1
|
Reich MS, Ghouri S, Zabudsky S, Hu L, Le Corre M, Ng’iru I, Benyamini D, Shipilina D, Collins SC, Martins DJ, Vila R, Talavera G, Bataille CP. Trans-Saharan migratory patterns in Vanessa cardui and evidence for a southward leapfrog migration. iScience 2024; 27:111342. [PMID: 39654635 PMCID: PMC11626715 DOI: 10.1016/j.isci.2024.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Some insects, such as the painted lady butterfly Vanessa cardui, exhibit complex annual migratory cycles spanning multiple generations. Traversing extensive seas or deserts is often a required segment of these migratory journeys. We develop a bioavailable strontium isoscape for Europe and Africa and then use isotope geolocation combining hydrogen and strontium isotopes to estimate the natal origins of painted ladies captured north and south of the Sahara during spring and autumn, respectively. Our findings reveal moderate migratory connectivity across the Sahara characterized by a broad-front, parallel migration. We also report evidence of a leapfrog migration, wherein early autumn migrants from higher latitudes cover greater distances southward than their late autumn counterparts. This work represents a major advancement in understanding insect migratory patterns and connectivity, particularly across extensive barriers, which is essential for understanding population dynamics and predicting the impacts of global change on insect-mediated ecosystem services.
Collapse
Affiliation(s)
- Megan S. Reich
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Sana Ghouri
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Lihai Hu
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mael Le Corre
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- UMR 7209 - AASPE, Muséum national d'Histoire naturelle, Paris, France
| | - Ivy Ng’iru
- Mpala Research Centre, Nanyuki, Laikipia, Kenya
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | | | - Daria Shipilina
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Steve C. Collins
- African Butterfly Research Institute, Nairobi, Kenya
- McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL, USA
| | - Dino J. Martins
- Mpala Research Centre, Nanyuki, Laikipia, Kenya
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Roger Vila
- Institut de Biologia Evolutiva, CSIC - Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC - CMCNB, Barcelona, Catalonia, Spain
| | - Clément P. Bataille
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Xu Y, Song X, Li Y, Niu Y, Zhi L, Zong S, Tao J. Glycerol Metabolism is Important for the Low-Temperature Adaptation of a Global Quarantine Pest Anoplophora glabripennis Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17868-17879. [PMID: 39083594 DOI: 10.1021/acs.jafc.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Anoplophora glabripennis is a critical global quarantine pest. Recently, its distribution has been extended to colder and higher-latitude regions. The adaptation to low temperatures is vital for the successful colonization of insects in new environments. However, the metabolic pathways of A. glabripennis larvae under cold stress remain undefined. This study analyzed the larval hemolymph under different low-temperature treatments using LC-MS/MS. The results showed that differential metabolites associated with sugar and lipid metabolism are pivotal in the larval chill coma process. Under low-temperature treatments, the glycerol content increased significantly compared with the control group. Cold stress significantly induced the expression of AglaGK2 and AglaGPDHs. After undergoing RNAi treatment for 48 h, larvae exposed to -20 °C for 1 h showed reduced recovery when injected with ds-AglaGK2 and ds-AglaGPDH1 compared to the control group, indicating that glycerol biosynthesis plays a role in the low-temperature adaptation of A. glabripennis larvae. Our results provide a theoretical basis for clarifying the molecular mechanism of A. glabripennis larvae in response to environmental stresses.
Collapse
Affiliation(s)
- Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Xue Song
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yurong Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lingxu Zhi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Beetz MJ, El Jundi B. The neurobiology of the Monarch butterfly compass. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101109. [PMID: 37660836 DOI: 10.1016/j.cois.2023.101109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Monarch butterflies (Danaus plexippus) have become a superb model system to unravel how the tiny insect brain controls an impressive navigation behavior, such as long-distance migration. Moreover, the ability to compare the neural substrate between migratory and nonmigratory Monarch butterflies provides us with an attractive model to specifically study how the insect brain is adapted for migration. We here review our current progress on the neural substrate of spatial orientation in Monarch butterflies and how their spectacular annual migration might be controlled by their brain. We also discuss open research questions, the answers to which will provide important missing pieces to obtain a full picture of insect migration - from the perception of orientation cues to the neural control of migration.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
5
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
6
|
Parlin AF, Kendzel MJ, Taylor OR, Culley TM, Matter SF, Guerra PA. The cost of movement: assessing energy expenditure in a long-distant ectothermic migrant under climate change. J Exp Biol 2023; 226:jeb245296. [PMID: 37815453 DOI: 10.1242/jeb.245296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Migration is an energetically taxing phenomenon as animals move across vast, heterogeneous landscapes where the cost of transport is impacted by permissible ambient conditions. In this study, we assessed the energetic demands of long-distance migration in a multigenerational ectothermic migrant, the monarch butterfly (Danaus plexippus). We tested the hypotheses that temperature-dependent physiological processes reduce energy reserves faster during migration than previously estimated, and that increasing climatic temperatures resulting from the climate crisis will intensify baseline daily energy expenditure. First, we reared monarchs under laboratory conditions to assess energy and mass conversion from fifth instar to adult stages, as a baseline for migratory adult mass and ontogenetic shifts in metabolic rate from larvae to adult. Then, using historical tag-recapture data, we estimated the movement propensity and migratory pace of autumn migrants using computer simulations and subsequently calculated energy expenditure. Finally, we estimated the energy use of monarchs based on these tag-recapture data and used this information to estimate daily energy expenditure over a 57 year period. We found support for our two hypotheses, noting that incorporating standard metabolic rate into estimates of migratory energy expenditure shows higher energy demand and that daily energy expenditure has been gradually increasing over time since 1961. Our study shows the deleterious energetic consequences under current climate change trajectories and highlights the importance of incorporating energetic estimates for understanding migration by small, ectothermic migrants.
