1
|
Xu T, Rao J, Mo Y, Lam ACH, Yang Y, Wong SWF, Wong KH, Zhao X. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev 2025; 219:115552. [PMID: 40032068 DOI: 10.1016/j.addr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The musculoskeletal system relies on critical tissue interfaces for its function; however, these interfaces are often compromised by injuries and diseases. Restoration of these interfaces is complex by nature which renders traditional treatments inadequate. An emerging solution is three-dimensional printing, which allows for precise fabrication of biomimetic scaffolds to enhance tissue regeneration. This review summarizes the use of 3D printing in creating scaffolds for musculoskeletal interfaces, mainly focusing on advanced techniques such as multi-material printing, bioprinting, and 4D printing. We emphasize the significance of mimicking natural tissue gradients and the selection of appropriate biomaterials to ensure scaffold success. The review outlines state-of-the-art 3D printing technologies, varying from extrusion, inkjet and laser-assisted bioprinting, which are crucial for producing scaffolds with tailored mechanical and biological properties. Applications in cartilage-bone, intervertebral disc, tendon/ligament-bone, and muscle-tendon junction engineering are discussed, highlighting the potential for improved integration and functionality. Furthermore, we address challenges in material development, printing resolution, and the in vivo performance of scaffolds, as well as the prospects for clinical translation. The review concludes by underscoring the transformative potential of 3D printing to advance orthopedic medicine, offering a roadmap for future research at the intersection of biomaterials, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Jingdong Rao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yongyi Mo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Sidney Wing-Fai Wong
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Debnath B, Narasimhan BN, Fraley SI, Rangamani P. Modeling collagen fibril degradation as a function of matrix microarchitecture. SOFT MATTER 2024; 20:9286-9300. [PMID: 39552222 PMCID: PMC11652085 DOI: 10.1039/d4sm00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability. In a matrix, the pore size and fibril characteristics such as length, diameter, number, orientation, and curvature are the major variables that define the microarchitecture. In vitro, collagen matrices of the same concentration but different microarchitectures also vary in degradation rate. How do different microarchitectures affect matrix degradation? To answer this question, we developed a computational model of collagen degradation. We first developed a lattice model that describes collagen degradation at the scale of a single fibril. We then extended this model to investigate the role of microarchitecture using Brownian dynamics simulation of enzymes in a multi-fibril three dimensional matrix to predict its degradability. Our simulations predict that the distribution of enzymes around the fibrils is non-uniform and depends on the microarchitecture of the matrix. This non-uniformity in enzyme distribution can lead to different extents of degradability for matrices of different microarchitectures. Our simulations predict that for the same enzyme concentration and collagen concentration, a matrix with thicker fibrils degrades more than that with thinner fibrils. Our model predictions were tested using in vitro experiments with synthetic collagen gels of different microarchitectures. Experiments showed that indeed degradation of collagen depends on the matrix architecture and fibril thickness. In summary, our study shows that the microarchitecture of the collagen matrix is an important determinant of its degradability.
Collapse
Affiliation(s)
- Bhanjan Debnath
- Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA.
| | | | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA
| |
Collapse
|
3
|
Sapudom J, Riedl P, Schricker M, Kroy K, Pompe T. Physical network regimes of 3D fibrillar collagen networks trigger invasive phenotypes of breast cancer cells. BIOMATERIALS ADVANCES 2024; 163:213961. [PMID: 39032434 DOI: 10.1016/j.bioadv.2024.213961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The mechanical characteristics of the extracellular environment are known to significantly influence cancer cell behavior in vivo and in vitro. The structural complexity and viscoelastic dynamics of the extracellular matrix (ECM) pose significant challenges in understanding its impact on cancer cells. Herein, we report distinct regulatory signatures in the invasion of different breast cancer cell lines into three-dimensional (3D) fibrillar collagen networks, caused by systematic modifications of the physical network properties. By reconstituting collagen networks of thin fibrils, we demonstrate that such networks can display network strand flexibility akin to that of synthetic polymer networks, known to exhibit entropic rubber elasticity. This finding contrasts with the predominant description of the mechanics of fibrillar collagen networks by an enthalpic bending elasticity of rod-like fibrils. Mean-squared displacement analysis of free-standing fibrils confirmed a flexible fiber regime in networks of thin fibrils. Furthermore, collagen fibrils in both networks were softened by the adsorption of highly negatively charged sulfonated polymers and colloidal probe force measurements of network elastic modulus again proofed the occurrence of the two different physical network regimes. Our cell assays revealed that the cellular behavior (morphology, clustering, invasiveness, matrix metalloproteinase (MMP) activity) of the 'weakly invasive' MCF-7 and 'highly invasive' MDA-MB-231 breast cancer cell lines is distinctively affected by the physical (enthalpic/entropic) network regime, and cannot be explained by changes of the network elastic modulus, alone. These results highlight an essential pathway, albeit frequently overlooked, how the physical characteristics of fibrillar ECMs affect cellular behavior. Considering the coexistence of diverse physical network regimes of the ECM in vivo, our findings underscore their critical role of ECM's physical network regimes in tumor progression and other cell functions, and moreover emphasize the significance of 3D in vitro collagen network models for quantifying cell responses in both healthy and pathological states.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Philipp Riedl
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Maria Schricker
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, Leipzig 04009, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Debnath B, Narasimhan BN, Fraley SI, Rangamani P. Modeling collagen fibril degradation as a function of matrix microarchitecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607470. [PMID: 39185199 PMCID: PMC11343160 DOI: 10.1101/2024.08.10.607470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability. In vitro, collagen matrices of the same concentration but different microarchitectures also vary in degradation rate. How do different microarchitectures affect matrix degradation? To answer this question, we developed a computational model of collagen degradation. We first developed a lattice model that describes collagen degradation at the scale of a single fibril. We then extended this model to investigate the role of microarchitecture using Brownian dynamics simulation of enzymes in a multi-fibril three dimensional matrix to predict its degradability. Our simulations predict that the distribution of enzymes around the fibrils is non-uniform and depends on the microarchitecture of the matrix. This non-uniformity in enzyme distribution can lead to different extents of degradability for matrices of different microarchitectures. Our model predictions were tested using in vitro experiments with synthesized collagen gels of different microarchitectures. Experiments showed that indeed degradation of collagen depends on the matrix architecture and fibril thickness. In summary, our study shows that the microarchitecture of the collagen matrix is an important determinant of its degradability.
