patterns suggestive of allele surfing on the wave of expansion. In terms of genetic diversity and spatial structuration, the western edge population sampled in 2008 before its collapse in 2017 occupies the intermediate position between the current colonizing and core population. This suggests that reduced genetic diversity and increased genetic differentiation are general features of marginal populations, enhanced by the founder and allele-surfing effects at the leading edges of expanding ranges.
Collapse
Affiliation(s)
- Olga N Batova
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russia
| | - Nikolay I Markov
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russia
- Laboratory for Game Animals Ecology, Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 202a 8 Marta St., 620142 Ekaterinburg, Russia
| | - Sergey V Titov
- Department of Zoology and Ecology, Penza State University, 40 Krasnaya St., 440026 Penza, Russia
| | - Andrey V Tchabovsky
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russia
| |
Collapse
|
7
|
Croft L, Matheson P, Butterworth NJ, McGaughran A. Fitness consequences of population bottlenecks in an invasive blowfly. Mol Ecol 2024; 33:e17492. [PMID: 39136044 DOI: 10.1111/mec.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Li H, Liang X, Peng Y, Liu Z, Zhang L, Wang P, Jin M, Wilson K, Garvin MR, Wu K, Xiao Y. Novel Mito-Nuclear Combinations Facilitate the Global Invasion of a Major Agricultural Crop Pest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305353. [PMID: 38965806 PMCID: PMC11425838 DOI: 10.1002/advs.202305353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Indexed: 07/06/2024]
Abstract
A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37830, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
9
|
Balogh CM, Barrett SCH. An experimental field study of inbreeding depression in an outcrossing invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1393294. [PMID: 39267999 PMCID: PMC11390429 DOI: 10.3389/fpls.2024.1393294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Inbreeding depression is likely to play an important role during biological invasion. But relatively few studies have investigated the fitness of selfed and outcrossed offspring in self-incompatible invasive plants in natural environments in their introduced range. Moreover, the majority of studies on inbreeding depression have investigated self-compatible species with mixed mating, and less is known about the intensity of inbreeding depression in outcrossing self-incompatible species. Here, we address these questions experimentally by comparing selfed and outcrossed progeny of purple loosestrife (Lythrum salicaria) over four growing seasons, including three under field conditions in a freshwater marsh in southern Ontario, Canada, a region where L. salicaria is highly invasive. The tristylous mating system of L. salicaria involves disassortative mating among floral morphs enforced by trimorphic incompatibility. However, owing to partial incompatibility, self-fertilized seed can be obtained by manual self-pollination thus facilitating comparisons of selfed and outcrossed progeny. We compared progeny with and without intraspecific competition from selfed or outcrossed neighbours and examined the influence of breeding treatment and competition on fitness correlates by measuring a range of life-history traits including: proportion of seeds germinating, days to germination, survival, proportion of plants flowering, time to flowering, vegetative mass, and inflorescence number and mass. We analysed data for each trait using functions from time series estimates of growth and two multiplicative estimates of fitness. We detected varying intensities of inbreeding depression for several traits in three of the four years of the experiment, including inflorescence mass and reproductive output. Cumulative inbreeding depression over four years averaged δ = 0.48 and 0.68, depending on the method used to estimate multiplicative fitness. The competition treatments did not significantly affect plant performance and the magnitude of inbreeding depression. Given the primarily outcrossing mating system of L. salicaria populations, the detection of inbreeding depression for several key life-history traits was as predicted by theory. Our results suggests that biparental inbreeding and low selfing in colonizing populations may have significant effects on demographic parameters such as population growth.
Collapse
Affiliation(s)
- Christopher M Balogh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Elsensohn JE, Wolford S, Tabb A, Leskey T. Experimental evidence supports the ability of spotted lanternfly to hitchhike on vehicle exteriors as a mechanism for anthropogenic dispersal. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240493. [PMID: 39076365 PMCID: PMC11285766 DOI: 10.1098/rsos.240493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024]
Abstract
Historically, anecdotal observations support the likelihood of human-assisted invasive insect dispersal to new environments. No previous studies have investigated the ability of insects to remain attached to moving vehicles; however, such information is critical for prioritizing research, mitigation activities and understanding anthropogenic effects on biotic communities. Lycorma delicatula (White), spotted lanternfly (SLF), an invasive insect whose range is currently expanding throughout the United States, is commonly observed in urban settings and near transportation hubs. We developed a novel method to test SLF's ability to remain on vehicle surfaces including bonnet, nose wing, windscreen, wipers and scuttle panel using laminar wind flow from 0 to 100 ± 5 km h-1. We found all mobile life stages (nymphs and adults) could remain on the vehicle up to 100 km h-1. First instar nymphs and early season adults remained attached at significantly higher wind speeds than other stages. A brief acclimatization period prior to wind delivery increased attachment duration for all life stages except later season adults. The importance of outliers in the success of invasive species is well established. Given these results, any hitchhiking SLF could potentially establish incipient populations. This methodology will be beneficial for exploring human-assisted dispersal of other invasive arthropods.
Collapse
Affiliation(s)
| | - Scott Wolford
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Amy Tabb
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Tracy Leskey
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
11
|
Camus L, Gautier M, Boitard S. Predicting species invasiveness with genomic data: Is genomic offset related to establishment probability? Evol Appl 2024; 17:e13709. [PMID: 38884022 PMCID: PMC11178484 DOI: 10.1111/eva.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/18/2024] Open
Abstract
Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species Bactrocera tryoni, a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.
Collapse
Affiliation(s)
- Louise Camus
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Simon Boitard
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| |
Collapse
|
12
|
Nota A, Bertolino S, Tiralongo F, Santovito A. Adaptation to bioinvasions: When does it occur? GLOBAL CHANGE BIOLOGY 2024; 30:e17362. [PMID: 38822565 DOI: 10.1111/gcb.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.