Collapse
Affiliation(s)
- Adam F Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
| | - Mitchell J Kendzel
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Orley R Taylor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Theresa M Culley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick A Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Beetz MJ, Kraus C, El Jundi B. Neural representation of goal direction in the monarch butterfly brain. Nat Commun 2023; 14:5859. [PMID: 37730704 PMCID: PMC10511513 DOI: 10.1038/s41467-023-41526-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Tessnow AE, Nagoshi RN, Meagher RL, Fleischer SJ. Revisiting fall armyworm population movement in the United States and Canada. FRONTIERS IN INSECT SCIENCE 2023; 3:1104793. [PMID: 38469489 PMCID: PMC10926481 DOI: 10.3389/finsc.2023.1104793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/13/2024]
Abstract
Introduction Biophysical approaches validated against haplotype and trap catch patterns have modeled the migratory trajectory of fall armyworms at a semi-continental scale, from their natal origins in Texas or Florida through much of the United States east of the Rocky Mountains. However, unexplained variation in the validation analysis was present, and misalignments between the simulated movement patterns of fall armyworm populations and the haplotype ratios at several locations, especially in the northeastern US and Canada, have been reported. Methods Using an expanded dataset extending into Canada, we assess the consistency of haplotype patterns that relate overwintered origins of fall armyworm populations to hypothesized dispersal trajectories in North America and compare the geographic distribution of these patterns with previous model projections. Results and discussion We confirm the general accuracy of previous modeling efforts, except for late in the season where our data suggests a higher proportion of Texas populations invading the northeast, extending into eastern Canada. We delineate geographic limits to the range of both overwintering populations and show that substantial intermixing of the Texas and Florida migrants routinely occurs north of South Carolina. We discuss annual variation to these migratory trajectories and test the hypothesis that the Appalachian Mountains influence geographic patterns of haplotypes. We discuss how these results may limit gene flow between the Texas and Florida natal populations and limit the hereditary consequences of interbreeding between these populations.
Collapse
Affiliation(s)
- Ashley E. Tessnow
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Rodney N. Nagoshi
- U.S. Department of Agriculture- Agriculture Research Service- Center for Medical, Agricultural, and Veterinary Entomology (USDA-ARS CMAVE), Gainesville, FL, United States
| | - Robert L. Meagher
- U.S. Department of Agriculture- Agriculture Research Service- Center for Medical, Agricultural, and Veterinary Entomology (USDA-ARS CMAVE), Gainesville, FL, United States
| | | |
Collapse
|
9
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
10
|
Parlin AF, Stratton SM, Guerra PA. A behavioral assay to test sensory-cue-guided oriented flight in monarch butterflies under controlled conditions. STAR Protoc 2022; 3:101920. [PMID: 36595924 PMCID: PMC9768416 DOI: 10.1016/j.xpro.2022.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Many animals use sensory cues to guide movement. Testing animals under conditions in which cues can be isolated and manipulated is key for understanding the function of cues. Here, we present a protocol to assess the flight of migratory monarch butterflies (Danaus plexippus). We describe procedures to optimize and conduct trials, especially under indoor conditions. This protocol facilitates testing monarchs in various experimental conditions including during their subjective night when they are not normally flying. For complete details on the use and execution of this protocol, please refer to Parlin et al. (2022).1.