Collapse
Affiliation(s)
- B. Debnath
- Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA
| | - B. N. Narasimhan
- Department of Bioengineering, University of California San Diego, CA 92093, USA
| | - S. I. Fraley
- Department of Bioengineering, University of California San Diego, CA 92093, USA
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA
| |
Collapse
|
5
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
6
|
Avey AM, Devos F, Roberts AG, Essawy ESE, Baar K. Inhibiting JAK1, not NF-κB, reverses the effect of pro-inflammatory cytokines on engineered human ligament function. Matrix Biol 2024; 125:100-112. [PMID: 38151137 DOI: 10.1016/j.matbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The role of inflammation in chronic tendon/ligament injury is hotly debated. There is less debate about inflammation following acute injury. To better understand the effect of acute inflammation, in this study we developed a multi-cytokine model of inflammatory tendinitis. The combined treatment with TNF-α, IL-1β, and IL-6, at dosages well below what are routinely used in vitro, decreased the mechanical properties and collagen content of engineered human ligaments. Treatment with this cytokine mixture resulted in an increase in phospho-NF-κB and MMP-1, did not affect procollagen production, and decreased STAT3 phosphorylation relative to controls. Using this more physiologically relevant model of acute inflammation, we inhibited NF-κB or JAK1 signaling in an attempt to reverse the negative effects of the cytokine mixture. Surprisingly, NF-κB inhibition led to an even greater decrease in mechanical function and collagen content. By contrast, inhibiting JAK1 led to an increase in mechanical properties, collagen content and thermal stability concomitant with a decrease in MMP-1. Our results suggest that inhibition of JAK1, not NF-κB, reverses the negative effects of pro-inflammatory cytokines on collagen content and mechanics in engineered human ligaments.
Collapse
Affiliation(s)
- Alec M Avey
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Florence Devos
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Albany G Roberts
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States
| | - El Sayed El Essawy
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Sport Psychology, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States; VA Northern California Health Care System, Mather, CA 95655, United States.
| |
Collapse
|
7
|
Saini K, Cho S, Tewari M, Jalil AR, Wang M, Kasznel AJ, Yamamoto K, Chenoweth DM, Discher DE. Pan-tissue scaling of stiffness versus fibrillar collagen reflects contractility-driven strain that inhibits fibril degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559759. [PMID: 37808742 PMCID: PMC10557712 DOI: 10.1101/2023.09.27.559759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Polymer network properties such as stiffness often exhibit characteristic power laws in polymer density and other parameters. However, it remains unclear whether diverse animal tissues, composed of many distinct polymers, exhibit such scaling. Here, we examined many diverse tissues from adult mouse and embryonic chick to determine if stiffness ( E tissue ) follows a power law in relation to the most abundant animal protein, Collagen-I, even with molecular perturbations. We quantified fibrillar collagen in intact tissue by second harmonic generation (SHG) imaging and from tissue extracts by mass spectrometry (MS), and collagenase-mediated decreases were also tracked. Pan-tissue power laws for tissue stiffness versus Collagen-I levels measured by SHG or MS exhibit sub-linear scaling that aligns with results from cellularized gels of Collagen-I but not acellular gels. Inhibition of cellular myosin-II based contraction fits the scaling, and combination with inhibitors of matrix metalloproteinases (MMPs) show collagenase activity is strain - not stress- suppressed in tissues, consistent with past studies of gels and fibrils. Beating embryonic hearts and tendons, which differ in both collagen levels and stiffness by >1000-fold, similarly suppressed collagenases at physiological strains of ∼5%, with fiber-orientation regulating degradation. Scaling of E tissue based on 'use-it-or-lose-it' kinetics provides insight into scaling of organ size, microgravity effects, and regeneration processes while suggesting contractility-driven therapeutics.
Collapse
|
8
|
Singh S, Winkelstein BA. Characterization of the L4/L5 rat facet capsular ligament macromechanical and microstructural responses to tensile failure loading. J Biomech 2023; 157:111742. [PMID: 37523884 PMCID: PMC10475220 DOI: 10.1016/j.jbiomech.2023.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Low back pain is a prevalent condition that affects the global population. The lumbar facet capsular ligament is a source of pain since the collagenous tissue of the ligament is innervated with sensory neurons that deform with the capsule's stretch. Regional differences in the microstructural and macrostructural anatomy of the spinal facets affect its capsule's mechanical behavior. Although there are many studies of the cervical facet in human and rodent models, the lumbar capsular ligament's multiscale behavior is less well-defined. This study characterizes the macroscale and fiber-scale changes of the rat lumbar facet capsule during tensile failure loading. An integrated polarized light imaging setup captured local fiber alignment during 0.08 mm/s distraction of 7 lumbar facets. Force, displacement, strain, and circular variance were measured at several points along the failure curve: the first instance when the local collagen fiber network realigns differentially (anomalous realignment), yield, the first peak in force corresponding to the capsule's first failure, and peak force, defined as ultimate rupture. Those outcomes were compared across events. While each of force, displacement, and average maximum principal strain increased with applied tension, so did the circular variance of the collagen, suggesting that the fibers were becoming more disorganized. From the fiber alignment maps collected at each mechanical event, the number of anomalous realignment events were counted and found to increase dramatically with loading. The increased collagen disorganization and increasing regions of such disorganization in the facet capsule during loading can provide insights about how loading to the ligament afferent nerves may be activated and thereby produce pain.
Collapse
Affiliation(s)
- Sagar Singh
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104, United States; Department of Neurosurgery, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Faisal TR, Adouni M, Dhaher YY. Surrogate modeling of articular cartilage degradation to understand the synergistic role of MMP-1 and MMP-9: a case study. Biomech Model Mechanobiol 2023; 22:43-56. [PMID: 36201069 DOI: 10.1007/s10237-022-01630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
A characteristic feature of arthritic diseases is cartilage extracellular matrix (ECM) degradation, often orchestrated by the overexpression of matrix metalloproteinases (MMPs) and other proteases. The interplay between fibril level degradation and the tissue-level aggregate response to biomechanical loading was explored in this work by a computational multiscale cartilaginous model. We considered the relative abundance of collagenases (MMP-1) and gelatinases (MMP-9) in surrogate models, where the diffusion (spatial distribution) of these enzymes and the subsequent, co-localized fibrillar damage were spatially randomized with Latin Hypercube Sampling. The computational model was constructed by incorporating the results from prior molecular dynamics simulations (tensile test) of microfibril degradation into a hyper-elastoplastic fibril-reinforced cartilage model. Including MMPs-mediated collagen fibril-level degradation in computational models may help understand the ECM pathomechanics at the tissue level. The mechanics of cartilage tissue and fibril show variations in mechanical integrity depending on the different combinations of MMPs-1 and 9 with a concentration ratio of 1:1, 3:1, and 1:3 in simulated indentation tests. The fibril yield (local failure) was initiated at 20.2 ± 3.0 (%) and at 23.0 ± 2.8 (%) of bulk strain for col 1:gel 3 and col 3: gel 1, respectively. The reduction in failure stress (global response) was 39.8% for col 1:gel 3, 37.5% for col 1:gel 1, and 36.7% for col 3:gel 1 compared with the failure stress of the degradation free tissue. These findings indicate that cartilage's global and local mechanisms of failure largely depend on the relative abundance of the two key enzymes-collagenase (MMP-1) and gelatinase (MMP-9) and the spatial characteristics of diffusion across the layers of the cartilage ECM.