Collapse
Affiliation(s)
- Alessandro Nota
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Francesco Tiralongo
- Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Catania, Italy
- National Research Council, Institute of Marine Biological Resources and Biotechnologies, Ancona, Italy
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
14
|
Olazcuaga L, Lincke B, DeLacey S, Durkee LF, Melbourne BA, Hufbauer RA. Population demographic history and evolutionary rescue: Influence of a bottleneck event. Evol Appl 2023; 16:1483-1495. [PMID: 37622091 PMCID: PMC10445088 DOI: 10.1111/eva.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Rapid environmental change presents a significant challenge to the persistence of natural populations. Rapid adaptation that increases population growth, enabling populations that declined following severe environmental change to grow and avoid extinction, is called evolutionary rescue. Numerous studies have shown that evolutionary rescue can indeed prevent extinction. Here, we extend those results by considering the demographic history of populations. To evaluate how demographic history influences evolutionary rescue, we created 80 populations of red flour beetle, Tribolium castaneum, with three classes of demographic history: diverse populations that did not experience a bottleneck, and populations that experienced either an intermediate or a strong bottleneck. We subjected these populations to a new and challenging environment for six discrete generations and tracked extinction and population size. Populations that did not experience a bottleneck in their demographic history avoided extinction entirely, while more than 20% of populations that experienced an intermediate or strong bottleneck went extinct. Similarly, among the extant populations at the end of the experiment, adaptation increased the growth rate in the novel environment the most for populations that had not experienced a bottleneck in their history. Taken together, these results highlight the importance of considering the demographic history of populations to make useful and effective conservation decisions and management strategies for populations experiencing environmental change that pushes them toward extinction.
Collapse
Affiliation(s)
- Laure Olazcuaga
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Beatrice Lincke
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Sarah DeLacey
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Lily F. Durkee
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Brett A. Melbourne
- Department of Ecology & Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
15
|
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman A, Li B. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 2023; 21:141. [PMID: 37337183 DOI: 10.1186/s12915-023-01638-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. RESULTS Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. CONCLUSIONS Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yansong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bryce Summerhays
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Xiaohan Shu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yumary Vasquez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Hannah Vansant
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Christy Grenier
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Nicolette Gonzalez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Khyati Kansagra
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Ryan Cartmill
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | | | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Zoology & Ecology, Hungarian University of Agriculture & Life Sciences, Godollo, Hungary
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arun Sethuraman
- Department of Biological Sciences, California State University, San Marcos, CA, USA.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Gintoron CS, Mohammed MA, Sazali SN, Deka EQ, Ong KH, Shamsi IH, King PJH. Factors Affecting Pollination and Pollinators in Oil Palm Plantations: A Review with an Emphasis on the Elaeidobius kamerunicus Weevil (Coleoptera: Curculionidae). INSECTS 2023; 14:insects14050454. [PMID: 37233082 DOI: 10.3390/insects14050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Pollination is crucial for oil palm yield, and its efficiency is influenced by multiple factors, including the effectiveness of Elaeidobius kamerunicus weevils as pollinators in Southeast Asia. Weevils transfer pollen between male and female flowers, leading to successful fertilization and fruit development, which contributes to higher oil palm yields and increased production of valuable oil. Understanding and conserving the weevil population is important for sustainable oil palm cultivation practices. The interaction between pollinators, including weevils, and environmental factors is complex, involving aspects such as pollinator behavior, abundance, diversity, and effectiveness, which are influenced by weather, landscape composition, and pesticide use. Understanding these interactions is critical for promoting sustainable pollination practices, including effective pest management and maintaining optimal pollinator populations. This review discusses various abiotic and biotic factors that affect pollination and pollinators in oil palm plantations, with a particular focus on weevils as primary pollinators. Factors such as rainfall, humidity, oil palm species, temperature, endogamy, parasitic nematodes, insecticides, predators, and proximity to natural forests can impact the weevil population. Further research is recommended to fill knowledge gaps and promote sustainable pollination practices in the oil palm industry.
Collapse
Affiliation(s)
- Christharina S Gintoron
- Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
- Institute Ecosystem Science Borneo, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
- Center for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Muhamad Azmi Mohammed
- Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
| | - Siti Nurlydia Sazali
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Elvy Quatrin Deka
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Kian Huat Ong
- Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
| | - Imran Haider Shamsi
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Patricia Jie Hung King
- Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
- Institute Ecosystem Science Borneo, Universiti Putra Malaysia Bintulu Sarawak, Jalan Nyabau, Bintulu 97008, Sarawak, Malaysia
| |
Collapse
|
17
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
18
|
Global invasion history and native decline of the common starling: insights through genetics. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractFew invasive birds are as globally successful as the Common or European Starling (Sturnus vulgaris). Native to the Palearctic, the starling has been intentionally introduced to North and South America, South Africa, Australia, and the Pacific Islands, enabling us to explore species traits that may contribute to its invasion success. Coupling the rich studies of life history and more recent explorations of genomic variation among invasions, we illustrate how eco-evolutionary dynamics shape the invasion success of this long-studied and widely distributed species. Especially informative is the comparison between Australian and North American invasions, because these populations colonized novel ranges concurrently and exhibit shared signals of selection despite distinct population histories. In this review, we describe population dynamics across the native and invasive ranges, identify putatively selected traits that may influence the starling’s spread, and suggest possible determinants of starling success world-wide. We also identify future opportunities to utilize this species as a model for avian invasion research, which will inform our understanding of species’ rapid evolution in response to environmental change.
Collapse
|
19
|
Hong Y, He Y, Lin Z, Du Y, Chen S, Han L, Zhang Q, Gu S, Tu W, Hu S, Yuan Z, Liu X. Complex origins indicate a potential bridgehead introduction of an emerging amphibian invader (Eleutherodactylus planirostris) in China. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.83205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identifying the origins of established alien species is important to prevent new introductions in the future. The greenhouse frog (Eleutherodactylus planirostris), native to Cuba, the Bahamas, and the Cayman Islands, has been widely introduced to the Caribbean, North and Central America, Oceania and Asia. This invasive alien amphibian was recently reported in Shenzhen, China, but the potential introduction sources remain poorly understood. Based on phylogenetic analysis using mitochondrial 16S, COI and CYTB sequences, we detected a complex introduction origin of this species, which may be from Hong Kong, China, the Philippines, Panama and Florida, USA, all pointing to a bridgehead introduction. In addition, the nursery trade between the four countries or regions and mainland China from 2011 to 2020 was also significantly higher than other areas with less likelihood of introductions, which supported the molecular results. Our study provides the first genetic evidence of the potential sources of this emerging amphibian invader in mainland China, which may help develop alien species control strategies in the face of growing trade through globalization.
Collapse
|
20
|
Encinas‐Viso F, Morin L, Sathyamurthy R, Knerr N, Roux C, Broadhurst L. Population genomics reveal multiple introductions and admixture of
Sonchus oleraceus
in Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Francisco Encinas‐Viso
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Louise Morin
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
| | | | - Nunzio Knerr
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Camille Roux
- UMR 8198 – Evo‐Eco‐Paleo CNRS – Univ Lille Lille France
| | - Linda Broadhurst
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| |
Collapse
|
21
|
Jia H, Liu Y, Li X, Li H, Pan Y, Hu C, Zhou X, Wyckhuys KAG, Wu K. Windborne migration amplifies insect-mediated pollination services. eLife 2022; 11:76230. [PMID: 35416148 PMCID: PMC9042232 DOI: 10.7554/elife.76230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics, and their ecosystem services implications are poorly understood. In this study, we use long-term (16-year) trapping records, trajectory analysis, and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring–summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances, for example, climate change. Pollen markers and molecular gut analysis further illuminate how E. balteatus visits min. 1012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus transregional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.