Collapse
Affiliation(s)
- Adam F Parlin
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13057, USA
| | - Samuel M Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA.
| |
Collapse
|
11
|
Guerra PA, Parlin AF, Matter SF. Lack of evidence for a fine-scale magnetic map sense for fall migratory Eastern North American monarch butterflies ( Danaus plexippus). Ecol Evol 2022; 12:e9498. [PMID: 36407908 PMCID: PMC9667412 DOI: 10.1002/ece3.9498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
How first-time animal migrants find specific destinations remains an intriguing ecological question. Migratory marine species use geomagnetic map cues acquired as juveniles to aide long-distance migration, but less is known for long-distance migrants in other taxa. We test the hypothesis that naïve Eastern North American fall migratory monarch butterflies (Danaus plexippus), a species that possesses a magnetic sense, locate their overwintering sites in Central Mexico using inherited geomagnetic map cues. We examined whether overwintering locations and the abundance of monarchs changed with the natural shift of Earth's magnetic field from 2004 to 2018. We found that migratory monarchs continued to overwinter at established sites in similar abundance despite significant shifts in the geomagnetic field, which is inconsistent with monarchs using fine-scale geomagnetic map cues to find overwintering sites. It is more likely that monarchs use geomagnetic cues to assess migratory direction rather than location and use other cues to locate overwintering sites.
Collapse
Affiliation(s)
- Patrick A. Guerra
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Adam F. Parlin
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
- Department of Environmental Biology, College of Environmental Science and ForestryState University of New YorkSyracuseNew YorkUSA
| | - Stephen F. Matter
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
12
|
Parlin AF, Stratton SM, Guerra PA. Oriented migratory flight at night: Consequences of nighttime light pollution for monarch butterflies. iScience 2022; 25:104310. [PMID: 35573206 PMCID: PMC9097705 DOI: 10.1016/j.isci.2022.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
We show that light trespass—a form of nighttime light pollution (NLP)—elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior. Nighttime light pollution can disturb diurnal migratory monarch butterflies Exposure to this pollution induces abnormal activity in normally quiescent monarchs This pollution acts as sensory noise that perturbs the circadian clock of monarchs Conservation should consider susceptibility of habitat to nighttime light pollution
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
13
|
Pocius VM, Majewska AA, Freedman MG. The Role of Experiments in Monarch Butterfly Conservation: A Review of Recent Studies and Approaches. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2022; 115:10-24. [PMID: 35069967 PMCID: PMC8764570 DOI: 10.1093/aesa/saab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Monarch butterflies (Danaus plexippus) (Lepidoptera Danaidae Danaus plexippus (Linnaeus)) are an iconic species of conservation concern due to declines in the overwintering colonies over the past twenty years. Because of this downward trend in overwintering numbers in both California and Mexico, monarchs are currently considered 'warranted-but-precluded' for listing under the Endangered Species Act. Monarchs have a fascinating life history and have become a model system in chemical ecology, migration biology, and host-parasite interactions, but many aspects of monarch biology important for informing conservation practices remain unresolved. In this review, we focus on recent advances using experimental and genetic approaches that inform monarch conservation. In particular, we emphasize three areas of broad importance, which could have an immediate impact on monarch conservation efforts: 1) breeding habitat and host plant use, 2) natural enemies and exotic caterpillar food plants, and 3) the utility of genetic and genomic approaches for understanding monarch biology and informing ongoing conservation efforts. We also suggest future studies in these areas that could improve our understanding of monarch behavior and conservation.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | - Micah G Freedman
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Parlin AF, Stratton SM, Guerra PA. Assaying lepidopteran flight directionality with non‐invasive methods that permit repeated use and release after testing. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - Samuel M. Stratton
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - Patrick A. Guerra
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
15
|
Abstract
AbstractUnderstanding the genetic architecture of complex trait adaptation in natural populations requires the continued development of tractable models that explicitly confront organismal and environmental complexity. A decade of high-throughput sequencing-based investigations into the genomic basis of migration points to an integrative framework that incorporates quantitative genetics, evolutionary developmental biology, phenotypic plasticity, and epigenetics to explain migration evolution. In this perspective, I argue that the transcontinental migration of the monarch butterfly (Danaus plexippus) can serve as a compelling system to study the mechanism of evolutionary lability of a complex trait. Monarchs show significant phenotypic and genotypic diversity across their global range, with phenotypic switching that allows for explicit study of evolutionary lability. A developmental approach for elucidating how migratory traits are generated and functionally integrated will be important for understanding the evolution of monarch migration traits. I propose a plasticity threshold model to describe migration lability, and I describe novel functional techniques that will help resolve open questions and model assumptions. I conclude by considering the relationships between adaptive genetic architecture, anthropogenic climate change, and conservation management practice and the timeliness of the monarch migration model to illuminate these connections given the rapid decline of the North American migration.