Collapse
Affiliation(s)
- Tanvir R Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70508, USA.
| | - Malek Adouni
- Department of Mechanical Engineering, Australian College of Kuwait, East Mishref, Kuwait City, P.O. Box 1411, Kuwait
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwest, Dallas, TX, USA
- Department of Orthopedic Surgery, University of Texas Southwest, Dallas, TX, USA
- Department of Biomedical Engineering, University of Texas Southwest, Dallas, TX, USA
| |
Collapse
|
10
|
Nango H, Ohtani M. S-1-propenyl-L-cysteine suppresses lipopolysaccharide-induced expression of matrix metalloproteinase-1 through inhibition of tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in human gingival fibroblasts. PLoS One 2023; 18:e0284713. [PMID: 37083725 PMCID: PMC10121056 DOI: 10.1371/journal.pone.0284713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Periodontal disease is the most common dental health problem characterized by the destruction of connective tissue and the resorption of alveolar bone resulting from a chronic infection associated with pathogenic bacteria in the gingiva. Aged garlic extract has been reported to improve gingival bleeding index and probing pocket depth score in patients with mild to moderate periodontitis. Although our previous study found that aged garlic extract and its constituents suppressed the tumor necrosis factor-α-induced inflammatory responses in a human gingival epithelial cell line, the mechanism underlying the effect of aged garlic extract on the destruction of the gingiva remains unclear. The present study investigated the effect of S-1-propenyl-L-cysteine, one of the major sulfur bioactive compounds in aged garlic extract, on the lipopolysaccharide-induced expression of matrix metalloproteinases in human gingival fibroblasts HGF-1 cells. Matrix metalloproteinases are well known to be closely related to the destruction of the gingiva. We found that S-1-propenyl-L-cysteine suppressed the lipopolysaccharide-induced expression and secretion of matrix metalloproteinase-1 in HGF-1 cells. In addition, S-1-propenyl-L-cysteine inhibited the lipopolysaccharide-induced phosphorylation of epidermal growth factor receptor and expression of the active form of tumor necrosis factor-α converting enzyme. Furthermore, the inhibitors of epidermal growth factor receptor tyrosine kinase and tumor necrosis factor-α converting enzyme, AG-1478 and TAPI-1, respectively, reduced the lipopolysaccharide-induced protein level of matrix metalloproteinase-1, as did S-1-propenyl-L-cysteine. Taken together, these results suggested that S-1-propenyl-L-cysteine suppresses the lipopolysaccharide-induced expression of matrix metalloproteinase-1 through the blockade of the tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in gingival fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| |
Collapse
|
11
|
Qi L, Han H, Han MM, Sun Y, Xing L, Jiang HL, Pandol SJ, Li L. Remodeling of imbalanced extracellular matrix homeostasis for reversal of pancreatic fibrosis. Biomaterials 2023; 292:121945. [PMID: 36508773 DOI: 10.1016/j.biomaterials.2022.121945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic fibrosis is mainly manifested by imbalance in extracellular matrix (ECM) homeostasis due to excessive deposition of collagen in pancreas by activated pancreatic stellate cells (PSCs). Recently, some drugs have exhibited therapeutic potentials for the treatment of pancreatic fibrosis; however, currently, no effective clinical strategy is available to remodel imbalanced ECM homeostasis because of inferior targeting abilities of drugs and collagen barriers that hinder the efficient delivery of drugs. Herein, we design and prepare collagen-binding peptide (CBP) and collagenase I co-decorated dual drug-loaded lipid nanoparticles (named AT-CC) for pancreatic fibrosis therapy. Specifically, AT-CC can target fibrotic pancreas via the CBP and degrade excess collagen by the grafted collagenase I, thereby effectively delivering all-trans-retinoic acid (ATRA) and ammonium tetrathiomolybdate (TM) into pancreas. The released ATRA can reduce collagen overproduction by inhibiting the activation of PSCs. Moreover, the released TM can restrain lysyloxidase activation, consequently reducing collagen cross-linking. The combination of ATRA and TM represses collagen synthesis and reduces collagen cross linkages to restore ECM homeostasis. The results of this research suggest that AT-CC is a safe and efficient collagen-targeted degradation drug-delivery system for reversing pancreatic fibrosis. Furthermore, the strategy proposed herein will offer an innovative platform for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Basic and Translational Pancreatic Research, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, 210009, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Parsons R, Sestito JM, Luke BS. Computational Analysis and Optimization of Geometric Parameters for Fibrous Scaffold Design. ACS OMEGA 2022; 7:41449-41460. [PMID: 36406516 PMCID: PMC9670901 DOI: 10.1021/acsomega.2c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Bioresorbable tissue scaffolds are a promising potential treatment for soft-tissue injuries, such as tendon and ligament rupture. These materials provide temporary support to the injured tissues and provide biological cues that promote healing. Previous work has shown that fiber alignment, diameter, and spacing affect cell morphology and migration, which impact healing of the target tissue. However, previous work has not fully characterized the isolated effects of fiber alignment, diameter, and spacing on cell morphology and migration, nor has it revealed the ideal combinations of diameter and spacing to promote cell migration and elongation on fibrous scaffolds. To clarify these effects, a mesoscale model was formulated to describe cell movement on a fibrous scaffold and analyze the isolated effects of fiber alignment, diameter, and spacing. After analyzing the isolated effects, an optimization was performed to find combinations of fiber diameter and spacing that maximized cell elongation and migration, which may lead to improved healing of the target tissue. This analysis may ultimately aid the design of scaffold materials to improve outcomes after tendon or ligament rupture.
Collapse
|
13
|
Yang MY, Lin YJ, Han MM, Bi YY, He XY, Xing L, Jeong JH, Zhou TJ, Jiang HL. Pathological collagen targeting and penetrating liposomes for idiopathic pulmonary fibrosis therapy. J Control Release 2022; 351:623-637. [PMID: 36191673 DOI: 10.1016/j.jconrel.2022.09.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease in which collagen progressively deposits in the supporting framework of the lungs. The pathological collagen creates a recalcitrant barrier in mesenchyme for drug penetration, thus greatly restricting the therapeutical efficacy. On the other hand, this overloaded collagen is gradually exposed to the bloodstream at fibrotic sites because of the vascular hyperpermeability, thus serving as a potential target. Herein, pathological collagen targeting and penetrating liposomes (DP-CC) were constructed to deliver anti-fibrotic dual drugs including pirfenidone (PFD) and dexamethasone (DEX) deep into injured alveoli. The liposomes were co-decorated with collagen binding peptide (CBP) and collagenase (COL). CBP could help vehicle recognize the pathological collagen and target the fibrotic lungs efficiently because of its high affinity to collagen, and COL assisted in breaking through the collagen barrier and delivering vehicle to the center of injured sites. Then, the released dual drugs developed a synergistic anti-fibrotic effect to repair the damaged epithelium and remodel the extracellular matrix (ECM), thus rebuilding the lung architecture. This study provides a promising strategy to deliver drugs deep into pathological collagen accumulated sites for the enhanced treatment of IPF.
