1
|
Oggenfuss U, Todd RT, Soisangwan N, Kemp B, Guyer A, Beach A, Selmecki A. Candida albicans isolates contain frequent heterozygous structural variants and transposable elements within genes and centromeres. Genome Res 2025; 35:824-838. [PMID: 39438112 PMCID: PMC12047244 DOI: 10.1101/gr.279301.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The human fungal pathogen Candida albicans poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. C. albicans is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of C. albicans, we conducted long-read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work includes a new, comprehensive analysis of transposable element (TE) composition, location, and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intraspecies genetic variation. We identify multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug-resistant clinical isolates and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirms the widespread presence of centromeric SVs in C. albicans, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in C. albicans Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of C. albicans and that the centromeres of this organism are important sites of genome rearrangement.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biology, Bard College, Annandale-on-Hudson, New York 12504, USA
| | - Natthapon Soisangwan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey Kemp
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alison Guyer
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Annette Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
2
|
Sankaranarayanan SR, Polisetty SD, Das K, Dumbrepatil A, Medina-Pritchard B, Singleton M, Jeyaprakash AA, Sanyal K. Functional plasticity in chromosome-microtubule coupling on the evolutionary time scale. Life Sci Alliance 2023; 6:e202201720. [PMID: 37793775 PMCID: PMC10551642 DOI: 10.26508/lsa.202201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
The Dam1 complex is essential for mitotic progression across evolutionarily divergent fungi. Upon analyzing amino acid (aa) sequences of Dad2, a Dam1 complex subunit, we identified a conserved 10-aa-long Dad2 signature sequence (DSS). An arginine residue (R126) in the DSS is essential for viability in Saccharomyces cerevisiae that possesses point centromeres. The corresponding arginine residues are functionally important but not essential for viability in Candida albicans and Cryptococcus neoformans; both carry several kilobases long regional centromeres. The purified recombinant Dam1 complex containing either Dad2ΔDSS or Dad2R126A failed to bind microtubules (MTs) or form any visible rings like the WT complex. Intriguingly, functional analysis revealed that the requirement of the conserved arginine residue for chromosome biorientation and mitotic progression reduced with increasing centromere length. We propose that plasticity of the invariant arginine of Dad2 in organisms with regional centromeres is achieved by conditional elevation of the kinetochore protein(s) to enable multiple kinetochore MTs to bind to each chromosome. The capacity of a chromosome to bind multiple kinetochore MTs may mask the deleterious effects of such lethal mutations.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Satya Dev Polisetty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arti Dumbrepatil
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | - Martin Singleton
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
3
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
4
|
Fu C, Zhang X, Veri AO, Iyer KR, Lash E, Xue A, Yan H, Revie NM, Wong C, Lin ZY, Polvi EJ, Liston SD, VanderSluis B, Hou J, Yashiroda Y, Gingras AC, Boone C, O’Meara TR, O’Meara MJ, Noble S, Robbins N, Myers CL, Cowen LE. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat Commun 2021; 12:6497. [PMID: 34764269 PMCID: PMC8586148 DOI: 10.1038/s41467-021-26850-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound.
Collapse
Affiliation(s)
- Ci Fu
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Xiang Zhang
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Amanda O. Veri
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Kali R. Iyer
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Emma Lash
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Alice Xue
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Huijuan Yan
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole M. Revie
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Cassandra Wong
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elizabeth J. Polvi
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Sean D. Liston
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Benjamin VanderSluis
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Jing Hou
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Yoko Yashiroda
- grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Anne-Claude Gingras
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Charles Boone
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Teresa R. O’Meara
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Matthew J. O’Meara
- grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Suzanne Noble
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole Robbins
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Leah E. Cowen
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
5
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
6
|
Hori T, Fukagawa T. Artificial generation of centromeres and kinetochores to understand their structure and function. Exp Cell Res 2020; 389:111898. [PMID: 32035949 DOI: 10.1016/j.yexcr.2020.111898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 01/19/2023]
Abstract
The centromere is an essential genomic region that provides the surface to form the kinetochore, which binds to the spindle microtubes to mediate chromosome segregation during mitosis and meiosis. Centromeres of most organisms possess highly repetitive sequences, making it difficult to study these loci. However, an unusual centromere called a "neocentromere," which does not contain repetitive sequences, was discovered in a patient and can be generated experimentally. Recent advances in genome biology techniques allow us to analyze centromeric chromatin using neocentromeres. In addition to neocentromeres, artificial kinetochores have been generated on non-centromeric loci, using protein tethering systems. These are powerful tools to understand the mechanism of the centromere specification and kinetochore assembly. In this review, we introduce recent studies utilizing the neocentromeres and artificial kinetochores and discuss current problems in centromere biology.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Vossen ML, Alhosawi HM, Aney KJ, Burrack LS. CaMad2 Promotes Multiple Aspects of Genome Stability Beyond Its Direct Function in Chromosome Segregation. Genes (Basel) 2019; 10:genes10121013. [PMID: 31817479 PMCID: PMC6947305 DOI: 10.3390/genes10121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Mad2 is a central component of the spindle assembly checkpoint required for accurate chromosome segregation. Additionally, in some organisms, Mad2 has roles in preventing mutations and recombination through the DNA damage response. In the fungal pathogen Candida albicans, CaMad2 has previously been shown to be required for accurate chromosome segregation, survival in high levels of hydrogen peroxide, and virulence in a mouse model of infection. In this work, we showed that CaMad2 promotes genome stability through its well-characterized role in promoting accurate chromosome segregation and through reducing smaller scale chromosome changes due to recombination and DNA damage repair. Deletion of MAD2 decreased cell growth, increased marker loss rates, increased sensitivity to microtubule-destabilizing drugs, and increased sensitivity to DNA damage inducing treatments. CaMad2-GFP localized to dots, consistent with a role in kinetochore binding, and to the nuclear periphery, consistent with an additional role in DNA damage. Furthermore, deletion of MAD2 increases growth on fluconazole, and fluconazole treatment elevates whole chromosome loss rates in the mad2∆/∆ strain, suggesting that CaMad2 may be important for preventing fluconazole resistance via aneuploidy.