Collapse
Affiliation(s)
- Huiru Jia
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liu
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xaiokang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfei Pan
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xainyong Zhou
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kongming Wu
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Villa SM, Kelly KP, Hollimon MG, Protil KJ, de Roode JC. Lack of inbreeding avoidance during mate selection in migratory monarch butterflies. Behav Processes 2022; 198:104630. [PMID: 35381312 PMCID: PMC10375862 DOI: 10.1016/j.beproc.2022.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Inbreeding is generally thought to have negative consequences for organismal health. However, despite the potential fitness effects, it remains surprisingly common among wild populations. In many cases, the complex factors that underlie mating dynamics make predicting whether individuals should or do avoid inbreeding quite challenging. One reason inbreeding may persist among species is that the likelihood of encountering relatives can be rare. Thus, even if inbreeding has severe consequences, selection to avoid mating with kin will be weak in species that are highly dispersed. Here we investigated if migratory monarch butterflies (Danaus plexippus), which are famous for their dispersal ability, actively avoid inbreeding. We found that neither female nor male monarchs choose mates based on relatedness. These results support the hypothesis that movement ecology can mask the deleterious effects of inbreeding and relax selection for active inbreeding avoidance behaviors. Overall, our data add to the growing list of studies showing that inbreeding avoidance is not the behavioral "default" for most species. We also highlight the implications that inbreeding may have on the declining populations of this iconic butterfly.
Collapse
|
23
|
Nagoshi RN, Koffi D, Agboka K, Adjevi AKM, Meagher RL, Goergen G. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS One 2021; 16:e0253528. [PMID: 34153077 PMCID: PMC8216543 DOI: 10.1371/journal.pone.0253528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The moth pest fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is now present throughout much of the Eastern Hemisphere where it poses a significant economic threat to a number of crops. Native to the Western Hemisphere, fall armyworm is one of the primary pests of corn in the Americas and periodically causes significant economic damage to sorghum, millet, cotton, rice, and forage grasses. This broad host range is in part the result of two populations historically designated as host strains (C-strain and R-strain) that differ in their host plant preferences. Reports of infestations in Africa have to date mostly been limited to the C-strain preferred crops of corn and sorghum, with little evidence of an R-strain presence. However, this could reflect a bias in monitoring intensity, with the R-strain perhaps being more prevalent in other crop systems that have not been as routinely examined for the pest. Because knowledge of whether and to what extent both strains are present is critical to assessments of crops at immediate risk, we analyzed specimens obtained from a systematic survey of pasture grass and rice fields, habitats typically preferred by the R-strain, done contemporaneously with collections from corn fields in Ghana and Togo. Substantial larval infestations were only observed in corn, while pheromone trap capture numbers were high only in corn and rice habitats. Little to no fall armyworm were found in the pasture setting. Comparisons with a meta-analysis of studies from South America identified differences in the pattern of strain-specific markers typically found in fall armyworm collected from rice habitats between the two hemispheres. Genetic tests of specimens from rice and corn area traps failed to show evidence of differential mating between strains. These results are consistent with the R-strain being rare or even absent in Africa and, at least for the Ghana-Togo area, this R-strain lack does not appear to be due to limitations in pest monitoring. The implications of these results to the crops at risk in Africa and the accuracy of existing molecular markers of strain identity are discussed.
Collapse
Affiliation(s)
- Rodney N. Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida, United States of America
- * E-mail:
| | - Djima Koffi
- African Regional Postgraduate Programme in Insect Science, University of Ghana, Accra, Ghana
- Ecole Supérieure d’Agronomie, Université de Lomé, Lomé, Togo
| | - Komi Agboka
- Ecole Supérieure d’Agronomie, Université de Lomé, Lomé, Togo
| | | | - Robert L. Meagher
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida, United States of America
| | - Georg Goergen
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| |
Collapse
|
24
|
Sherpa S, Després L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol Appl 2021; 14:1463-1484. [PMID: 34178098 PMCID: PMC8210789 DOI: 10.1111/eva.13215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Biological invasions, the establishment and spread of non-native species in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates introduction rates, while climate and land-cover changes may decrease the barriers to invasive populations spread. A detailed knowledge of the invasion history, including assessing source populations, routes of spread, number of independent introductions, and the effects of genetic bottlenecks and admixture on the establishment success, adaptive potential, and further spread, is crucial from an applied perspective to mitigate socioeconomic impacts of invasive species, as well as for addressing fundamental questions on the evolutionary dynamics of the invasion process. Recent advances in genomics together with the development of geographic information systems provide unprecedented large genetic and environmental datasets at global and local scales to link population genomics, landscape ecology, and species distribution modeling into a common framework to study the invasion process. Although the factors underlying population invasiveness have been extensively reviewed, analytical methods currently available to optimally combine molecular and environmental data for inferring invasive population demographic parameters and predicting further spreading are still under development. In this review, we focus on the few recent insect invasion studies that combine different datasets and approaches to show how integrating genetic, observational, ecological, and environmental data pave the way to a more integrative biological invasion science. We provide guidelines to study the evolutionary dynamics of invasions at each step of the invasion process, and conclude on the benefits of including all types of information and up-to-date analytical tools from different research areas into a single framework.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Laurence Després
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| |
Collapse
|
25
|
Schrieber K, Paul SC, Höche LV, Salas AC, Didszun R, Mößnang J, Müller C, Erfmeier A, Eilers EJ. Inbreeding in a dioecious plant has sex- and population origin-specific effects on its interactions with pollinators. eLife 2021; 10:65610. [PMID: 33988502 PMCID: PMC8159375 DOI: 10.7554/elife.65610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022] Open
Abstract
We study the effects of inbreeding in a dioecious plant on its interaction with pollinating insects and test whether the magnitude of such effects is shaped by plant individual sex and the evolutionary histories of plant populations. We recorded spatial, scent, colour, and rewarding flower traits as well as pollinator visitation rates in experimentally inbred and outbred, male and female Silene latifolia plants from European and North American populations differing in their evolutionary histories. We found that inbreeding specifically impairs spatial flower traits and floral scent. Our results support that sex-specific selection and gene expression may have partially magnified these inbreeding costs for females, and that divergent evolutionary histories altered the genetic architecture underlying inbreeding effects across population origins. Moreover, the results indicate that inbreeding effects on floral scent may have a huge potential to disrupt interactions among plants and nocturnal moth pollinators, which are mediated by elaborate chemical communication.