Collapse
Affiliation(s)
- Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Jun Lin
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Shen J, Zhang W, Jiang Q, Gao P, Xu Y, Xia W. The role of cathepsin L on structural changes of collagen fibers involved in textural deterioration of chilled grass carp (Ctenopharyngodon idella) fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5858-5866. [PMID: 35426126 DOI: 10.1002/jsfa.11935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Textural deterioration is a serious problem in chilled fish flesh. Cysteine proteinases are proposed to participate in disintegration of collagen fibers during this process, while its mechanism remains elusive. In the present study, a cysteine proteinase was purified from grass carp muscle and identified by mass spectrometry, and its effect on structural changes of collagen fibers was investigated. RESULTS During storage at 4 °C, cysteine proteinase activity in fillets increased to 1.53-fold at day 5 and maintained a high level later, and this variable was related to a decline in shear force and an increase in drip loss. A 29 kDa cysteine proteinase was purified through ammonium sulfate precipitation and column chromatography, and identified as cathepsin L. Cathepsin L caused collagen fibers to partly disintegrate into fibril bundles and individual fibrils at 48 h, while the triple helical structure of collagen molecules remained stable. Release of soluble proteins and glycosaminoglycans from cathepsin L-treated collagen fibers was time dependent, coinciding with a release of 4.12 ± 0.13% and 8.57 ± 0.03% at 48 h respectively. However, 0.85 ± 0.02% of hydroxyproline was freed from cathepsin L-treated collagen fibers at 48 h. Furthermore, scanning electron microscopy revealed that the inhibitory effect of cathepsin L could retard the destruction of intramuscular connective tissues (IMCTs). CONCLUSION These results indicated that cathepsin L might be involved in collagen fiber breakdown by degrading collagen-associated proteoglycans during textural deterioration of grass carp. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiandong Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Blanchard AT, Piranej S, Pan V, Salaita K. Adhesive Dynamics Simulations of Highly Polyvalent DNA Motors. J Phys Chem B 2022; 126:7495-7509. [PMID: 36137248 DOI: 10.1021/acs.jpcb.2c01897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular motors, such as myosin and kinesin, perform diverse tasks ranging from vesical transport to bulk muscle contraction. Synthetic molecular motors may eventually be harnessed to perform similar tasks in versatile synthetic systems. The most promising type of synthetic molecular motor, the DNA walker, can undergo processive motion but generally exhibits low speeds and virtually no capacity for force generation. However, we recently showed that highly polyvalent DNA motors (HPDMs) can rival biological motors by translocating at micrometer per minute speeds and generating 100+ pN of force. Accordingly, DNA nanotechnology-based designs may hold promise for the creation of synthetic, force-generating nanomotors. However, the dependencies of HPDM speed and force on tunable design parameters are poorly understood and difficult to characterize experimentally. To overcome this challenge, we present RoloSim, an adhesive dynamics software package for fine-grained simulations of HPDM translocation. RoloSim uses biophysical models for DNA duplex formation and dissociation kinetics to explicitly model tens of thousands of molecular scale interactions. These molecular interactions are then used to calculate the nano- and microscale motions of the motor. We use RoloSim to uncover how motor force and speed scale with several tunable motor properties such as motor size and DNA duplex length. Our results support our previously defined hypothesis that force scales linearly with polyvalency. We also demonstrate that HPDMs can be steered with external force, and we provide design parameters for novel HPDM-based molecular sensor and nanomachine designs.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Selma Piranej
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Victor Pan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States.,Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Shen Y, Weitz DA, Forde NR, Shayegan M. Line optical tweezers as controllable micromachines: techniques and emerging trends. SOFT MATTER 2022; 18:5359-5365. [PMID: 35819100 DOI: 10.1039/d2sm00259k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three decades, the technology of optical tweezers has made significant contributions in various scientific areas, including optics, photonics, and nanosciences. Breakthroughs include manipulating particles in both static and dynamic ways, particle sorting, and constructing controllable micromachines. Advances in shaping and controlling the laser beam profile enable control over the position and location of the trap, which has many possible applications. A line optical tweezer (LOT) can be created by rapidly moving a spot optical tweezer using a tool such as a galvanometer mirror or an acousto-optic modulator. By manipulating the intensity profile along the beam line to be asymmetric or non-uniform, the technique can be adapted to various specific applications. Among the many exciting applications of line optical tweezers, in this work, we discuss in detail applications of LOT, including probing colloidal interactions, transporting and sorting of colloidal microspheres, self-propelled motions, trapping anisotropic particles, exploring colloidal interactions at fluid-fluid interfaces, and building optical thermal ratchets. We further discuss prospective applications in each of these areas of soft matter, including polymeric and biological soft materials.
Collapse
Affiliation(s)
- Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Marjan Shayegan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
17
|
Hong-In P, Chaiyana W. Potential cosmeceutical lamellar liquid crystals containing black longan (Dimocarpus longan Lour.) seed extract for MMP-1 and hyaluronidase inhibition. Sci Rep 2022; 12:7683. [PMID: 35538179 PMCID: PMC9091220 DOI: 10.1038/s41598-022-11554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aims of this study were to evaluate the biological activities of black Dimocarpus longan Lour. seed extracts and develop a lamellar liquid crystal (LLC). Different solvents, including petroleum ether, ethyl acetate, and 95% v/v ethanol, were used in the maceration of black D. longan seeds. The inhibitory activities on matrix metalloproteinase-1 (MMP-1) and hyaluronidase were evaluated. The irritating potency of D. longan seed extracts was determined using the hen's egg chorioallantoic membrane test. The extract with the strongest anti-ageing activities and no irritant impact was examined for its chemical contents using high-performance liquid chromatography and incorporated into the LLC. Various factors affecting the LLC formulations, including surfactant types and amounts, thickening agent types and amounts, and various oil types, were investigated. The results demonstrated that the ethyl acetate extract (EtOAc) was the most potent inhibitor of MMP-1 (IC50 = 21.7 ± 5.4 µg/mL) and hyaluronidase (oleanolic acid equivalent = 0.44 ± 0.03 g per g extract). Interestingly, its MMP-1 inhibition was equivalent to that of oleanolic acid, corilagin, and gallic acid. Furthermore, its hyaluronidase inhibition was equivalent to that of gallic acid and ellagic acid. Gallic acid, which was the most abundant compound (15.6% ± 0.06% w/w) was suggested as the compound responsible for the biological activities of EtOAc extract. Considering its potential anti-skin ageing properties with no irritation of EtOAc extract, it was incorporated into the most suitable LLC, which was composed of 5% w/w Lexfeel® D5 oil, 0.5% w/w Carbopol® U21, 2% w/w Liquid Crystal Cream Maker, and 92.5% w/w DI water. The LLC containing EtOAc extract presented birefringence under a polarizing light microscope, indicating its crystallinity. The formulation had good stability after heating-cooling cycles in terms of external appearance, crystallinity, viscosity, and pH (5.5). As a result, it is recommended as a potential cosmeceutical formulation for anti-skin wrinkling. It is proposed that more research be conducted on the safety and efficacy of the treatment on human volunteers.
Collapse
Affiliation(s)
- Preaploy Hong-In
- Master's Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
18
|
Kamboj S, Harms C, Wright D, Nash A, Kumar L, Klein-Seetharaman J, Sarkar SK. Identification of allosteric fingerprints of alpha-synuclein aggregates in matrix metalloprotease-1 and substrate-specific virtual screening with single molecule insights. Sci Rep 2022; 12:5764. [PMID: 35388085 PMCID: PMC8987064 DOI: 10.1038/s41598-022-09866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.