Collapse
|
8
|
Shah H, Rawat K, Ashar H, Patkar R, Manjrekar J. Dual role for fungal-specific outer kinetochore proteins during cell cycle and development in Magnaporthe oryzae. J Cell Sci 2019; 132:jcs.224147. [DOI: 10.1242/jcs.224147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
The outer kinetochore DAM/DASH complex ensures proper spindle structure and chromosome segregation. While DASH complex protein requirement diverges among different yeasts, its role in filamentous fungi has not been investigated so far. We studied the dynamics and role of middle (Mis12) and outer (Dam1 and Ask1) kinetochore proteins in the filamentous fungal pathogen, Magnaporthe oryzae, which undergoes multiple cell cycle linked developmental transitions. While Mis12 was constitutively present in the nucleus, Dam1 and Ask1 were recruited only during mitosis. Although Dam1 was not required for viability, loss of its function (dam1Δ) delayed mitotic progression, resulting in impaired conidial and hyphal development. Both Dam1 and Ask1 also localised to the hyphal tips, in the form of punctae oscillating back and forth from the growing ends, suggesting that Magnaporthe DASH complex proteins may play a non-canonical role in polarised growth during interphase, in addition to their function in nuclear segregation during mitosis. Impaired appressorial (infection structure) development and host penetration in the dam1Δ mutant suggest that fungus-specific Dam1 complex proteins could be an attractive target for a novel anti-fungal strategy.
Collapse
Affiliation(s)
- Hiral Shah
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Kanika Rawat
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
- Present affiliation: Centre for Ecological Sciences, Indian Institute of Science, Bengaluru-560012, Karnataka, India
| | - Harsh Ashar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
- Present affiliation: Stem Cell Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rajesh Patkar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Johannes Manjrekar
- Biotechnology Programme, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
9
|
Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio 2018; 9:mBio.02048-18. [PMID: 30377286 PMCID: PMC6212825 DOI: 10.1128/mbio.02048-18] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comprehensive understanding of an organism requires that we understand the contributions of most, if not all, of its genes. Classical genetic approaches to this issue have involved systematic deletion of each gene in the genome, with comprehensive sets of mutants available only for very-well-studied model organisms. We took a different approach, harnessing the power of in vivo transposition coupled with deep sequencing to identify >500,000 different mutations, one per cell, in the prevalent human fungal pathogen Candida albicans and to map their positions across the genome. The transposition approach is efficient and less labor-intensive than classic approaches. Here, we describe the production and analysis (aided by machine learning) of a large collection of mutants and the comprehensive identification of 1,610 C. albicans genes that are essential for growth under standard laboratory conditions. Among these C. albicans essential genes, we identify those that are also essential in two distantly related model yeasts as well as those that are conserved in all four major human fungal pathogens and that are not conserved in the human genome. This list of genes with functions important for the survival of the pathogen provides a good starting point for the development of new antifungal drugs, which are greatly needed because of the emergence of fungal pathogens with elevated resistance and/or tolerance of the currently limited set of available antifungal drugs. Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to generate a genome-wide comprehensive set of mutant strains and the identification of the genes essential for growth. Here we report on the isolation and utilization of a highly stable haploid derivative of the human pathogenic fungus Candida albicans, together with a modified heterologous transposon and machine learning (ML) analysis method, to predict the degree to which all of the open reading frames are required for growth under standard laboratory conditions. We identified 1,610 C. albicans essential genes, including 1,195 with high “essentiality confidence” scores, thereby increasing the number of essential genes (currently 66 in the Candida Genome Database) by >20-fold and providing an unbiased approach to determine the degree of confidence in the determination of essentiality. Among the genes essential in C. albicans were 602 genes also essential in the model budding and fission yeasts analyzed by both deletion and transposon mutagenesis. We also identified essential genes conserved among the four major human pathogens C. albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum and highlight those that lack homologs in humans and that thus could serve as potential targets for the design of antifungal therapies.