Collapse
Affiliation(s)
- Karin Schrieber
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Sarah Catherine Paul
- Bielefeld University, Faculty of Biology, Department of Chemical Ecology, Bielefeld, Germany
| | - Levke Valena Höche
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | | | - Rabi Didszun
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Jakob Mößnang
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany
| | - Caroline Müller
- Bielefeld University, Faculty of Biology, Department of Chemical Ecology, Bielefeld, Germany
| | - Alexandra Erfmeier
- Kiel University, Institute for Ecosystem Research, Geobotany, Kiel, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | |
Collapse
|
26
|
Kaya C, Generalovic TN, Ståhls G, Hauser M, Samayoa AC, Nunes-Silva CG, Roxburgh H, Wohlfahrt J, Ewusie EA, Kenis M, Hanboonsong Y, Orozco J, Carrejo N, Nakamura S, Gasco L, Rojo S, Tanga CM, Meier R, Rhode C, Picard CJ, Jiggins CD, Leiber F, Tomberlin JK, Hasselmann M, Blanckenhorn WU, Kapun M, Sandrock C. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol 2021; 19:94. [PMID: 33952283 PMCID: PMC8101212 DOI: 10.1186/s12915-021-01029-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The black soldier fly (Hermetia illucens) is the most promising insect candidate for nutrient-recycling through bioconversion of organic waste into biomass, thereby improving sustainability of protein supplies for animal feed and facilitating transition to a circular economy. Contrary to conventional livestock, genetic resources of farmed insects remain poorly characterised. We present the first comprehensive population genetic characterisation of H. illucens. Based on 15 novel microsatellite markers, we genotyped and analysed 2862 individuals from 150 wild and captive populations originating from 57 countries on seven subcontinents. RESULTS We identified 16 well-distinguished genetic clusters indicating substantial global population structure. The data revealed genetic hotspots in central South America and successive northwards range expansions within the indigenous ranges of the Americas. Colonisations and naturalisations of largely unique genetic profiles occurred on all non-native continents, either preceded by demographically independent founder events from various single sources or involving admixture scenarios. A decisive primarily admixed Polynesian bridgehead population serially colonised the entire Australasian region and its secondarily admixed descendants successively mediated invasions into Africa and Europe. Conversely, captive populations from several continents traced back to a single North American origin and exhibit considerably reduced genetic diversity, although some farmed strains carry distinct genetic signatures. We highlight genetic footprints characteristic of progressing domestication due to increasing socio-economic importance of H. illucens, and ongoing introgression between domesticated strains globally traded for large-scale farming and wild populations in some regions. CONCLUSIONS We document the dynamic population genetic history of a cosmopolitan dipteran of South American origin shaped by striking geographic patterns. These reflect both ancient dispersal routes, and stochastic and heterogeneous anthropogenic introductions during the last century leading to pronounced diversification of worldwide structure of H. illucens. Upon the recent advent of its agronomic commercialisation, however, current human-mediated translocations of the black soldier fly largely involve genetically highly uniform domesticated strains, which meanwhile threaten the genetic integrity of differentiated unique local resources through introgression. Our in-depth reconstruction of the contemporary and historical demographic trajectories of H. illucens emphasises benchmarking potential for applied future research on this emerging model of the prospering insect-livestock sector.
Collapse
Affiliation(s)
- Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | | | - Gunilla Ståhls
- Zoology unit, Finnish Museum of Natural History, Helsinki, Finland
| | - Martin Hauser
- California Department of Food and Agriculture, Plant Pest Diagnostics Branch, Sacramento, USA
| | - Ana C Samayoa
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Carlos G Nunes-Silva
- Department of Genetics and Biotechnology Graduate Program, Federal University of Amazonas, Manaus, Brazil
| | - Heather Roxburgh
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Ebenezer A Ewusie
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Yupa Hanboonsong
- Department of Entomology, Khon Kaen University, Khon Kaen, Thailand
| | - Jesus Orozco
- Department of Agricultural Sciences and Production, Zamorano University, Zamorano, Honduras
| | - Nancy Carrejo
- Department of Biology, Universidad del Valle, Santiago de Cali, Colombia
| | - Satoshi Nakamura
- Crop, Livestock and Environmental Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, University of Alicante, Alicante, Spain
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, Republic of South Africa
| | - Christine J Picard
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | - Martin Hasselmann
- Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| |
Collapse
|
27
|
Olazcuaga L, Loiseau A, Parrinello H, Paris M, Fraimout A, Guedot C, Diepenbrock LM, Kenis M, Zhang J, Chen X, Borowiec N, Facon B, Vogt H, Price DK, Vogel H, Prud'homme B, Estoup A, Gautier M. A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Mol Biol Evol 2021; 37:2369-2385. [PMID: 32302396 PMCID: PMC7403613 DOI: 10.1093/molbev/msaa098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BayPass. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level.
Collapse
Affiliation(s)
- Laure Olazcuaga
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Anne Loiseau
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Hugues Parrinello
- MGX, Biocampus Montpellier, CNRS, INSERM, Universite de Montpellier, Montpellier, France
| | | | - Antoine Fraimout
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | | | | | | | - Jinping Zhang
- MoA-CABI Joint Laboratory for Bio-Safety, Chinese Academy of Agricultural Sciences, BeiXiaGuan, Haidian Qu, China
| | - Xiao Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Nicolas Borowiec
- UMR INRAE-CNRS-Université Côte d'Azur Sophia Agrobiotech Institute, Sophia Antipolis, France
| | - Benoit Facon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, INRAE, Saint-Pierre, La Réunion, France
| | - Heidrun Vogt
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Arnaud Estoup
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Mathieu Gautier
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| |
Collapse
|
28
|
Bridgehead effect and multiple introductions shape the global invasion history of a termite. Commun Biol 2021; 4:196. [PMID: 33580197 PMCID: PMC7881189 DOI: 10.1038/s42003-021-01725-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Native to eastern Asia, the Formosan subterranean termite Coptotermes formosanus (Shiraki) is recognized as one of the 100 worst invasive pests in the world, with established populations in Japan, Hawaii and the southeastern United States. Despite its importance, the native source(s) of C. formosanus introductions and their invasive pathway out of Asia remain elusive. Using ~22,000 SNPs, we retraced the invasion history of this species through approximate Bayesian computation and assessed the consequences of the invasion on its genetic patterns and demography. We show a complex invasion history, where an initial introduction to Hawaii resulted from two distinct introduction events from eastern Asia and the Hong Kong region. The admixed Hawaiian population subsequently served as the source, through a bridgehead, for one introduction to the southeastern US. A separate introduction event from southcentral China subsequently occurred in Florida showing admixture with the first introduction. Overall, these findings further reinforce the pivotal role of bridgeheads in shaping species distributions in the Anthropocene and illustrate that the global distribution of C. formosanus has been shaped by multiple introductions out of China, which may have prevented and possibly reversed the loss of genetic diversity within its invasive range.