Collapse
Affiliation(s)
- Sumaer Kamboj
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
19
|
Mixon A, Bahar-Moni AS, Faisal TR. Mechanical characterization of articular cartilage degraded combinedly with MMP-1 and MMP-9. J Mech Behav Biomed Mater 2022; 129:105131. [DOI: 10.1016/j.jmbbm.2022.105131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
20
|
Shen J, Zhang W, Gao P, Xu Y, Xia W. The role of endogenous serine proteinase on disintegration of collagen fibers from grass carp (Ctenopharyngodon idellus). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Mixon A, Savage A, Bahar-Moni AS, Adouni M, Faisal T. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties. Sci Rep 2021; 11:14409. [PMID: 34257325 PMCID: PMC8277889 DOI: 10.1038/s41598-021-93744-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a crucial role in enzymatically digesting cartilage extracellular matrix (ECM) components, resulting in degraded cartilage with altered mechanical loading capacity. Overexpression of MMPs is often caused by trauma, physiologic conditions and by disease. To understand the synergistic impact MMPs have on cartilage biomechanical properties, MMPs from two subfamilies: collagenase (MMP-1) and gelatinase (MMP-9) were investigated in this study. Three different ratios of MMP-1 (c) and MMP-9 (g), c1:g1, c3:g1 and c1:g3 were considered to develop a degradation model. Thirty samples, harvested from bovine femoral condyles, were treated in groups of 10 with one concentration of enzyme mixture. Each sample was tested in a healthy state prior to introducing degradative enzymes to establish a baseline. Samples were subjected to indentation loading up to 20% bulk strain. Both control and treated samples were mechanically and histologically assessed to determine the impact of degradation. Young's modulus and peak load of the tissue under indentation were compared between the control and degraded cartilage explants. Cartilage degraded with the c3:g1 enzyme concentration resulted in maximum 33% reduction in stiffness and peak load compared to the other two concentrations. The abundance of collagenase is more responsible for cartilage degradation and reduced mechanical integrity.
Collapse
Affiliation(s)
- Allison Mixon
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Andrew Savage
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Ahmed Suparno Bahar-Moni
- Department of Orthopaedics, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Malek Adouni
- Department of Mechanical Engineering, Australian College of Kuwait, P.O. Box 1411, East Meshrif, Kuwait
| | - Tanvir Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA.
| |
Collapse
|
22
|
Blanchard AT. Burnt bridge ratchet motor force scales linearly with polyvalency: a computational study. SOFT MATTER 2021; 17:6056-6062. [PMID: 34151336 DOI: 10.1039/d1sm00676b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nano- and micro-scale burnt bridge ratchet motors, which translocate via "guide" molecules that bind to and degrade a field of "fuel" molecules, have recently emerged in several biological and engineering contexts. The capacity of these motors to generate mechanical forces remains an open question. Here, chemomechanical modeling suggests that BBR force scales linearly with the steady-state number of guide-fuel bonds.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA and Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
23
|
Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 2021; 12:12/529/eaaw6143. [PMID: 32024800 DOI: 10.1126/scitranslmed.aaw6143] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. .,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Pathology, Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamar Y Feinberg
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Korosec CS, Jindal L, Schneider M, Calderon de la Barca I, Zuckermann MJ, Forde NR, Emberly E. Substrate stiffness tunes the dynamics of polyvalent rolling motors. SOFT MATTER 2021; 17:1468-1479. [PMID: 33347523 DOI: 10.1039/d0sm01811b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nature has evolved many mechanisms for achieving directed motion on the subcellular level. The burnt-bridges ratchet (BBR) is one mechanism used to achieve superdiffusive molecular motion over long distances through the successive cleavage of surface-bound energy-rich substrate sites. This mechanism has been associated with both nanoscale and microscale movement, with the latter accomplished through polyvalent interactions between a large hub (e.g. influenza virus) and substrate (e.g. cell surface receptors). Experimental successes in achieving superdiffusive motion by synthetic polyvalent BBRs have raised questions about the dynamics of their motility, including whether rolling or translation is better able to direct motion of microscale spherical hubs. Here we simulate the three-dimensional dynamics of a polyvalent sphere moving on and cleaving an elastic substrate. We find that substrate stiffness plays an important role in controlling both the motor's mode of motility and its directional persistence. As we tune lateral substrate stiffness from soft to stiff we find there exists an intermediate value that optimizes rolling behaviour. We also find that there is an optimal substrate stiffness for maximizing persistence length, while stiffness does not influence as strongly the superdiffusive dynamics of the particle. Lastly, we examine the effect of substrate density, and show that softer landscapes are better able to buffer against decreases in substrate occupancy, with the spherical motor maintaining superdiffusive motion more on softer landscapes than on stiff landscapes as occupancy drops. Our results highlight the importance of surface in controlling the motion of polyvalent BBRs.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Lavisha Jindal
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Mathew Schneider
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Ignacio Calderon de la Barca
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Martin J Zuckermann
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | - Eldon Emberly
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
25
|
Kumar L, Planas-Iglesias J, Harms C, Kamboj S, Wright D, Klein-Seetharaman J, Sarkar SK. Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin. Sci Rep 2020; 10:20615. [PMID: 33244162 PMCID: PMC7692495 DOI: 10.1038/s41598-020-77699-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Chase Harms
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Sumaer Kamboj
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| |
Collapse
|
26
|
Manka SW, Brew K. Thermodynamic and Mechanistic Insights into Coupled Binding and Unwinding of Collagen by Matrix Metalloproteinase 1. J Mol Biol 2020; 432:5985-5993. [PMID: 33058879 DOI: 10.1016/j.jmb.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Local unwinding of the collagen triple helix is a necessary step for initiating the collagen degradation cascade in extracellular matrices. A few matrix metalloproteinases (MMPs) are known to support this key process, but its energetic aspects remain unknown. Here, we captured the thermodynamics of the triple helix unwinding by monitoring interactions between a collagen peptide and MMP-1(E200A) - an active-site mutant of an archetypal vertebrate collagenase - at increasing temperatures, using isothermal titration calorimetry (ITC). Coupled binding and unwinding manifests as a curved relationship between the total enthalpy change and temperature of the reaction, producing increasingly negative heat capacity change (ΔΔCp ≈ -36.3 kcal/molK2). A specially designed solid-phase binding and cleavage assay (SPBCA) reported strain in the catalytically relevant unwound state, suggesting that this state is distinct from the horizon of sampled conformations of the collagenase-susceptible site. MMP-1 appears to blend selected fit with induced fit mechanisms to catalyse collagen unwinding prior to cleavage of individual collagen chains.