Collapse
|
16
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
17
|
Guerra PA. The Monarch Butterfly as a Model for Understanding the Role of Environmental Sensory Cues in Long-Distance Migratory Phenomena. Front Behav Neurosci 2020; 14:600737. [PMID: 33343312 PMCID: PMC7744611 DOI: 10.3389/fnbeh.2020.600737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
The awe-inspiring annual migration of monarch butterflies (Danaus plexippus) is an iconic example of long-distance migratory phenomena in which environmental sensory cues help drive successful migration. In this mini-review article, I begin by describing how studies on monarch migration can provide us with generalizable information on how sensory cues can mediate key aspects of animal movement. I describe how environmental sensory cues can trigger the development and progression of the monarch migration, as well as inform sensory-based movement mechanisms in order to travel to and reach their goal destination, despite monarchs being on their maiden voyage. I also describe how sensory cues can trigger season-appropriate changes in migratory direction during the annual cycle. I conclude this mini-review article by discussing how contemporary environmental challenges threaten the persistence of the monarch migration. Environmental challenges such as climate change and shifting land use can significantly alter the sensory environments that monarchs migrate through, as well as degrade or eliminate the sources of sensory cues that are necessary for successful migration.
Collapse
Affiliation(s)
- Patrick A. Guerra
- Department of Biological Sciences, College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
18
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
19
|
Tenger-Trolander A, Kronforst MR. Migration behaviour of commercial monarchs reared outdoors and wild-derived monarchs reared indoors. Proc Biol Sci 2020; 287:20201326. [PMID: 32752991 DOI: 10.1098/rspb.2020.1326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Captive rearing of monarch butterflies is a commercial and personal pursuit enjoyed by many different groups and individuals. However, the practice remains controversial, especially after new evidence showed that both a group of commercially derived monarchs reared outdoors and a group of wild-derived but indoor-reared monarchs failed to orient south, unlike wild-derived monarchs reared outdoors. To more fully characterize the mechanisms responsible for the loss of orientation in both commercial and indoor-reared monarchs, we performed flight simulator experiments to determine (i) whether any fraction of commercial monarchs maintains a southern heading over multiple tests, and (ii) whether indoor conditions with the addition of sunlight can induce southern flight in wild-derived monarchs. Commercial monarchs changed their flight direction more often over the course of multiple tests than wild-derived monarchs. While as a group the commercial monarchs did not fly south on average, a subset of individuals did orient south over multiple tests, potentially explaining the discordance between flight simulator assays and the recovery of tagged commercial monarchs at overwintering locations. We also show that even when raised indoors with sunlight, wild-derived monarchs did not consistently orient south in the flight simulator, though wild-derived monarchs reared outdoors did orient south.
Collapse
Affiliation(s)
| | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Asplen MK. Proximate Drivers of Migration and Dispersal in Wing-Monomorphic Insects. INSECTS 2020; 11:insects11010061. [PMID: 31963745 PMCID: PMC7022453 DOI: 10.3390/insects11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/30/2022]
Abstract
Gains in our knowledge of dispersal and migration in insects have been largely limited to either wing-dimorphic species or current genetic model systems. Species belonging to these categories, however, represent only a tiny fraction of insect biodiversity, potentially making generalization problematic. In this perspective, I present three topics in which current and future research may lead to greater knowledge of these processes in wing-monomorphic insects with limited existing molecular tools. First, threshold genetic models are reviewed as testable hypotheses for the heritability of migratory traits, using the sweet potato whitefly (Bemisia tabaci) as a case study of a behaviorally-polymorphic migratory species lacking morphological or physiological differentiation. In addition, both adaptive and non-adaptive explanations for the empirically variable relationship between egg production and flight in wing-monomorphic insects are discussed. Finally, with respect to the largest order of insects (Hymenoptera), the role of sex determination mechanisms for haplodiploidy as a driver for natal dispersal (for inbreeding avoidance) versus philopatry (such as in local mate competition) is discussed.
Collapse
Affiliation(s)
- Mark K Asplen
- Natural Sciences Department, Metropolitan State University, Saint Paul, MN 55106, USA
| |
Collapse
|
21
|
Zhou XR, Shan YM, Tan Y, Zhang ZR, Pang BP. Comparative Analysis of Transcriptome Responses to Cold Stress in Galeruca daurica (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5637494. [PMID: 31752020 PMCID: PMC6871913 DOI: 10.1093/jisesa/iez109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 05/01/2023]
Abstract
Galeruca daurica (Joannis) has become a new insect pest in the Inner Mongolia grasslands since 2009, and its larvae and eggs have strong cold tolerance. To get a deeper insight into its molecular mechanisms of cold stress responses, we performed de novo transcriptome assembly for G. daurica by RNA-Seq and compared the transcriptomes of its larvae exposed to five different temperature treatments (-10, -5, 0, 5, and 25°C for 1 h and then recovered at 25°C for 1 h), respectively. Compared with the control (25°C), the numbers of differentially expressed genes (DEGs) decreased from 1,821 to 882, with the temperature declining from 5 to -10°C. Moreover, we obtained 323 coregulated DEGs under different low temperatures. Under four low temperatures (-10, -5, 0, and 5°C), a large number of genes were commonly upregulated during recovery from cold stresses, including those related to cuticle protein, followed by cytochrome P450, clock protein, fatty acid synthase, and fatty acyl-CoA reductase; meanwhile, lots of genes encoding cuticle protein, RNA replication protein, RNA-directed DNA polymerase, and glucose dehydrogenase were commonly downregulated. Our findings provide important clues for further investigations of key genes and molecular mechanisms involved in the adaptation of G. daurica to harsh environments.