Collapse
|
10
|
Tripathi H, Khan F. Identification of potential inhibitors against nuclear Dam1 complex subunit Ask1 of Candida albicans using virtual screening and MD simulations. Comput Biol Chem 2018; 72:33-44. [DOI: 10.1016/j.compbiolchem.2017.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/22/2017] [Accepted: 12/30/2017] [Indexed: 11/29/2022]
|
11
|
Kinetochore Function from the Bottom Up. Trends Cell Biol 2017; 28:22-33. [PMID: 28985987 DOI: 10.1016/j.tcb.2017.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.
Collapse
|
12
|
Erlendson AA, Friedman S, Freitag M. A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0054-2017. [PMID: 28752814 PMCID: PMC5536859 DOI: 10.1128/microbiolspec.funk-0054-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Chromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Neurospora crassa. Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres. We summarize the state of recent chromatin research that explains what is required for normal function of these specialized chromosomal regions in different fungi, with an emphasis on the silencing mechanism associated with subtelomeric regions, initiated by sirtuin histone deacetylases and histone H3 lysine 27 (H3K27) methyltransferases. We explore mechanisms for the appearance of "accessory" or "conditionally dispensable" chromosomes and contrast what has been learned from studies on genome-wide chromosome conformation capture in S. cerevisiae, S. pombe, N. crassa, and Trichoderma reesei. While most of the current knowledge is based on work in a handful of genetically and biochemically tractable model organisms, we suggest where major knowledge gaps remain to be closed. Fungi will continue to serve as facile organisms to uncover the basic processes of life because they make excellent model organisms for genetics, biochemistry, cell biology, and evolutionary biology.
Collapse
Affiliation(s)
- Allyson A. Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
13
|
Anderson MZ, Saha A, Haseeb A, Bennett RJ. A chromosome 4 trisomy contributes to increased fluconazole resistance in a clinical isolate of Candida albicans. MICROBIOLOGY-SGM 2017. [PMID: 28640746 PMCID: PMC5737213 DOI: 10.1099/mic.0.000478] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Candida albicans is an important opportunistic fungal pathogen capable of causing both mucosal and disseminated disease. Infections are often treated with fluconazole, a front-line antifungal drug that targets the biosynthesis of ergosterol, a major component of the fungal cell membrane. Resistance to fluconazole can arise through a variety of mechanisms, including gain-of-function mutations, loss of heterozygosity events and aneuploidy. The clinical isolate P60002 was found to be highly resistant to azole-class drugs, yet lacked mutations or chromosomal rearrangements known to be associated with azole resistance. Transcription profiling suggested that increased expression of two putative drug efflux pumps, CDR11 and QDR1, might confer azole resistance. However, ectopic expression of the P60002 alleles of these genes in a drug-susceptible strain did not increase fluconazole resistance. We next examined whether the presence of three copies of chromosome 4 (Chr4) or chromosome 6 (Chr6) contributed to azole resistance in P60002. We established that Chr4 trisomy contributes significantly to fluconazole resistance, whereas Chr6 trisomy has no discernible effect on resistance. In contrast, a Chr4 trisomy did not increase fluconazole resistance when present in the standard SC5314 strain background. These results establish a link between Chr4 trisomy and elevated fluconazole resistance, and demonstrate the impact of genetic background on drug resistance phenotypes in C. albicans.
Collapse
Affiliation(s)
- Matthew Z Anderson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Amrita Saha
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Abid Haseeb
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
14
|
Friedman S, Freitag M. Centrochromatin of Fungi. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:85-109. [PMID: 28840234 DOI: 10.1007/978-3-319-58592-5_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin ("centrochromatin") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.