Collapse
Affiliation(s)
- Szymon W Manka
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Keith Brew
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
27
|
TGF-β Activity Related to the Use of Collagen Membranes: In Vitro Bioassays. Int J Mol Sci 2020; 21:ijms21186636. [PMID: 32927851 PMCID: PMC7555929 DOI: 10.3390/ijms21186636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Collagen membranes commonly used in guided bone regeneration are supposed to actively influence tissue regeneration and are not exclusively serving as passive barriers shielding away the soft tissue. The molecular mechanisms by which collagen membranes might affect tissue regeneration might involve the activation of transforming growth factor beta (TGF-β) signaling pathways. Here, we determined the TGF-β activity of supernatants and proteolytic lysates of five commercially available collagen membranes. The expression of TGF-β target genes interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 immunoassay in gingival fibroblasts. TGF-β signaling activation was further assessed by blocking the TGF-β receptor I kinase, a TGF-β neutralizing antibody, and showing the nuclear localization of phosphorylated Smad3 and total Smad2/3. We could identify two collagen membranes whose supernatants and lysates caused a robust increase of TGF-β receptor I kinase-dependent expression of IL11 in gingival fibroblasts. Moreover, the supernatant of a particular one membrane caused the nuclear localization of phosphorylated Smad3 and Smad2/3 in the fibroblasts. These results strengthen the evidence that some collagen membranes possess an intrinsic TGF-β activity that might actively influence the process of guided bone regeneration.
Collapse
|
28
|
Weber MC, Fischer L, Damerau A, Ponomarev I, Pfeiffenberger M, Gaber T, Götschel S, Lang J, Röblitz S, Buttgereit F, Ehrig R, Lang A. Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation. Biofabrication 2020; 12:045016. [PMID: 32598334 DOI: 10.1088/1758-5090/aba08f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL-1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.
Collapse
Affiliation(s)
- Marie-Christin Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany. These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kumar L, Nash A, Harms C, Planas-Iglesias J, Wright D, Klein-Seetharaman J, Sarkar SK. Allosteric Communications between Domains Modulate the Activity of Matrix Metalloprotease-1. Biophys J 2020; 119:360-374. [PMID: 32585130 PMCID: PMC7376139 DOI: 10.1016/j.bpj.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, Colorado
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Department of Chemistry, Colorado School of Mines, Golden, Colorado
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, Colorado.
| |
Collapse
|
30
|
Baldwin SJ, Sampson J, Peacock CJ, Martin ML, Veres SP, Lee JM, Kreplak L. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility. J Mech Behav Biomed Mater 2020; 110:103849. [PMID: 32501220 DOI: 10.1016/j.jmbbm.2020.103849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Interestingly, serial kink structures have been shown to form at discrete locations along the length of collagen fibrils from some mechanically overloaded tendons. The formation of these kinks at discrete locations along the length of fibrils (discrete plasticity) may indicate pre-existing structural variations at a length scale greater than that of the D-banding. Using a high velocity nanomechanical mapping technique, 25 tendon collagen fibrils, were mechanically and structurally mapped along 10 μm of their length in dehydrated and hydrated states with resolutions of 20 nm and 8 nm respectively. Analysis of the variation in hydrated indentation modulus along individual collagen fibrils revealed a micro-scale structural variation not observed in the hydrated or dehydrated structural maps. The spacing distribution of this variation was similar to that observed for inter-kink distances seen in SEM images of discrete plasticity type damage. We propose that longitudinal variation in collagen fibril structure leads to localized mechanical susceptibility to damage under overload. Furthermore, we suggest that this variation has its origins in heterogeneous crosslink density along the length of collagen fibrils. The presence of pre-existing sites of mechanical vulnerability along the length of collagen fibrils may be important to biological remodeling of tendon, with mechanically-activated sites having distinct protein binding capabilities and enzyme susceptibility.
Collapse
Affiliation(s)
- Samuel J Baldwin
- Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, 6310 Coburg Road, Main Office Rm 218, Halifax, NS, B3H 4R2, Canada
| | - Josh Sampson
- Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, 6310 Coburg Road, Main Office Rm 218, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Peacock
- Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, 6310 Coburg Road, Main Office Rm 218, Halifax, NS, B3H 4R2, Canada
| | - Meghan L Martin
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Samuel P Veres
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada; Division of Engineering, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - J Michael Lee
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada; Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, 6310 Coburg Road, Main Office Rm 218, Halifax, NS, B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
31
|
Dufour AM, Borowczyk-Michalowska J, Alvarez M, Truchetet ME, Modarressi A, Brembilla NC, Chizzolini C. IL-17A Dissociates Inflammation from Fibrogenesis in Systemic Sclerosis. J Invest Dermatol 2020; 140:103-112.e8. [DOI: 10.1016/j.jid.2019.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
|
32
|
Abstract
Many proteins in cells and in the extracellular matrix assemble into force-bearing networks, and some proteins clearly transduce mechanical stimuli into biochemical signals. Although structural mechanisms remain poorly understood, the designs of such proteins enable mechanical forces to either inhibit or facilitate interactions of protein domains with other proteins, including small molecules and enzymes, including proteases and kinases. Here, we review some of the structural proteins and processes that exhibit distinct modes of force-dependent signal conversion.
Collapse
Affiliation(s)
- Karanvir Saini
- Molecular and Cell Biophysics Lab , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
33
|
Fan QQ, Zhang CL, Qiao JB, Cui PF, Xing L, Oh YK, Jiang HL. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials 2019; 230:119616. [PMID: 31837823 DOI: 10.1016/j.biomaterials.2019.119616] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
As hepatic stellate cells (HSCs) are essential for hepatic fibrogenesis, HSCs targeted nano-drug delivery system is a research hotspot in liver fibrosis therapy. However, the excessive deposition of fibrosis collagen (mainly collagen I) in the space of Disse associated with hepatic fibrogenesis would significantly hinder nano-formulation delivery to HSCs. Here, we have prepared a collagenase I and retinol co-decorated polymeric micelle that possess nanodrill-like and HSCs-target function based on poly-(lactic-co-glycolic)-b-poly (ethylene glycol)-maleimide (PLGA-PEG-Mal) (named CRM) for liver fibrosis therapy. Upon encountering collagen I barrier, CRM exerted a nanodrill-like function, efficiently degrading pericellular collagen I and showing greater uptake by human HSCs than other micelle formulations. Besides, CRM could realize excellent accumulation in the fibrotic liver and accurate targeting to activated HSCs in mouse hepatic fibrosis model. Moreover, CRM loaded with nilotinib (CRM/NIL), a second-generation tyrosine kinase inhibitor used in the treatment of liver fibrosis, showed optimal antifibrotic activity. This work suggests that CRM with dual function is an efficient carrier for liver fibrosis drug delivery and collagenase I decorating could be a new strategy for building more efficient HSCs targeted nano-drug delivery system.