Collapse
|
29
|
Hofmeister NR, Werner SJ, Lovette IJ. Environmental correlates of genetic variation in the invasive European starling in North America. Mol Ecol 2021; 30:1251-1263. [PMID: 33464634 DOI: 10.1111/mec.15806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.
Collapse
Affiliation(s)
- Natalie R Hofmeister
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Scott J Werner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Chen Y, Zhao L, Teng H, Shi C, Liu Q, Zhang J, Zhang Y. Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus. Front Zool 2021; 18:6. [PMID: 33499890 PMCID: PMC7836188 DOI: 10.1186/s12983-021-00387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Invasive species bring a serious effect on local biodiversity, ecosystems, and even human health and safety. Although the genetic signatures of historical range expansions have been explored in an array of species, the genetic consequences of contemporary range expansions have received little attention, especially in mammal species. In this study, we used whole-genome sequencing to explore the rapid genetic change and introduction history of a newly invasive brown rat (Rattus norvegicus) population which invaded Xinjiang Province, China in the late 1970s. Results Bayesian clustering analysis, principal components analysis, and phylogenetic analysis all showed clear genetic differentiation between newly introduced and native rat populations. Reduced genetic diversity and high linkage disequilibrium suggested a severe population bottleneck in this colonization event. Results of TreeMix analyses revealed that the introduced rats were derived from an adjacent population in geographic region (Northwest China). Demographic analysis indicated that a severe bottleneck occurred in XJ population after the split off from the source population, and the divergence of XJ population might have started before the invasion of XJ. Moreover, we detected 42 protein-coding genes with allele frequency shifts throughout the genome for XJ rats and they were mainly associated with lipid metabolism and immunity, which could be seen as a prelude to future selection analyses in the novel environment of XJ. Conclusions This study presents the first genomic evidence on genetic differentiation which developed rapidly, and deepens the understanding of invasion history and evolutionary processes of this newly introduced rat population. This would add to our understanding of how invasive species become established and aid strategies aimed at the management of this notorious pest that have spread around the world with humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00387-z.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chengmin Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianxu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Yaohua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Leung K, Ras E, Ferguson KB, Ariëns S, Babendreier D, Bijma P, Bourtzis K, Brodeur J, Bruins MA, Centurión A, Chattington SR, Chinchilla‐Ramírez M, Dicke M, Fatouros NE, González‐Cabrera J, Groot TVM, Haye T, Knapp M, Koskinioti P, Le Hesran S, Lyrakis M, Paspati A, Pérez‐Hedo M, Plouvier WN, Schlötterer C, Stahl JM, Thiel A, Urbaneja A, van de Zande L, Verhulst EC, Vet LEM, Visser S, Werren JH, Xia S, Zwaan BJ, Magalhães S, Beukeboom LW, Pannebakker BA. Next-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc 2020; 95:1838-1854. [PMID: 32794644 PMCID: PMC7689903 DOI: 10.1111/brv.12641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Erica Ras
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Kim B. Ferguson
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Simone Ariëns
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | | | - Piter Bijma
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Jacques Brodeur
- Institut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuebecCanadaH1X 2B2
| | - Margreet A. Bruins
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Alejandra Centurión
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Sophie R. Chattington
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Milena Chinchilla‐Ramírez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Joel González‐Cabrera
- Department of Genetics, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI‐BIOTECMED)Unidad Mixta Gestión Biotecnológica de Plagas UV‐IVIA, Universitat de ValènciaDr Moliner 5046100BurjassotValenciaSpain
| | - Thomas V. M. Groot
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Tim Haye
- CABIRue des Grillons 12800DelémontSwitzerland
| | - Markus Knapp
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
- Department of Biochemistry and BiotechnologyUniversity of ThessalyBiopolis41500LarissaGreece
| | - Sophie Le Hesran
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Manolis Lyrakis
- Institut für PopulationsgenetikVetmeduni ViennaVeterinärplatz 11210ViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaVeterinärplatz 11210ViennaAustria
| | - Angeliki Paspati
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Meritxell Pérez‐Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Wouter N. Plouvier
- INRA, CNRS, UMR 1355‐7254400 Route des ChappesBP 167 06903Sophia Antipolis CedexFrance
| | | | - Judith M. Stahl
- CABIRue des Grillons 12800DelémontSwitzerland
- Kearney Agricultural Research and Extension CenterUniversity of California Berkeley9240 South Riverbend AvenueParlierCA93648USA
| | - Andra Thiel
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Louise E. M. Vet
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 106708 PBWageningenThe Netherlands
| | - Sander Visser
- Institute of EntomologyBiology Centre CASBranišovská 31370 05České BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1760370 05České BudějoviceCzech Republic
| | - John H. Werren
- Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Shuwen Xia
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental ChangesFaculdade de Ciências da Universidade de LisboaEdifício C2, Campo Grande1749‐016LisbonPortugal
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| |
Collapse
|
32
|
Wan Mohammad WNF, Soh LS, Wan Ismail WN, Veera Singham G. Infestation Pattern and Population Dynamics of the Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae) Based on Novel Microsatellites and mtDNA Markers. INSECTS 2020; 11:insects11080472. [PMID: 32722487 PMCID: PMC7469168 DOI: 10.3390/insects11080472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/03/2022]
Abstract
The tropical bed bug, Cimex hemipterus (F.), has now emerged as an important public health pest in the tropics. Despite its alarming infestation rate, the information on its population genetics remains scarce. Here, we described the infestation structure and population dynamics of C. hemipterus in the tropics, especially Malaysia and Singapore, based on eight novel microsatellites and two mtDNA markers, including cytochrome c oxidase I (COI) and 16S rRNA genes. Across populations, microsatellite data revealed high genetic diversity with significant genetic differentiation and restricted gene flow. Analysis within populations revealed evidence of a recent bottleneck. Nonetheless, elevated genetic diversity in nearly all populations suggests that the propagule in C. hemipterus populations were much diverse, distantly related (mean r = 0.373), and not significantly inbred (mean FIS = 0.24) than that observed in Cimex lectularius from previous studies. We observed seven mtDNA haplotypes across the 18 populations studied (Hd = 0.593) and several populations displayed more than one matrilineal descent. The two markers were generally congruent in suggesting a common, genetically diverse (especially at the nuclear region) source population with possibilities of multiple introductions for the bed bug populations in the present study.