Collapse
Affiliation(s)
- Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Bldg, Corvallis, OR, 97331, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Bldg, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
Burrack LS, Hutton HF, Matter KJ, Clancey SA, Liachko I, Plemmons AE, Saha A, Power EA, Turman B, Thevandavakkam MA, Ay F, Dunham MJ, Berman J. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome. PLoS Genet 2016; 12:e1006317. [PMID: 27662467 PMCID: PMC5035033 DOI: 10.1371/journal.pgen.1006317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus. The accurate segregation of chromosomes during cell division is essential for maintaining genome integrity. The centromere is the DNA region on each chromosome where assembly of a large protein complex, the kinetochore, is required to maintain proper chromosome segregation. In addition, active centromeres exhibit a specific three-dimensional organization within the nucleus: the centromeres associate with one another in a clustered manner. Neocentromeres, or new centromeres, appear at new places along the chromosome when a native centromere becomes non-functional. We used a yeast model, Candida albicans, and isolated twenty instances in which neocentromeres had formed at different positions. All of these neocentromeres were able to direct chromosome segregation, but some had increased error rates. Like native centromeres, these neocentromeres cluster in the nucleus with the other active centromeres. This implies that formation of a neocentromere leads to reorganization of the three-dimensional structure of the nucleus so that different regions of the chromosome are in closer contact to regions of other chromosomes. Recent work suggests that approximately 3% of cancers may contain chromosomes with neocentromeres. Our observations that many neocentromeres have increased error rates provides insight into genome instability in cancer cells. Changes in chromosome copy number may benefit the cancer cells by increasing numbers of oncogenes and/or drug resistance genes, but may also sensitize the cells to chemotherapy approaches that target chromosome segregation mechanisms.
Collapse
Affiliation(s)
- Laura S. Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
- * E-mail: (LSB); (JB)
| | - Hannah F. Hutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kathleen J. Matter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Shelly Applen Clancey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | | | - Amrita Saha
- Department of Biology, Grinnell College, Grinnell, Iowa, United States of America
| | - Erica A. Power
- Department of Biology, Gustavus Adolphus College, Saint Peter, Minnesota, United States of America
| | - Breanna Turman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail: (LSB); (JB)
| |
Collapse
|
16
|
Freitag M. The kinetochore interaction network (KIN) of ascomycetes. Mycologia 2016; 108:485-505. [PMID: 26908646 DOI: 10.3852/15-182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023]
Abstract
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many in multiple copies, comprise the KIN or are associated with fungal centromeres and kinetochores. Proteins isolated from immune sera recognized centromeric regions on chromosomes and thus were named centromere proteins (CENPs). CENP-A, sometimes called centromere-specific H3 (CenH3), is incorporated into nucleosomes within or near centromeres. The constitutive centromere-associated network (CCAN) assembles on this specialized chromatin, likely based on specific interactions with and requiring presence of CENP-C. The outer kinetochore comprises the Knl1-Mis12-Ndc80 (KMN) protein complexes that connect CCAN to spindles, accomplished by binding and stabilizing microtubules (MTs) and in the process generating load-bearing assemblies for chromatid segregation. In most fungi the Dam1/DASH complex connects the KMN complexes to MTs. Fungi present a rich resource to investigate mechanistic commonalities but also differences in kinetochore architecture. While ascomycetes have sets of CCAN and KMN proteins that are conserved with those of budding yeast or metazoans, searching other major branches of the fungal kingdom revealed that CCAN proteins are poorly conserved at the primary sequence level. Several conserved binding motifs or domains within KMN complexes have been described recently, and these features of ascomycete KIN proteins are shared with most metazoan proteins. In addition, several ascomycete-specific domains have been identified here.
Collapse
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305
| |
Collapse
|
17
|
Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, Sanyal K. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genet 2016; 12:e1005839. [PMID: 26845548 PMCID: PMC4741521 DOI: 10.1371/journal.pgen.1005839] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species--Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.
Collapse
Affiliation(s)
- Gautam Chatterjee
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Yogitha Thattikota
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sreedevi Padmanabhan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
18
|
McCoy KM, Tubman ES, Claas A, Tank D, Clancy SA, O'Toole ET, Berman J, Odde DJ. Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 2015; 26:3999-4014. [PMID: 26354423 PMCID: PMC4710232 DOI: 10.1091/mbc.e14-10-1454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro-tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end-tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5-mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this limit, which may explain why it has the smallest known mitotic spindle that still manifests the classic congression architecture.
Collapse
Affiliation(s)
- Kelsey M McCoy
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Emily S Tubman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Allison Claas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Shelly Applen Clancy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eileen T O'Toole
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309 Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado at Boulder, Boulder, CO 80309
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
19
|
Neumann P, Pavlíková Z, Koblížková A, Fuková I, Jedličková V, Novák P, Macas J. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Mol Biol Evol 2015; 32:1862-79. [PMID: 25771197 PMCID: PMC4476163 DOI: 10.1093/molbev/msv070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Zuzana Pavlíková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Veronika Jedličková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| |
Collapse
|
20
|
Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Luceño M. Genome size stability despite high chromosome number variation in Carex gr. laevigata. AMERICAN JOURNAL OF BOTANY 2015; 102:233-8. [PMID: 25667076 DOI: 10.3732/ajb.1400433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY In organisms with holocentric chromosomes like Carex species, chromosome number evolution has been hypothesized to be a result of fission, fusion, and/or translocation events. Negative, positive, or the absence of correlations have been found between chromosome number and genome size in Carex. METHODS Using the inferred diploid chromosome number and 80 genome size measurements from 26 individuals and 20 populations of Carex gr. laevigata, we tested the null hypothesis of chromosome number evolution by duplication and deletion of whole chromosomes. KEY RESULTS Our results show a significant positive correlation between genome size and chromosome number, but the slope of such correlation supports the hypothesis of proliferation and removal of repetitive DNA fragments to explain genome size variation rather than duplication and deletion of whole chromosomes. CONCLUSIONS Our results refine the theory of the holokinetic drive: this mechanism is proposed to facilitate repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited, or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. This study sheds light on how karyotype evolution plays an important role in the diversification of the species of the genus Carex.