Collapse
Affiliation(s)
- Qian-Qian Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng-Lu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
35
|
Effects of collagenase type I on the structural features of collagen fibres from sea cucumber (Stichopus japonicus) body wall. Food Chem 2019; 301:125302. [PMID: 31387034 DOI: 10.1016/j.foodchem.2019.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022]
Abstract
The autolysis of sea cucumber is caused by depolymerisation of collagen fibres and unfolding of fibrils. In order to highlight the role of collagenase in sea cucumber autolysis, collagen fibres from sea cucumber were hydrolysed with collagenase type I. Electron microscopy (EM) results indicated the collagenase caused partial depolymerisation of collagen fibres into fibrils due to the fracture of proteoglycan interfibrillar bridges, as well as uncoiling of collagen fibrils. Chemical analysis and SDS-PAGE both indicated collagenase induced a time-dependent release of glycosaminoglycans (GAGs) and soluble proteins, which further demonstrated the degradation of proteoglycan interfibrillar bridges. Collagenase also degraded collagens by releasing soluble hydroxyproline (Hpy), with the dissolution rate of Hyp reaching 11.11% after 72 h. Fourier transform infrared analysis showed that collagenase caused the reduction of intermolecular interactions and structural order of collagen. Hence, collagenase participated in the autolysis of sea cucumber by deteriorating both macromolecular and monomeric collagens.
Collapse
|
36
|
Mechanistic Insight into the Binding and Swelling Functions of Prepeptidase C-Terminal (PPC) Domains from Various Bacterial Proteases. Appl Environ Microbiol 2019; 85:AEM.00611-19. [PMID: 31076429 DOI: 10.1128/aem.00611-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 02/03/2023] Open
Abstract
The bacterial prepeptidase C-terminal (PPC) domain can be found in the C termini of a wide variety of proteases that are secreted by marine bacteria. However, the functions of these PPC domains remain unknown due to a lack of systematic research. Here, the binding and swelling abilities of eight PPC domains from six different proteases were compared systematically via scanning electron microscopy (SEM), enzyme assays, and fluorescence spectroscopy. These PPC domains all possess the ability to bind and swell insoluble collagen. PPC domains can expose collagen monomers but cannot disrupt the pyridinoline cross-links or unwind the collagen triple helix. This ability can play a synergistic role alongside collagenase in collagen hydrolysis. Site-directed mutagenesis of the PPC domain from Vibrio anguillarum showed that the conserved polar and aromatic residues Y6, D26, D28, Y30, W42, E53, C55, and Y65 and the hydrophobic residues V10, V18, and I57 played key roles in substrate binding. Molecular dynamic simulations were conducted to investigate the interactions between PPC domains and collagen. Most PPC domains have a similar mechanism for binding collagen, and the hydrophobic binding pocket of PPC domains may play an important role in collagen binding. This study sheds light on the substrate binding mechanisms of PPC domains and reveals a new function for the PPC domains of bacterial proteases in substrate degradation.IMPORTANCE Prepeptidase C-terminal (PPC) domains commonly exist in the C termini of marine bacterial proteases. Reports examining PPC have been limited, and its functions remain unclear. In this study, eight PPCs from six different bacteria were examined. Most of the PPCs possessed the ability to bind collagen, feathers, and chitin, and all PPCs could significantly swell insoluble collagen. PPCs can expose collagen monomers but cannot disrupt pyridinoline cross-links or unwind the collagen triple helix. This swelling ability may also play synergistic roles in collagen hydrolysis. Comparative structural analyses and the examination of PPC mutants revealed that the hydrophobic binding pockets of PPCs may play important roles in collagen binding. This study provides new insights into the functions and ecological significance of PPCs, and the molecular mechanism of the collagen binding of PPCs was clarified, which is beneficial for the protein engineering of highly active PPCs and collagenase in the pharmaceutical industry and of artificial biological materials.
Collapse
|
37
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
38
|
Effect of collagenase-gelatinase ratio on the mechanical properties of a collagen fibril: a combined Monte Carlo-molecular dynamics study. Biomech Model Mechanobiol 2019; 18:1809-1819. [PMID: 31161353 PMCID: PMC6825035 DOI: 10.1007/s10237-019-01178-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Loading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation. However, no research has comprehensively examined the combined influences of collagenases and gelatinases on collagen degradation nor studied the mechanical consequences of biological degradation of collagen fibrils. Such preclinical examinations are required to gain insights into understanding, treating, and preventing degradation-related cartilage pathology. To develop these insights, we use sequential Monte Carlo and molecular dynamics simulations to probe the effect of enzymatic degradation on the structure and mechanics of a single collagen fibril. We find that the mechanical response depends on the ratio of collagenase to gelatinase—not just the amount of lost fibril mass—and we provide a possible mechanism underlying this phenomenon. Overall, by characterizing the combined influences of collagenases and gelatinases on fibril degradation and mechanics at the preclinical research stage, we gain insights that may facilitate the development of targeted interventions to prevent the damage and loss of mechanical integrity that can lead to cartilage pathology.
Collapse
|
39
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019. [PMID: 30633757 DOI: 10.1371/journal.pone.021021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
| |
Collapse
|
40
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019; 14:e0210218. [PMID: 30633757 PMCID: PMC6329490 DOI: 10.1371/journal.pone.0210218] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R. Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
- * E-mail:
| |
Collapse
|
41
|
Froberg J, Choi WS, Sedigh A, Anajafi T, Farmakes J, Yang Z, Mallik S, Srivastava DK, Choi Y. Real-time tracking of single-molecule collagenase on native collagen and partially structured collagen-mimic substrates. Chem Commun (Camb) 2018; 54:10248-10251. [PMID: 30091759 PMCID: PMC6145137 DOI: 10.1039/c8cc04601h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The dynamic interactions of an individual matrix metalloproteinase-1 were imaged and monitored in the presence of either triple-helical or non-triple-helical, partially structured collagen-mimic substrates. The enzyme exhibited ten-fold increased catalytic turnover rates with the structurally modified substrate by skipping the triple-helix unwinding step during the catalytic pathway.