Collapse
Affiliation(s)
- Wan Nur Fatanah Wan Mohammad
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
| | - Li-Shen Soh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
| | - Wan Nurainie Wan Ismail
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - G. Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
- Correspondence:
| |
Collapse
|
33
|
Sethuraman A, Janzen FJ, Weisrock DW, Obrycki JJ. Insights from Population Genomics to Enhance and Sustain Biological Control of Insect Pests. INSECTS 2020; 11:E462. [PMID: 32708047 PMCID: PMC7469154 DOI: 10.3390/insects11080462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/25/2023]
Abstract
Biological control-the use of organisms (e.g., nematodes, arthropods, bacteria, fungi, viruses) for the suppression of insect pest species-is a well-established, ecologically sound and economically profitable tactic for crop protection. This approach has served as a sustainable solution for many insect pest problems for over a century in North America. However, all pest management tactics have associated risks. Specifically, the ecological non-target effects of biological control have been examined in numerous systems. In contrast, the need to understand the short- and long-term evolutionary consequences of human-mediated manipulation of biological control organisms for importation, augmentation and conservation biological control has only recently been acknowledged. Particularly, population genomics presents exceptional opportunities to study adaptive evolution and invasiveness of pests and biological control organisms. Population genomics also provides insights into (1) long-term biological consequences of releases, (2) the ecological success and sustainability of this pest management tactic and (3) non-target effects on native species, populations and ecosystems. Recent advances in genomic sequencing technology and model-based statistical methods to analyze population-scale genomic data provide a much needed impetus for biological control programs to benefit by incorporating a consideration of evolutionary consequences. Here, we review current technology and methods in population genomics and their applications to biological control and include basic guidelines for biological control researchers for implementing genomic technology and statistical modeling.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA 50010, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
34
|
van Boheemen LA, Hodgins KA. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol Ecol 2020; 29:4102-4117. [PMID: 32246535 DOI: 10.1111/mec.15429] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Uncovering the genomic basis of repeated adaption can provide important insights into the constraints and biases that limit the diversity of genetic responses. Demographic processes such as admixture or bottlenecks affect genetic variation underlying traits experiencing selection. The impact of these processes on the genetic basis of adaptation remains, however, largely unexamined empirically. We here test repeatability in phenotypes and genotypes along parallel climatic clines within the native North American and introduced European and Australian Ambrosia artemisiifolia ranges. To do this, we combined multiple lines of evidence from phenotype-environment associations, FST -like outlier tests, genotype-environment associations and genotype-phenotype associations. We used 853 individuals grown in common garden from 84 sampling locations, targeting 19 phenotypes, >83 k SNPs and 22 environmental variables. We found that 17%-26% of loci with adaptive signatures were repeated among ranges, despite alternative demographic histories shaping genetic variation and genetic associations. Our results suggest major adaptive changes can occur on short timescales, with seemingly minimum impacts due to demographic changes linked to introduction. These patterns reveal some predictability of evolutionary change during range expansion, key in a world facing ongoing climate change, and rapid invasive spread.
Collapse
Affiliation(s)
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
35
|
Robertson DN, Sullivan TJ, Westerman EL. Lack of sibling avoidance during mate selection in the butterfly Bicyclus anynana. Behav Processes 2020; 173:104062. [PMID: 31981681 DOI: 10.1016/j.beproc.2020.104062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Species susceptible to inbreeding depression are hypothesized to combat this problem through a number of different mechanisms, including kin recognition. For species with kin recognition, it is unknown if filial recognition is innate or due to prior juvenile experience with siblings. Here, we first test for the presence of kin recognition, and then test these two hypotheses for the development of filial recognition, in the butterfly Bicyclus anynana, a species that suffers from inbreeding depression when forcibly inbred but recovers within a few generations when allowed to breed freely. We evaluate whether the rapid recovery from inbreeding depression is associated with either innate or learned filial recognition. First, we determined whether females innately prefer unrelated males over sibling males using females reared in isolation and then given a choice between an unrelated and a sibling male. Then, we determined if females raised with siblings learned to detect and avoid mating with siblings as adults when provided a choice between an unrelated male and a sibling male. Finally, we determined if females raised with siblings could learn to detect and avoid mating with familiar siblings when given a choice between familiar and unfamiliar siblings. We found that females mated randomly in all three choice combinations. Observed male behavior also did not influence female mating outcome. Our results suggest that adult females do not innately avoid or learn to avoid siblings during mate selection, and that filial detection may not be as critical to reproductive fitness in B. anynana as previously thought.
Collapse
Affiliation(s)
- Deonna N Robertson
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA
| | - Timothy J Sullivan
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA; Gloucester Marine Genomics Institute, 417 Main Street, Gloucester, MA 01930 USA
| | - Erica L Westerman
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA.
| |
Collapse
|
36
|
Varona L, Altarriba J, Moreno C, Martínez-Castillero M, Casellas J. A multivariate analysis with direct additive and inbreeding depression load effects. Genet Sel Evol 2019; 51:78. [PMID: 31878872 PMCID: PMC6933709 DOI: 10.1186/s12711-019-0521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
Background Inbreeding is caused by mating between related individuals and its most common consequence is inbreeding depression. Several studies have detected heterogeneity in inbreeding depression among founder individuals, and recently a procedure for predicting hidden inbreeding depression loads associated with founders and the Mendelian sampling of non-founders has been developed. The objectives of our study were to expand this model to predict the inbreeding loads for all individuals in the pedigree and to estimate the covariance between the inbreeding loads and the additive genetic effects for the trait of interest. We tested the proposed approach with simulated data and with two datasets of records on weaning weight from the Spanish Pirenaica and Rubia Gallega beef cattle breeds. Results The posterior estimates of the variance components with the simulated datasets did not differ significantly from the simulation parameters. In addition, the correlation between the predicted and simulated inbreeding loads were always positive and ranged from 0.27 to 0.82. The beef cattle datasets comprised 35,126 and 75,194 records on weights between 170 and 250 days of age, and pedigrees of 308,836 and 384,434 individual-sire-dam entries for the Pirenaica and Rubia Gallega breeds, respectively. The posterior mean estimates of the variance of inbreeding depression loads were 29,967.8 and 28,222.4 for the Pirenaica and Rubia Gallega breeds, respectively. They were larger than those of the additive variance (695.0 and 439.8 for Pirenaica and Rubia Gallega, respectively), because they should be understood as the variance of the inbreeding depression achieved by a fully inbred (100%) descendant. Therefore, the inbreeding loads have to be rescaled for smaller inbreeding coefficients. In addition, a strong negative correlation (− 0.43 ± 0.10) between additive effects and inbreeding loads was detected in the Pirenaica, but not in the Rubia Gallega breed. Conclusions The results of the simulation study confirmed the ability of the proposed procedure to predict inbreeding depression loads for all individuals in the populations. Furthermore, the results obtained from the two real datasets confirmed the variability in the inbreeding depression loads in both breeds and suggested a negative correlation of the inbreeding loads with the additive genetic effects in the Pirenaica breed.