Collapse
Affiliation(s)
- Xiao-Rong Zhou
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan-Min Shan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Grassland Station, Hohhot, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | | | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
- Corresponding author, e-mail:
| |
Collapse
|
22
|
Menz MHM, Reynolds DR, Gao B, Hu G, Chapman JW, Wotton KR. Mechanisms and Consequences of Partial Migration in Insects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Abstract
Every fall, millions of North American monarch butterflies undergo a stunning long-distance migration to reach their overwintering grounds in Mexico. Migration allows the butterflies to escape freezing temperatures and dying host plants, and reduces infections with a virulent parasite. We discuss the multigenerational migration journey and its evolutionary history, and highlight the navigational mechanisms of migratory monarchs. Monarchs use a bidirectional time-compensated sun compass for orientation, which is based on a time-compensating circadian clock that resides in the antennae, and which has a distinctive molecular mechanism. Migrants can also use a light-dependent inclination magnetic compass for orientation under overcast conditions. Additional environmental features, e.g., atmospheric conditions, geologic barriers, and social interactions, likely augment navigation. The publication of the monarch genome and the development of gene-editing strategies have enabled the dissection of the genetic and neurobiological basis of the migration. The monarch butterfly has emerged as an excellent system to study the ecological, neural, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
24
|
Green DA, Kronforst MR. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol 2019; 28:3642-3655. [PMID: 31338928 PMCID: PMC6834359 DOI: 10.1111/mec.15178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
The monarch butterfly (Danaus plexippus) complements its iconic migration with diapause, a hormonally controlled developmental programme that contributes to winter survival at overwintering sites. Although timing is a critical adaptive feature of diapause, how environmental cues are integrated with genetically-determined physiological mechanisms to time diapause development, particularly termination, is not well understood. In a design that subjected western North American monarchs to different environmental chamber conditions over time, we modularized constituent components of an environmentally-controlled, internal diapause termination timer. Using comparative transcriptomics, we identified molecular controllers of these specific diapause termination components. Calcium signalling mediated environmental sensitivity of the diapause timer, and we speculate that it is a key integrator of environmental condition (cold temperature) with downstream hormonal control of diapause. Juvenile hormone (JH) signalling changed spontaneously in diapause-inducing conditions, capacitating response to future environmental condition. Although JH is a major target of the internal timer, it is not itself the timer. Epigenetic mechanisms are implicated to be the proximate timing mechanism. Ecdysteroid, JH, and insulin/insulin-like peptide signalling are major targets of the diapause programme used to control response to permissive environmental conditions. Understanding the environmental and physiological mechanisms of diapause termination sheds light on fundamental properties of biological timing, and also helps inform expectations for how monarch populations may respond to future climate change.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
- Current Address: Department of Ecology and Evolutionary Biology University of Michigan. Ann Arbor, MI 48109 USA
| | - Marcus R. Kronforst
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
| |
Collapse
|
25
|
Lugena AB, Zhang Y, Menet JS, Merlin C. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain. PLoS Genet 2019; 15:e1008265. [PMID: 31335862 PMCID: PMC6677324 DOI: 10.1371/journal.pgen.1008265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/02/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spectacular seasonal long-distance migration. In recent years, it has also emerged as a novel system to study how animal circadian clocks keep track of time and regulate ecologically relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Drosophila and the mouse, little work has been undertaken in the monarch to identify rhythmic genes at the genome-wide level and elucidate the regulation of their diurnal expression. Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and transcription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), and Cycle-like loss-of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain; many of them were involved in the regulation of biological processes key to brain function, such as glucose metabolism and neurotransmission. Surprisingly, we found no significant time-of-day and genotype-dependent changes in chromatin accessibility in the brain. Instead, we found the existence of a temporal regulation of TF occupancy within open chromatin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is disrupted in clock deficient mutants. Together, this work identifies for the first time the rhythmic genes and modes of regulation by which diurnal transcription rhythms are regulated in the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide regulatory elements and TF binding in a non-model organism for which TF-specific antibodies are not yet available. With a rich biology that includes a clock-regulated migratory behavior and a circadian clock possessing mammalian clock orthologues, the monarch butterfly is an unconventional system with broad appeal to study circadian and seasonal rhythms. While clockwork mechanisms and rhythmic behavioral outputs have been studied in this species, the rhythmic genes that regulate rhythmic daily and seasonal activities remain largely unknown. Likewise, the mechanisms regulating rhythmic gene expression have not been explored in the monarch. Here, we applied genome-wide sequencing approaches to identify genes with rhythmic diurnal expression in the monarch brain, revealing the coordination of key pathways for brain function. We also identified the monarch brain open chromatin regions and provide evidence that regulation of rhythmic gene expression does not occur through temporal regulation of chromatin opening but rather by the time-of-day dependent binding of transcription factors in cis-regulatory elements. Together, our data extend our knowledge of the molecular rhythmic pathways, which may prove important in understanding the mechanisms underlying the daily and seasonal biology of the migratory monarch butterflies.