Collapse
Affiliation(s)
- James Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota, 58108, United States,
| | - Woo-Sik Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota, 58108, United States,
| | - Abbas Sedigh
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tayebeh Anajafi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jasmin Farmakes
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - D. K. Srivastava
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota, 58108, United States,
| |
Collapse
|
42
|
Kumar L, Colomb W, Czerski J, Cox CR, Sarkar SK. Efficient protease based purification of recombinant matrix metalloprotease-1 in E. coli. Protein Expr Purif 2018; 148:59-67. [DOI: 10.1016/j.pep.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
43
|
Ramakrishnan N, Bradley RP, Tourdot RW, Radhakrishnan R. Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:273001. [PMID: 29786613 PMCID: PMC6066392 DOI: 10.1088/1361-648x/aac702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the micron scale, where cell organelles display an amazing complexity in their shape and organization, the physical properties of a biological membrane can be better-understood using continuum models subject to thermal (stochastic) undulations. Yet, the chief orchestrators of these complex and intriguing shapes are a specialized class of membrane associating often peripheral proteins called curvature remodeling proteins (CRPs) that operate at the molecular level through specific protein-lipid interactions. We review multiscale methodologies to model these systems at the molecular as well as at the mesoscopic and cellular scales, and also present a free energy perspective of membrane remodeling through the organization and assembly of CRPs. We discuss the morphological space of nearly planar to highly curved membranes, methods to include thermal fluctuations, and review studies that model such proteins as curvature fields to describe the emergent curved morphologies. We also discuss several mesoscale models applied to a variety of cellular processes, where the phenomenological parameters (such as curvature field strength) are often mapped to models of real systems based on molecular simulations. Much insight can be gained from the calculation of free energies of membranes states with protein fields, which enable accurate mapping of the state and parameter values at which the membrane undergoes morphological transformations such as vesiculation or tubulation. By tuning the strength, anisotropy, and spatial organization of the curvature-field, one can generate a rich array of membrane morphologies that are highly relevant to shapes of several cellular organelles. We review applications of these models to budding of vesicles commonly seen in cellular signaling and trafficking processes such as clathrin mediated endocytosis, sorting by the ESCRT protein complexes, and cellular exocytosis regulated by the exocyst complex. We discuss future prospects where such models can be combined with other models for cytoskeletal assembly, and discuss their role in understanding the effects of cell membrane tension and the mechanics of the extracellular microenvironment on cellular processes.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|
44
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
45
|
Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall. Food Chem 2018; 240:1254-1261. [DOI: 10.1016/j.foodchem.2017.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
|
46
|
Abstract
Fibrillar collagens (types I, II, III, V, XI, XXIV and XXVII) constitute a sub-group within the collagen family (of which there are 28 types in humans) whose functions are to provide three-dimensional frameworks for tissues and organs. These networks confer mechanical strength as well as signalling and organizing functions through binding to cellular receptors and other components of the extracellular matrix (ECM). Here we describe the structure and assembly of fibrillar collagens, and their procollagen precursors, from the molecular to the tissue level. We show how the structure of the collagen triple-helix is influenced by the amino acid sequence, hydrogen bonding and post-translational modifications, such as prolyl 4-hydroxylation. The numerous steps in the biosynthesis of the fibrillar collagens are reviewed with particular attention to the role of prolyl 3-hydroxylation, collagen chaperones, trimerization of procollagen chains and proteolytic maturation. The multiple steps controlling fibril assembly are then discussed with a focus on the cellular control of this process in vivo. Our current understanding of the molecular packing in collagen fibrils, from different tissues, is then summarized on the basis of data from X-ray diffraction and electron microscopy. These results provide structural insights into how collagen fibrils interact with cell receptors, other fibrillar and non-fibrillar collagens and other ECM components, as well as enzymes involved in cross-linking and degradation.
Collapse
Affiliation(s)
- Jordi Bella
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (UMR5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
47
|
Kar S, Smith DW, Gardiner BS, Grodzinsky AJ. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation. PLoS One 2016; 11:e0168047. [PMID: 27977731 PMCID: PMC5158201 DOI: 10.1371/journal.pone.0168047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system-direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and development of more pharmacologically effective osteoarthritis drugs, and to investigate possible therapeutic options.
Collapse
Affiliation(s)
- Saptarshi Kar
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - Bruce S. Gardiner
- Department of Physics and Nanotechnology, Murdoch University, Murdoch, WA, Australia
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
48
|
Solomonov I, Zehorai E, Talmi-Frank D, Wolf SG, Shainskaya A, Zhuravlev A, Kartvelishvily E, Visse R, Levin Y, Kampf N, Jaitin DA, David E, Amit I, Nagase H, Sagi I. Distinct biological events generated by ECM proteolysis by two homologous collagenases. Proc Natl Acad Sci U S A 2016; 113:10884-9. [PMID: 27630193 PMCID: PMC5047162 DOI: 10.1073/pnas.1519676113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is well established that the expression profiles of multiple and possibly redundant matrix-remodeling proteases (e.g., collagenases) differ strongly in health, disease, and development. Although enzymatic redundancy might be inferred from their close similarity in structure, their in vivo activity can lead to extremely diverse tissue-remodeling outcomes. We observed that proteolysis of collagen-rich natural extracellular matrix (ECM), performed uniquely by individual homologous proteases, leads to distinct events that eventually affect overall ECM morphology, viscoelastic properties, and molecular composition. We revealed striking differences in the motility and signaling patterns, morphology, and gene-expression profiles of cells interacting with natural collagen-rich ECM degraded by different collagenases. Thus, in contrast to previous notions, matrix-remodeling systems are not redundant and give rise to precise ECM-cell crosstalk. Because ECM proteolysis is an abundant biochemical process that is critical for tissue homoeostasis, these results improve our fundamental understanding its complexity and its impact on cell behavior.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eldar Zehorai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalit Talmi-Frank
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alla Shainskaya
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Zhuravlev
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Kartvelishvily
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Visse
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Kampf
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
49
|
Tonge TK, Ruberti JW, Nguyen TD. Micromechanical Modeling Study of Mechanical Inhibition of Enzymatic Degradation of Collagen Tissues. Biophys J 2016; 109:2689-2700. [PMID: 26682825 DOI: 10.1016/j.bpj.2015.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
This study investigates how the collagen fiber structure influences the enzymatic degradation of collagen tissues. We developed a micromechanical model of a fibrous collagen tissue undergoing enzymatic degradation based on two central hypotheses. The collagen fibers are crimped in the undeformed configuration. Enzymatic degradation is an energy activated process and the activation energy is increased by the axial strain energy density of the fiber. We determined the intrinsic degradation rate and characteristic energy for mechanical inhibition from fibril-level degradation experiments and applied the parameters to predict the effect of the crimped fiber structure and fiber properties on the degradation of bovine cornea and pericardium tissues under controlled tension. We then applied the model to examine the effect of the tissue stress state on the rate of tissue degradation and the anisotropic fiber structures that developed from enzymatic degradation.
Collapse
Affiliation(s)
- Theresa K Tonge
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
50
|
Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthritis Cartilage 2016; 24:1461-9. [PMID: 27049030 DOI: 10.1016/j.joca.2016.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/09/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize the initial events in the cleavage of type II collagen mediated by cathepsin K and demonstrate the presence of the resulting products in human and equine articular osteoarthritic cartilage. DESIGN Equine type II collagen was digested with cathepsin K and the cleavage products characterized by mass spectrometry. Anti-neoepitope antibodies were raised against the most N-terminal cleavage products and used to investigate the progress of collagen cleavage, in vitro, and the presence of cathepsin K-derived products in equine and human osteoarthritic cartilage. RESULTS Six cathepsin K cleavage sites distributed throughout the triple helical region were identified in equine type II collagen. Most of the cleavages occurred following a hydroxyproline residue. The most N-terminal site was within three residues of the previously identified site in bovine type II collagen. Western blotting using anti-neoepitope antibodies showed that the initial cleavages occurred at the N-terminal sites and this was followed by more extensive degradation resulting in products too small to be resolved by SDS gel electrophoresis. Immunohistochemical staining of cartilage sections from equine or human osteoarthritic joints showed staining in lesional areas which was not observed in non-arthritic sites. CONCLUSIONS Cathepsin K cleaves triple helical collagen by erosion from the N-terminus and with subsequent progressive cleavages. The liberated fragments can be detected in osteoarthritic cartilage and may represent useful biomarkers for disease activity.
Collapse
|