Collapse
Affiliation(s)
- Luis Varona
- Departamento de Anatomía Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013, Saragossa, Spain.
| | - Juan Altarriba
- Departamento de Anatomía Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013, Saragossa, Spain
| | - Carlos Moreno
- Departamento de Anatomía Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013, Saragossa, Spain
| | - María Martínez-Castillero
- Dipartimento di Agronomia Animali, Alimenti Risorce Naturali e Ambiente, Università degli Studi di Padova, 35122, Padua, Italy
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
37
|
Tian Y, Liu X. Adaptive evolution of life history strategies related to maturation time in seasonal environment. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Legrand P, Vanderplanck M, Verheggen FJ. Comparison of the Sex Pheromone Composition of Harmonia axyridis Originating from Native and Invaded Areas. INSECTS 2019; 10:insects10100326. [PMID: 31575079 PMCID: PMC6835886 DOI: 10.3390/insects10100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
Abstract
The multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), originates from South-East Asia and is now considered as an invasive species at a worldwide scale, with populations encountered in North and South America, Africa, and Europe. Several previous studies suggested that invasive populations display different behavioral and physiological traits, leading to a better fitness than native individuals. H. axyridis sex pheromone was identified recently, but only from individuals established in Europe. In this study, we compare the composition of the female sex pheromone of H. axyridis from two populations: (i) an invasive population in North America, and (ii) a native population in South-East China. We found the females originating from both populations to release in similar proportions the same five pheromonal compounds, namely β-caryophyllene, β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. However, females from the North American strain release all five compounds in larger amount than the Chinese ones. Whether invasive individuals were selected during the process of invasion through their capacity to better call and find sexual partners remains to be confirmed.
Collapse
Affiliation(s)
- Pauline Legrand
- Chemical and Behavioural Ecology, Gembloux Agro-Bio Tech, TERRA, University of Liege, 5030 Gembloux, Belgium;
| | - Maryse Vanderplanck
- Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Francois J. Verheggen
- Chemical and Behavioural Ecology, Gembloux Agro-Bio Tech, TERRA, University of Liege, 5030 Gembloux, Belgium;
- Correspondence:
| |
Collapse
|
39
|
Inbreeding reduces long-term growth of Alpine ibex populations. Nat Ecol Evol 2019; 3:1359-1364. [PMID: 31477848 DOI: 10.1038/s41559-019-0968-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
Many studies document negative inbreeding effects on individuals, and conservation efforts to preserve rare species routinely employ strategies to reduce inbreeding. Despite this, there are few clear examples in nature of inbreeding decreasing the growth rates of populations, and the extent of population-level effects of inbreeding in the wild remains controversial. Here, we take advantage of a long-term dataset of 26 reintroduced Alpine ibex (Capra ibex ibex) populations spanning nearly 100 years to show that inbreeding substantially reduced per capita population growth rates, particularly for populations in harsher environments. Populations with high average inbreeding (F ≈ 0.2) had population growth rates reduced by 71% compared with populations with no inbreeding. Our results show that inbreeding can have long-term demographic consequences even when environmental variation is large and deleterious alleles may have been purged during bottlenecks. Thus, efforts to guard against inbreeding effects in populations of endangered species have not been misplaced.
Collapse
|
40
|
Andrianov BV, Romanov DA, Gorelova TV, Goryacheva II. Sequence Polymorphism of the Mitochondrial DNA Control Region in Native and Invasive Populations of Harmonia axyridis (Coleoptera, Coccinellidae). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 2019; 9:8311. [PMID: 31165759 PMCID: PMC6549444 DOI: 10.1038/s41598-019-44744-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
The recent discovery of fall armyworm (Spodoptera frugiperda, J.E. Smith) in Africa presents a significant threat to that continent's food security. The species exhibits several traits in the Western Hemisphere that if transferred to Africa would significantly complicate control efforts. These include a broad host range, long-distance migratory behavior, and resistance to multiple pesticides that varies by regional population. Therefore, determining which fall armyworm subpopulations are present in Africa could have important implications for risk assessments and mitigation efforts. The current study is an extension of earlier surveys that together combine the collections from 11 nations to produce the first genetic description of fall armyworm populations spanning the sub-Saharan region. Comparisons of haplotype frequencies indicate significant differences between geographically distant populations. The haplotype profile from all locations continue to identify Florida and the Caribbean regions as the most likely Western Hemisphere origins of the African infestations. The current data confirm the uncertainty of fall armyworm strain identification in Africa by genetic methods, with the possibility discussed that the African infestation may represent a novel interstrain hybrid population of potentially uncertain behavioral characteristics.
Collapse
Affiliation(s)
- Rodney N Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida, United States of America.
| | - Georg Goergen
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - Hannalene Du Plessis
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Johnnie van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Robert Meagher
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida, United States of America
| |
Collapse
|
42
|
Javal M, Lombaert E, Tsykun T, Courtin C, Kerdelhué C, Prospero S, Roques A, Roux G. Deciphering the worldwide invasion of the Asian long‐horned beetle: A recurrent invasion process from the native area together with a bridgehead effect. Mol Ecol 2019; 28:951-967. [DOI: 10.1111/mec.15030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Marion Javal
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
| | - Eric Lombaert
- INRA, Université Côte d'Azur, CNRS ISA Sophia Antipolis France
| | - Tetyana Tsykun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | | | - Carole Kerdelhué
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro Université Montpellier Montpellier France
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Alain Roques
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
| | - Géraldine Roux
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
- COST Université d'Orléans Orléans France
| |
Collapse
|
43
|
Schrieber K, Wolf S, Wypior C, Höhlig D, Keller SR, Hensen I, Lachmuth S. Release from natural enemies mitigates inbreeding depression in native and invasive Silene latifolia populations. Ecol Evol 2019; 9:3564-3576. [PMID: 30962911 PMCID: PMC6434559 DOI: 10.1002/ece3.4990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/12/2019] [Accepted: 01/26/2019] [Indexed: 01/01/2023] Open
Abstract
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out- and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field-collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species' native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.