Collapse
Affiliation(s)
- Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Jerome S. Menet
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The annual migration of the monarch butterfly Danaus plexippus is in peril. In an effort to aid population recovery, monarch enthusiasts across North America participate in a variety of conservation efforts, including captive rearing and release of monarch butterflies throughout the summer and autumn. However, the impact of captive breeding on monarchs remains an open question. Here, we show that captive breeding, both commercially and by summertime hobbyists, causes migratory behavior to be lost. Monarchs acquired commercially failed to orient south when reared outdoors in the autumn, unlike wild-caught North American monarchs, yet they did enter reproductive diapause. The commercial population was genetically highly divergent from wild-caught North American monarchs and had rounder forewings, similar to monarchs from nonmigratory populations. Furthermore, rearing wild-caught monarchs in an indoor environment mimicking natural migration-inducing conditions failed to elicit southward flight orientation. In fact, merely eclosing indoors after an otherwise complete lifecycle outdoors was enough to disrupt southern orientation. Our results provide a window into the complexity-and remarkable fragility-of migration.
Collapse
|
27
|
Merlin C, Liedvogel M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb191890. [PMID: 30728238 DOI: 10.1242/jeb.191890] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Migration is a complex behavioural adaptation for survival that has evolved across the animal kingdom from invertebrates to mammals. In some taxa, closely related migratory species, or even populations of the same species, exhibit different migratory phenotypes, including timing and orientation of migration. In these species, a significant proportion of the phenotypic variance in migratory traits is genetic. In others, the migratory phenotype and direction is triggered by seasonal changes in the environment, suggesting an epigenetic control of their migration. The genes and epigenetic changes underpinning migratory behaviour remain largely unknown. The revolution in (epi)genomics and functional genomic tools holds great promise to rapidly move the field of migration genetics forward. Here, we review our current understanding of the genetic and epigenetic architecture of migratory traits, focusing on two emerging models: the European blackcap and the North American monarch butterfly. We also outline a vision of how technical advances and integrative approaches could be employed to identify and functionally validate candidate genes and cis-regulatory elements on these and other migratory species across both small and broad phylogenetic scales to significantly advance the field of genetics of animal migration.
Collapse
Affiliation(s)
- Christine Merlin
- Department of Biology and Center for Biological Clock Research, Texas A&M University, College Station, TX 77843, USA
| | - Miriam Liedvogel
- Max Planck Institute for Evolutionary Biology, Max Planck Research Group (MPRG) Behavioural Genomics, 24306 Plön, Germany
| |
Collapse
|
28
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
29
|
Malcolm SB, Vargas NR, Rowe L, Stevens J, Armagost JE, Johnson AC. Sequential Partial Migration Across Monarch Generations in Michigan. ANIMAL MIGRATION 2018. [DOI: 10.1515/ami-2018-0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Running title: Monarch alternative migration: We collected 434 adult monarchs and surveyed milkweeds for immature monarchs in southwest Michigan, USA in order to test the hypothesis that monarchs are temporally variable, sequential partial migrants rather than partial migrants that may be spatially separated. Adult size, wing wear, female egg counts, fat content and sequestered chemical defenses were measured in monarchs across an entire season from spring migrant arrival, through breeding, until autumn migrant departure. We predicted that a population characterized by starting from all migrants and no residents, through breeding residents, to all migrants and no residents should show life history measures consistent with changes in these proportions. Results show that female monarch spring migrants arrive with chorionated eggs and high wing loads in both intact and fat-extracted adults. Wing loads of both males and females decrease during the summer and increase again immediately before autumn departure, when the fat content of all adults increases markedly. The high fat content of spring arrivals is also characteristic of migrants. Cardenolide content of adults showed a similar pattern of high content in spring arrivals, a decrease in the summer and then an accumulation of cardenolide defenses in adults in late summer just before migratory departure. We conclude that these results are consistent with temporally variable, sequential partial migration in a short-lived insect that contrasts with spatially variable partial migration in longer-lived vertebrates.