Collapse
Affiliation(s)
- Marcial Escudero
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Americo Vespucio sn 41092 Seville, Spain
| | - Enrique Maguilla
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Carretera de Utrera Km 1 sn 41013 Seville, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Modesto Luceño
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Carretera de Utrera Km 1 sn 41013 Seville, Spain
| |
Collapse
|
21
|
Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 2014; 124:81-94. [DOI: 10.1007/s00412-014-0486-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
|
22
|
Anderson MZ, Gerstein AC, Wigen L, Baller JA, Berman J. Silencing is noisy: population and cell level noise in telomere-adjacent genes is dependent on telomere position and sir2. PLoS Genet 2014; 10:e1004436. [PMID: 25057900 PMCID: PMC4109849 DOI: 10.1371/journal.pgen.1004436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cell-to-cell gene expression noise is thought to be an important mechanism for generating phenotypic diversity. Furthermore, telomeric regions are major sites for gene amplification, which is thought to drive genetic diversity. Here we found that individual subtelomeric TLO genes exhibit increased variation in transcript and protein levels at both the cell-to-cell level as well as at the population-level. The cell-to-cell variation, termed Telomere-Adjacent Gene Expression Noise (TAGEN) was largely intrinsic noise and was dependent upon genome position: noise was reduced when a TLO gene was expressed at an ectopic internal locus and noise was elevated when a non-telomeric gene was expressed at a telomere-adjacent locus. This position-dependent TAGEN also was dependent on Sir2p, an NAD+-dependent histone deacetylase. Finally, we found that telomere silencing and TAGEN are tightly linked and regulated in cis: selection for either silencing or activation of a TLO-adjacent URA3 gene resulted in reduced noise at the neighboring TLO but not at other TLO genes. This provides experimental support to computational predictions that the ability to shift between silent and active chromatin states has a major effect on cell-to-cell noise. Furthermore, it demonstrates that these shifts affect the degree of expression variation at each telomere individually.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Aleeza C. Gerstein
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Lauren Wigen
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Joshua A. Baller
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Yamagishi Y, Sakuno T, Goto Y, Watanabe Y. Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 2014; 38:185-200. [PMID: 24666101 DOI: 10.1111/1574-6976.12049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 12/16/2022] Open
Abstract
Proper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly. Kinetochores mediate spindle–microtubule attachment and control the movement of chromosomes during mitosis and meiosis. To conduct faithful chromosome segregation, kinetochore assembly and microtubule attachment are elaborately regulated. Here we review the current understanding of the composition, assembly, functions and regulation of kinetochores revealed mainly through studies on fission and budding yeasts. Moreover, because recent cumulative evidence suggests the importance of the regulation of the orientation of kinetochore–microtubule attachment, which differs distinctly between mitosis and meiosis, we focus especially on the molecular mechanisms underlying this regulation.
Collapse
|
24
|
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution 2014; 68:2412-20. [PMID: 24758327 DOI: 10.1111/evo.12437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 04/13/2014] [Indexed: 02/02/2023]
Abstract
Similar to how the model of centromere drive explains the size and complexity of centromeres in monocentrics (organisms with localized centromeres), our model of holokinetic drive is consistent with the divergent evolution of chromosomal size and number in holocentrics (organisms with nonlocalized centromeres) exhibiting holokinetic meiosis (holokinetics). Holokinetic drive is proposed to facilitate chromosomal fission and/or repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited or chromosomal fusion and/or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. The hypothesis of holokinetic drive is supported primarily by the negative correlation between chromosome number and genome size that is documented in holokinetic lineages. The supporting value of two older cross-experiments on holokinetic structural heterozygotes (the rush Luzula elegans and butterflies of the genus Antheraea) that indicate the presence of size-preferential homolog transmission via female meiosis for holokinetic drive is discussed, along with the further potential consequences of holokinetic drive in comparison with centromere drive.