Collapse
Affiliation(s)
- Karin Schrieber
- Department of Chemical Ecology, Faculty of BiologyBielefeld UniversityBielefeldGermany
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Sabrina Wolf
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Catherina Wypior
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Diana Höhlig
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | | | - Isabell Hensen
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne Lachmuth
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
44
|
Eyer PA, Matsuura K, Vargo EL, Kobayashi K, Yashiro T, Suehiro W, Himuro C, Yokoi T, Guénard B, Dunn RR, Tsuji K. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol Ecol 2018; 27:4711-4724. [PMID: 30368959 DOI: 10.1111/mec.14910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Toshihisa Yashiro
- Molecular Ecology, Evolution, and Phylogenetics (MEEP) laboratory School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Wataru Suehiro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chihiro Himuro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, University of Tsukuba, Tsukuba, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kazuki Tsuji
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
45
|
Sethuraman A, Janzen FJ, Rubio MA, Vasquez Y, Obrycki JJ. Demographic histories of three predatory lady beetles reveal complex patterns of diversity and population size change in the United States. INSECT SCIENCE 2018; 25:1065-1079. [PMID: 28503842 DOI: 10.1111/1744-7917.12481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/29/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Predatory lady beetles (Coccinellidae) contribute to biological control of agricultural pests, however, multiple species frequently compete for similar resources in the same environment. Numerous studies have examined ecological interactions among the native North American convergent lady beetle (Hippodamia convergens) and two introduced species, the seven-spotted lady beetle (Coccinella septempunctata) and the Asian lady beetle (Harmonia axyridis), in agricultural fields and described multiyear population dynamics. However, the evolutionary dynamics of these interacting species of predatory beetles are uncharacterized. We utilize publicly available multilocus genotype data from geographically disjunct populations of these three species to estimate demography across North American populations. Coalescent analyses reveal (1) a recent (∼4-5 years) decline (>12 fold) in microsatellite effective population size of H. convergens, while expanding (mutation scaled growth rate in 1/u generations = 2910, SD = 362) over evolutionary time scales, (2) a massive (>150 fold), and very recent, effective population size decline in Ha. axyridis, and (3) population size growth (mutation scaled growth rate = 997, SD = 60) over recent and evolutionary time scales in C. septempunctata. Although these estimates are based on genetic data with different mutation rates and patterns of inheritance (mitochondrial versus nuclear), these dynamic and differing population size histories are striking. Further studies of the interactions of these predatory lady beetles in the field are thus warranted to explore the consequences of population size change and biological control activities for evolutionary trajectories in North America.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Michael A Rubio
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Yumary Vasquez
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
46
|
Andrianov BV, Goryacheva II, Romanov DA, Zakharov IA. Mitochondrial Polymorphism of Native and Invasive Populations of Harmonia axyridis (Coleoptera, Coccinellidae). RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418110029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Magro A, Ramon‐Portugal F, Facon B, Ducamp C, Hemptinne J. The evolution of chemical defenses along invasion routes: Harmonia axyridis Pallas (Coccinellidae: Coleoptera) as a case study. Ecol Evol 2018; 8:8344-8353. [PMID: 30250707 PMCID: PMC6145016 DOI: 10.1002/ece3.4299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 11/07/2022] Open
Abstract
The evolution of increased competitive ability (EICA) hypothesis (Blossey & Nötzold, 1995) postulates that escaping from coevolved enemies increases invaders fitness by energy reallocation from defenses and immunity to growth and reproduction. In this context, we evaluated the evidence of evolutionary change in invasive populations of Harmonia axyridis Pallas (Coccinellidae: Coleoptera). We measured egg defenses-cocktail of hydrocarbons on the egg's surface flagging egg toxicity and the concentration of the main alkaloid harmonine-in individuals from three populations along the invasion route (Japan: native, United States: introduced more than 30 years ago, South Africa: introduced in the early 2000s) in a common garden experiment. Our results support the EICA hypothesis: We found changes along the invasion route in the profiles of the hydrocarbons coating the eggs' surface and a decrease in the concentration of harmonine in eggs from the most recent invasive South African population compared to the long established in the United States and the native Japanese ones.
Collapse
Affiliation(s)
- Alexandra Magro
- UMR CNRS EDBUniversité Paul SabatierToulouseFrance
- ENSFEACastanet‐TolosanFrance
| | | | - Benoît Facon
- UMR INRA PVBMTCIRADSaint Pierre‐La RéunionFrance
| | - Christine Ducamp
- UMR CNRS EDBUniversité Paul SabatierToulouseFrance
- ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
48
|
Introduction history and genetic diversity of the invasive ant Solenopsis geminata in the Galápagos Islands. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1769-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Population genetic analyses of complex global insect invasions in managed landscapes: a Leptocybe invasa (Hymenoptera) case study. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1709-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Shi J, Macel M, Tielbörger K, Verhoeven KJF. Effects of admixture in native and invasive populations of Lythrum salicaria. Biol Invasions 2018; 20:2381-2393. [PMID: 30956538 PMCID: PMC6417435 DOI: 10.1007/s10530-018-1707-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Intraspecific hybridization between diverged populations can enhance fitness via various genetic mechanisms. The benefits of such admixture have been proposed to be particularly relevant in biological invasions, when invasive populations originating from different source populations are found sympatrically. However, it remains poorly understood if admixture is an important contributor to plant invasive success and how admixture effects compare between invasive and native ranges. Here, we used experimental crosses in Lythrum salicaria, a species with well-established history of multiple introductions to Eastern North America, to quantify and compare admixture effects in native European and invasive North American populations. We observed heterosis in between-population crosses both in native and invasive ranges. However, invasive-range heterosis was restricted to crosses between two different Eastern and Western invasion fronts, whereas heterosis was absent in geographically distant crosses within a single large invasion front. Our results suggest that multiple introductions have led to already-admixed invasion fronts, such that experimental crosses do not further increase performance, but that contact between different invasion fronts further enhances fitness after admixture. Thus, intra-continental movement of invasive plants in their introduced range has the potential to boost invasiveness even in well-established and successfully spreading invasive species.
Collapse
Affiliation(s)
- Jun Shi
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany.,2Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| | - Mirka Macel
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany.,3Department of Plant Science, Radboud University Nijmegen, P.O. Box 9010, 6500 NL Nijmegen, Netherlands
| | - Katja Tielbörger
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany
| | - Koen J F Verhoeven
- 4Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| |
Collapse
|