Collapse
|
30
|
Brower LP, Williams EH, Dunford KS, Dunford JC, Knight AL, Daniels J, Cohen JA, Van Hook T, Saarinen E, Standridge MJ, Epstein SW, Zalucki MP, Malcolm SB. A long-term survey of spring monarch butterflies in north-central Florida. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1510057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | | | - James C. Dunford
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Amy L. Knight
- Florida Natural Areas Inventory, Florida State University, Tallahassee, FL, USA
| | - Jaret Daniels
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - James A. Cohen
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tonya Van Hook
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Emily Saarinen
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Matthew J. Standridge
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Samantha W. Epstein
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Stephen B. Malcolm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
31
|
Minter M, Pearson A, Lim KS, Wilson K, Chapman JW, Jones CM. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. ECOLOGICAL ENTOMOLOGY 2018; 43:397-411. [PMID: 30046219 PMCID: PMC6055614 DOI: 10.1111/een.12521] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/02/2023]
Abstract
1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50 years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature.
Collapse
Affiliation(s)
- Melissa Minter
- Department of BiologyUniversity of York, Heslington WayYorkU.K.
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
| | - Aislinn Pearson
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Ka S. Lim
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Kenneth Wilson
- Lancaster Environment CentreLancaster UniversityLancasterU.K.
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of ExeterCornwallU.K.
| | - Christopher M. Jones
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
- Vector Biology, Liverpool School of Tropical MedicineLiverpoolU.K.
| |
Collapse
|
32
|
Malcolm SB. Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:277-302. [PMID: 28977776 DOI: 10.1146/annurev-ento-020117-043241] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Monarch butterflies (Danaus plexippus) are familiar herbivores of milkweeds of the genus Asclepias, and most monarchs migrate each year to locate these host plants across North American ecosystems now dominated by agriculture. Eastern migrants overwinter in high-elevation forests in Mexico, and western monarchs overwinter in trees on the coast of California. Both populations face three primary threats to their viability: (a) loss of milkweed resources for larvae due to genetically modified crops, pesticides, and fertilizers; (b) loss of nectar resources from flowering plants; and (c) degraded overwintering forest habitats due to commercially motivated deforestation and other economic activities. Secondary threats to population viability include (d) climate change effects on milkweed host plants and the dynamics of breeding, overwintering, and migration; (e) the influence of invasive plants and natural enemies; (f) habitat fragmentation and coalescence that promote homogeneous, species-depleted landscapes; and (g) deliberate culture and release of monarchs and invasive milkweeds.
Collapse
Affiliation(s)
- Stephen B Malcolm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008;
| |
Collapse
|
33
|
The neurobiology of climate change. Naturwissenschaften 2018; 105:11. [DOI: 10.1007/s00114-017-1538-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
|
34
|
Huang HJ, Xue J, Zhuo JC, Cheng RL, Xu HJ, Zhang CX. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Mol Ecol 2017; 26:2726-2737. [PMID: 28214356 DOI: 10.1111/mec.14067] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Xue
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Lin Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
35
|
Shlizerman E, Phillips-Portillo J, Forger DB, Reppert SM. Neural Integration Underlying a Time-Compensated Sun Compass in the Migratory Monarch Butterfly. Cell Rep 2016; 15:683-691. [PMID: 27149852 DOI: 10.1016/j.celrep.2016.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/11/2016] [Accepted: 03/15/2016] [Indexed: 01/31/2023] Open
Abstract
Migrating eastern North American monarch butterflies use a time-compensated sun compass to adjust their flight to the southwest direction. Although the antennal genetic circadian clock and the azimuth of the sun are instrumental for proper function of the compass, it is unclear how these signals are represented on a neuronal level and how they are integrated to produce flight control. To address these questions, we constructed a receptive field model of the compound eye that encodes the solar azimuth. We then derived a neural circuit model that integrates azimuthal and circadian signals to correct flight direction. The model demonstrates an integration mechanism, which produces robust trajectories reaching the southwest regardless of the time of day and includes a configuration for remigration. Comparison of model simulations with flight trajectories of butterflies in a flight simulator shows analogous behaviors and affirms the prediction that midday is the optimal time for migratory flight.
Collapse
Affiliation(s)
- Eli Shlizerman
- Departments of Applied Mathematics and Electrical Engineering, University of Washington, Seattle, WA 98195, USA
| | - James Phillips-Portillo
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel B Forger
- Departments of Mathematics and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, USA.
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
36
|
Abstract
Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
37
|
Lemoine NP, Capdevielle JN, Parker JD. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development. PeerJ 2015; 3:e1293. [PMID: 26528403 PMCID: PMC4627908 DOI: 10.7717/peerj.1293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022] Open
Abstract
Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.