Collapse
Affiliation(s)
- Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
25
|
Harrison BD, Hashemi J, Bibi M, Pulver R, Bavli D, Nahmias Y, Wellington M, Sapiro G, Berman J. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol 2014; 12:e1001815. [PMID: 24642609 PMCID: PMC3958355 DOI: 10.1371/journal.pbio.1001815] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
When exposed to the antifungal drug fluconazole, Candida albicans undergoes abnormal growth, forming three-lobed “trimeras.” These aneuploid trimeras turn out genetically variable progeny with varying numbers of chromosomes, increasing the odds of creating a drug-resistant strain. Candida albicans, the most prevalent human fungal pathogen, is generally diploid. However, 50% of isolates that are resistant to fluconazole (FLC), the most widely used antifungal, are aneuploid and some aneuploidies can confer FLC resistance. To ask if FLC exposure causes or only selects for aneuploidy, we analyzed diploid strains during exposure to FLC using flow cytometry and epifluorescence microscopy. FLC exposure caused a consistent deviation from normal cell cycle regulation: nuclear and spindle cycles initiated prior to bud emergence, leading to “trimeras,” three connected cells composed of a mother, daughter, and granddaughter bud. Initially binucleate, trimeras underwent coordinated nuclear division yielding four daughter nuclei, two of which underwent mitotic collapse to form a tetraploid cell with extra spindle components. In subsequent cell cycles, the abnormal number of spindles resulted in unequal DNA segregation and viable aneuploid progeny. The process of aneuploid formation in C. albicans is highly reminiscent of early stages in human tumorigenesis in that aneuploidy arises through a tetraploid intermediate and subsequent unequal DNA segregation driven by multiple spindles coupled with a subsequent selective advantage conferred by at least some aneuploidies during growth under stress. Finally, trimera formation was detected in response to other azole antifungals, in related Candida species, and in an in vivo model for Candida infection, suggesting that aneuploids arise due to azole treatment of several pathogenic yeasts and that this can occur during the infection process. Fungal infections are a particularly challenging problem in medicine due to the small number of effective antifungal drugs available. Fluconazole, the most commonly prescribed antifungal, prevents cells from growing but does not kill them, giving the fungal population a window of opportunity to become drug resistant. Candida albicans is the most prevalent fungal pathogen, and many fluconazole-resistant strains of this microbe have been isolated in the clinic. Fluconazole-resistant isolates often contain an abnormal number of chromosomes (a state called aneuploidy), and the additional copies of drug resistance genes on those chromosomes enable the cells to circumvent the drug. How Candida cells acquire abnormal chromosome numbers is a very important medical question—is aneuploidy merely passively selected for, or is it actively induced by the drug treatment? In this study, we found that fluconazole and other related azole antifungals induce abnormal cell cycle progression in which mother and daughter cells fail to separate after chromosome segregation. Following a further growth cycle, these cells form an unusual cell type that we have termed “trimeras”—three-lobed cells with two nuclei. The aberrant chromosome segregation dynamics in trimeras produce progeny with double the normal number of chromosomes. Unequal chromosome segregation in these progeny leads to an increase in the prevalence of aneuploidy in the population. We postulate that the increase in aneuploidy greatly increases the odds of developing drug resistance.
Collapse
Affiliation(s)
- Benjamin D. Harrison
- Department of Genetics, Cell, and Developmental Biology, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Jordan Hashemi
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, United States of America
| | - Maayan Bibi
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Rebecca Pulver
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Danny Bavli
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melanie Wellington
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, United States of America
| | - Judith Berman
- Department of Genetics, Cell, and Developmental Biology, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
26
|
Tan T, Chen Z, Lei Y, Zhu Y, Liang Q. A regulatory effect of INMAP on centromere proteins: antisense INMAP induces CENP-B variation and centromeric halo. PLoS One 2014; 9:e91937. [PMID: 24633075 PMCID: PMC3954832 DOI: 10.1371/journal.pone.0091937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
CENP-B is a highly conserved protein that facilitates the assembly of specific centromere structures both in interphase nuclei and on mitotic chromosomes. INMAP is a conserved protein that localizes at nucleus in interphase cells and at mitotic apparatus in mitotic cells. Our previous results showed that INMAP over-expression leads to spindle defects, mitotic arrest and formation of polycentrosomal and multinuclear cells, indicating that INMAP may modulate the function of (a) key protein(s) in mitotic apparatus. In this study, we demonstrate that INMAP interacts with CENP-B and promotes cleavage of the N-terminal DNA binding domain from CENP-B. The cleaved CENP-B cannot associate with centromeres and thus lose its centromere-related functions. Consistent with these results, CENP-B in INMAP knockdown cells becomes more diffused around kinetochores. Although INMAP knockdown cells do not exhibit gross defects in mitotic spindle formation, these cells go through mitosis, especially prophase and metaphase, with different relative timing, indicating subtle abnormality. These results identify INMAP as a model regulator of CENP-B and support the notion that INMAP regulates mitosis through modulating CENP-B-mediated centromere organization.
Collapse
Affiliation(s)
- Tan Tan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhe Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development / Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, Beijing Normal University, Beijing, China
| | - Yan Lei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yan Zhu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development / Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Burrack LS, Applen Clancey SE, Chacón JM, Gardner MK, Berman J. Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences. Mol Biol Cell 2013; 24:2807-19. [PMID: 23885115 PMCID: PMC3771944 DOI: 10.1091/mbc.e13-05-0229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Higher-order structure of chromatin is essential for chromosome segregation and repetitive DNA stability. Monopolin recruits condensin to organize centromere DNA irrespective of the number of kinetochore–microtubule attachments. In addition, the role of monopolin in stabilizing repeat tracts observed in budding yeast is conserved in Candida albicans. The establishment and maintenance of higher-order structure at centromeres is essential for accurate chromosome segregation. The monopolin complex is thought to cross-link multiple kinetochore complexes to prevent merotelic attachments that result in chromosome missegregation. This model is based on structural analysis and the requirement that monopolin execute mitotic and meiotic chromosome segregation in Schizosaccharomyces pombe, which has more than one kinetochore–microtubule attachment/centromere, and co-orient sister chromatids in meiosis I in Saccharomyces cerevisiae. Recent data from S. pombe suggest an alternative possibility: that the recruitment of condensin is the primary function of monopolin. Here we test these models using the yeast Candida albicans. C. albicans cells lacking monopolin exhibit defects in chromosome segregation, increased distance between centromeres, and decreased stability of several types of repeat DNA. Of note, changing kinetochore–microtubule copy number from one to more than one kinetochore–microtubule/centromere does not alter the requirement for monopolin. Furthermore, monopolin recruits condensin to C. albicans centromeres, and overexpression of condensin suppresses chromosome segregation defects in strains lacking monopolin. We propose that the key function of monopolin is to recruit condensin in order to promote the assembly of higher-order structure at centromere and repetitive DNA.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
28
|
Abstract
Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. Centromeres (CENs) are chromosomal regions essential for proper chromosome segregation through their ability to establish evolutionarily conserved protein complexes called kinetochores. During mitosis, kinetochores attach to microtubules emanating from spindle poles, thus providing the mechanism for chromosome segregation. Eukaryotes have different types of CENs. Most eukaryotes have large multimeric centromeres lacking DNA sequence specificity. In contrast, the budding yeast, S. cerevisiae, has short punctate centromeres, comprised of specific DNA sequences. Combining chromatin immunoprecipitation and deep sequencing, we identified regions of the yeast genome that are bound by key kinetochore components; we refer to these regions as Centromere-Like Regions (CLRs). We found that CLRs can promote segregation on episomal plasmids and native chromosomes. Most CLRs are found in intergenic regions, close to native CENs. CLRs resemble point CENs by their short size and regional centromeres by their lack of determining DNA sequences. CLR sequences are conserved among related budding yeasts. Our findings indicate that, similar to other fungi and eukaryotes, S. cerevisiae possesses the ability to form sequence-independent centromeric structures. Establishment of centromeric elements outside regular CENs, or neocentromerization, can lead to chromosome missegregation and is a hallmark of cancer cells. CLR formation in budding yeast provides a simple model of neocentromerization.
Collapse
|
29
|
Guo Y, Kim C, Mao Y. New insights into the mechanism for chromosome alignment in metaphase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:237-62. [PMID: 23445812 DOI: 10.1016/b978-0-12-407697-6.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis, duplicated sister chromatids are properly aligned at the metaphase plate of the mitotic spindle before being segregated into two daughter cells. This requires a complex process to ensure proper interactions between chromosomes and spindle microtubules. The kinetochore, the proteinaceous complex assembled at the centromere region on each chromosome, serves as the microtubule attachment site and powers chromosome movement in mitosis. Numerous proteins/protein complexes have been implicated in the connection between kinetochores and dynamic microtubules. Recent studies have advanced our understanding on the nature of the interface between kinetochores and microtubule plus ends in promoting and maintaining their stable attachment. These efforts have demonstrated the importance of this process to ensure accurate chromosome segregation, an issue which has great significance for understanding and controlling abnormal chromosome segregation (aneuploidy) in human genetic diseases and in cancer progression.
Collapse
Affiliation(s)
- Yige Guo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, NY, USA
| | | | | |
Collapse
|
30
|
Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol 2012; 10:e1001434. [PMID: 23300376 PMCID: PMC3531477 DOI: 10.1371/journal.pbio.1001434] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/17/2012] [Indexed: 01/28/2023] Open
Abstract
In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.
Collapse
Affiliation(s)
- Nitika Raychaudhuri
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Raphaelle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Guillermo A. Orsi
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies (IEES), University of Zurich, Zurich, Switzerland
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Neocentromeres are ectopic sites where new functional kinetochores assemble and permit chromosome segregation. Neocentromeres usually form following genomic alterations that remove or disrupt centromere function. The ability to form neocentromeres is conserved in eukaryotes ranging from fungi to mammals. Neocentromeres that rescue chromosome fragments in cells with gross chromosomal rearrangements are found in several types of human cancers, and in patients with developmental disabilities. In this review, we discuss the importance of neocentromeres to human health and evaluate recently developed model systems to study neocentromere formation, maintenance, and function in chromosome segregation. Additionally, studies of neocentromeres provide insight into native centromeres; analysis of neocentromeres found in human clinical samples and induced in model organisms distinguishes features of centromeres that are dependent on centromere DNA from features that are epigenetically inherited together with the formation of a functional kinetochore.