Collapse
Affiliation(s)
- Nathan P Lemoine
- Department of Biological Sciences, Florida International University , Miami, FL , USA ; Current affiliation: Department of Biology, Colorado State University , Fort Collins, CO , USA
| | - Jillian N Capdevielle
- Department of Environmental Science, Policy, and Management, University of California-Berkeley , Berkeley, CA , USA
| | - John D Parker
- Smithsonian Environmental Research Center , Edgewater, MD , USA
| |
Collapse
|
38
|
Lemoine NP. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants. PLoS One 2015; 10:e0118614. [PMID: 25705876 PMCID: PMC4338007 DOI: 10.1371/journal.pone.0118614] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.
Collapse
Affiliation(s)
- Nathan P. Lemoine
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Guerra PA, Reppert SM. Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 2015; 34:20-8. [PMID: 25625216 DOI: 10.1016/j.conb.2015.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/27/2023]
Abstract
In response to seasonal habitats, migratory lepidopterans, exemplified by the monarch butterfly, have evolved migration to deal with dynamic conditions. During migration, monarchs use orientation mechanisms, exploiting a time-compensated sun compass and a light-sensitive inclination magnetic compass to facilitate fall migration south. The sun compass is bidirectional with overwintering coldness triggering the change in orientation direction for remigration northward in the spring. The timing of the remigration and milkweed emergence in the southern US have co-evolved for propagation of the migration. Current research is uncovering the anatomical and molecular substrates that underlie migratory-relevant sensory mechanisms with the antennae being critical components. Orientation mechanisms may be detrimentally affected by environmental factors such as climate change and sensory interference from human-generated sources.
Collapse
Affiliation(s)
- Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Chapman JW, Reynolds DR, Wilson K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 2015; 18:287-302. [PMID: 25611117 DOI: 10.1111/ele.12407] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
Myriad tiny insect species take to the air to engage in windborne migration, but entomology also has its 'charismatic megafauna' of butterflies, large moths, dragonflies and locusts. The spectacular migrations of large day-flying insects have long fascinated humankind, and since the advent of radar entomology much has been revealed about high-altitude night-time insect migrations. Over the last decade, there have been significant advances in insect migration research, which we review here. In particular, we highlight: (1) notable improvements in our understanding of lepidopteran navigation strategies, including the hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and orientate adaptively, (2) progress in unravelling the neuronal mechanisms underlying sun compass orientation and in identifying the genetic complex underpinning key traits associated with migration behaviour and performance in the monarch butterfly, and (3) improvements in our knowledge of the multifaceted interactions between disease agents and insect migrants, in terms of direct effects on migration success and pathogen spread, and indirect effects on the evolution of migratory systems. We conclude by highlighting the progress that can be made through inter-phyla comparisons, and identify future research areas that will enhance our understanding of insect migration strategies within an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Jason W Chapman
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK; Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | | | | |
Collapse
|
41
|
Guerra PA, Gegear RJ, Reppert SM. A magnetic compass aids monarch butterfly migration. Nat Commun 2014; 5:4164. [PMID: 24960099 PMCID: PMC4090716 DOI: 10.1038/ncomms5164] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/19/2014] [Indexed: 01/28/2023] Open
Abstract
Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration.
Collapse
Affiliation(s)
- Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Robert J Gegear
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Gateway Park, 60 Prescott Street, Worcester, Massachusetts 01605, USA
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
42
|
Williams CM, Henry HAL, Sinclair BJ. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev Camb Philos Soc 2014; 90:214-35. [PMID: 24720862 DOI: 10.1111/brv.12105] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 01/17/2023]
Abstract
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, U.S.A
| | | | | |
Collapse
|
43
|
Cunningham R, Lindenmayer D, Barton P, Ikin K, Crane M, Michael D, Okada S, Gibbons P, Stein J. Cross-sectional and temporal relationships between bird occupancy and vegetation cover at multiple spatial scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2014; 24:1275-1288. [PMID: 29160651 DOI: 10.1890/13-0872.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Scale is a key concept in ecology, but the statistically based quantification of scale effects has often proved difficult. This is exemplified by the challenges of quantifying relationships between biodiversity and vegetation cover at different spatial scales to guide restoration and conservation efforts in agricultural environments. We used data from 2002 to 2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23 landscapes (the landscape scale). We found cross-sectional relationships with the amount of vegetation cover that were typically positive for woodland birds and negative for open-country birds. However, for some species, relationships differed between spatial scales, suggesting differences in nesting and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover in our study region between 2002 and 2010, and our analyses revealed that some open country species responded negatively to these temporal changes, typically at the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger cross-sectional relationships with the amount of vegetation cover than relationships between changes in occupancy and temporal changes in vegetation cover. This unexpected result can be attributed to differences in habitat use by birds of existing vegetation cover (typically old-growth woodland) vs. plantings and natural regeneration, which are the main contributors to temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have identified species-specific, scale-dependent responses to vegetation cover. These findings are of considerable practical importance for understanding which species will respond to different scales of protection of existing areas of native vegetation, efforts to increase the amount of native vegetation over time, and both approaches together.
Collapse
|
44
|
|