Collapse
|
32
|
Roy B, Varshney N, Yadav V, Sanyal K. The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 2012; 338:107-17. [PMID: 23039831 DOI: 10.1111/1574-6968.12019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
High fidelity chromosome segregation is essential for efficient transfer of the genetic material from the mother to daughter cells. The kinetochore (KT), which connects the centromere DNA to the spindle apparatus, plays a pivotal role in this process. In spite of considerable divergence in the centromere DNA sequence, basic architecture of a KT is evolutionarily conserved from yeast to humans. However, the identification of a large number of KT proteins paved the way of understanding conserved and diverged regulatory steps that lead to the formation of a multiprotein KT super-complex on the centromere DNA in different organisms. Because it is a daunting task to summarize the entire spectrum of information in a minireview, we focus here on the recent understanding in the process of KT assembly in three yeasts: Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans. Studies in these unicellular organisms suggest that although the basic process of KT assembly remains the same, the dependence of a conserved protein for its KT localization may vary in these organisms.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
33
|
Kinetochore structure: pulling answers from yeast. Curr Biol 2012; 22:R842-4. [PMID: 23058804 DOI: 10.1016/j.cub.2012.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the identification of multiple kinetochore proteins, their structure and organization has remained unclear. New work uses electron microscopy to visualize isolated budding yeast kinetochore particles and reveal the kinetochore structure on microtubules.
Collapse
|
34
|
Akiyoshi B, Biggins S. Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma 2012; 121:235-50. [PMID: 22289864 DOI: 10.1007/s00412-012-0362-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore–microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule-binding functions of kinetochores in vivo.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | |
Collapse
|
35
|
Gerami-Nejad M, Forche A, McClellan M, Berman J. Analysis of protein function in clinical C. albicans isolates. Yeast 2012; 29:303-9. [PMID: 22777821 DOI: 10.1002/yea.2910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/09/2022] Open
Abstract
Clinical isolates are prototrophic and hence are not amenable to genetic manipulation using nutritional markers. Here we describe a new set of plasmids carrying the NAT1 (nourseothricin) drug resistance marker (Shen et al., ), which can be used both in clinical isolates and in laboratory strains. We constructed novel plasmids containing HA-NAT1 or MYC-NAT1 cassettes to facilitate PCR-mediated construction of strains with C-terminal epitope-tagged proteins and a NAT1-pMet3-GFP plasmid to enable conditional expression of proteins with or without the green fluorescent protein fused at the N-terminus. Furthermore, for proteins that require both the endogenous N- and C-termini for function, we have constructed a GF-NAT1-FP cassette carrying truncated alleles that facilitate insertion of an intact, single copy of GFP internal to the coding sequence. In addition, GFP-NAT1, RFP-NAT1 and M-Cherry-NAT1 plasmids were constructed, expressing two differently labelled gene products for the study of protein co-expression and co-localization in vivo. Together, these vectors provide a useful set of genetic tools for studying diverse aspects of gene function in both clinical and laboratory strains of C. albicans.
Collapse
Affiliation(s)
- Maryam Gerami-Nejad
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
36
|
Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res 2012; 20:403-12. [PMID: 22552915 PMCID: PMC3391362 DOI: 10.1007/s10577-012-9284-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 01/05/2023]
Abstract
It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat–maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.
Collapse
|
37
|
Burrack LS, Berman J. Flexibility of centromere and kinetochore structures. Trends Genet 2012; 28:204-12. [PMID: 22445183 DOI: 10.1016/j.tig.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022]
Abstract
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility is manifested in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for their study.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55405, USA
| | | |
Collapse
|
38
|
Buttrick GJ, Lancaster TC, Meadows JC, Millar JBA. Plo1 phosphorylates Dam1 to promote chromosome bi-orientation in fission yeast. J Cell Sci 2012; 125:1645-51. [PMID: 22375062 DOI: 10.1242/jcs.096826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules, Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.
Collapse
Affiliation(s)
- Graham J Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
40
|
Coffman VC, Wu P, Parthun MR, Wu JQ. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. ACTA ACUST UNITED AC 2012; 195:563-72. [PMID: 22084306 PMCID: PMC3257534 DOI: 10.1083/jcb.201106078] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
41
|
Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. EUKARYOTIC CELL 2011; 10:1384-95. [PMID: 21908596 DOI: 10.1128/ec.05165-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species.
Collapse
|