1
|
Yin YX, Ding MQ, Yi Y, Zou YJ, Liao BY, Sun SC. Insufficient KIF15 during porcine oocyte ageing induces HDAC6-based microtubule instability. Theriogenology 2024; 226:49-56. [PMID: 38838614 DOI: 10.1016/j.theriogenology.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
During aging, oocytes display cytoskeleton dynamics defects and aneuploidy, leading to embryonic aneuploidy, which in turn causes miscarriages, implantation failures, and birth defects. KIF15 (also known as Hklp2), a member of the kinesin-12 superfamily, is a cytoplasmic motor protein reported to be involved in Golgi and vesicle-related transport during mitosis in somatic cells. However, the regulatory mechanisms of KIF15 during meiosis in porcine oocytes and the connection with postovulatory aging remain unclear. In present study, we found that KIF15 is expressed during porcine oocyte maturation, and its localization is dependent on microtubule dynamics. Furthermore, the level of KIF15 expression decreased in postovulatory aged oocytes. The decrease in KIF15 blocked polar body extrusion, thereby hindering oocyte maturation. We demonstrated that KIF15 defects contributed to abnormal spindle morphologies and chromosome misalignment, possibly due to microtubule instability, as evidenced by microtubule depolymerization after cold treatment. Additionally, our data indicated that KIF15 modulates HDAC6 to affect tubulin acetylation in oocytes. Taken together, these results suggest that KIF15 regulates HDAC6-related microtubule stability for spindle organization in porcine oocytes during meiosis, which may contribute to the decline in maturation competence in aged porcine oocytes.
Collapse
Affiliation(s)
- Yan-Xuan Yin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Qi Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Salazar BM, Ohi R. Antiparallel microtubule bundling supports KIF15-driven mitotic spindle assembly. Mol Biol Cell 2024; 35:ar84. [PMID: 38598297 PMCID: PMC11238081 DOI: 10.1091/mbc.e24-01-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The spindle is a bipolar microtubule-based machine that is crucial for accurate chromosome segregation. Spindle bipolarity is generated by Eg5 (a kinesin-5), a conserved motor that drives spindle assembly by localizing to and sliding apart antiparallel microtubules. In the presence of Eg5 inhibitors (K5Is), KIF15 (a kinesin-12) can promote spindle assembly, resulting in K5I-resistant cells (KIRCs). However, KIF15 is a less potent motor than Eg5, suggesting that other factors may contribute to spindle formation in KIRCs. Protein Regulator of Cytokinesis 1 (PRC1) preferentially bundles antiparallel microtubules, and we previously showed that PRC1 promotes KIF15-microtubule binding, leading us to hypothesize that PRC1 may enhance KIF15 activity in KIRCs. Here, we demonstrate that: 1) loss of PRC1 in KIRCs decreases spindle bipolarity, 2) overexpression of PRC1 increases spindle formation efficiency in KIRCs, 3) overexpression of PRC1 protects K5I naïve cells against the K5I S-trityl-L-cysteine (STLC), and 4) PRC1 overexpression promotes the establishment of K5I resistance. These effects are not fully reproduced by a TPX2, a microtubule bundler with no known preference for microtubule orientation. These results suggest a model wherein PRC1-mediated bundling of microtubules creates a more favorable microtubule architecture for KIF15-driven mitotic spindle assembly in the context of Eg5 inhibition.
Collapse
Affiliation(s)
- Brittany M. Salazar
- Department of Cell and Developmental Biology, University of Michigan; Ann Arbor, MI 48109
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan; Ann Arbor, MI 48109
| |
Collapse
|
3
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Rovsing AB, Thomsen EA, Nielsen I, Skov TW, Luo Y, Dybkaer K, Mikkelsen JG. Resistance to vincristine in DLBCL by disruption of p53-induced cell cycle arrest and apoptosis mediated by KIF18B and USP28. Br J Haematol 2023; 202:825-839. [PMID: 37190875 DOI: 10.1111/bjh.18872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The frontline therapy R-CHOP for patients with diffuse large B-cell lymphoma (DLBCL) has remained unchanged for two decades despite numerous Phase III clinical trials investigating new alternatives. Multiple large studies have uncovered genetic subtypes of DLBCL enabling a targeted approach. To further pave the way for precision oncology, we perform genome-wide CRISPR screening to uncover the cellular response to one of the components of R-CHOP, vincristine, in the DLBCL cell line SU-DHL-5. We discover important pathways and subnetworks using gene-set enrichment analysis and protein-protein interaction networks and identify genes related to mitotic spindle organization that are essential during vincristine treatment. The inhibition of KIF18A, a mediator of chromosome alignment, using the small molecule inhibitor BTB-1 causes complete cell death in a synergistic manner when administered together with vincristine. We also identify the genes KIF18B and USP28 of which CRISPR/Cas9-directed knockout induces vincristine resistance across two DLBCL cell lines. Mechanistic studies show that lack of KIF18B or USP28 counteracts a vincristine-induced p53 response suggesting that resistance to vincristine has origin in the mitotic surveillance pathway (USP28-53BP1-p53). Collectively, our CRISPR screening data uncover potential drug targets and mechanisms behind vincristine resistance, which may support the development of future drug regimens.
Collapse
Affiliation(s)
| | | | - Ian Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
5
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Solon AL, Zaniewski TM, O’Brien P, Clasby M, Hancock WO, Ohi R. Synergy between inhibitors of two mitotic spindle assembly motors undermines an adaptive response. Mol Biol Cell 2022; 33:ar132. [PMID: 36200902 PMCID: PMC9727797 DOI: 10.1091/mbc.e22-06-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitosis is the cellular process that ensures accurate segregation of the cell's genetic material into two daughter cells. Mitosis is often deregulated in cancer; thus drugs that target mitosis-specific proteins represent attractive targets for anticancer therapy. Numerous inhibitors have been developed against kinesin-5 Eg5, a kinesin essential for bipolar spindle assembly. Unfortunately, Eg5 inhibitors (K5Is) have been largely ineffective in the clinic, possibly due to the activity of a second kinesin, KIF15, that can suppress the cytotoxic effect of K5Is by driving spindle assembly through an Eg5-independent pathway. We hypothesized that pairing of K5Is with small molecule inhibitors of KIF15 will be more cytotoxic than either inhibitor alone. Here we present the results of a high-throughput screen from which we identified two inhibitors that inhibit the motor activity of KIF15 both in vitro and in cells. These inhibitors selectively inhibit KIF15 over other molecular motors and differentially affect the ability of KIF15 to bind microtubules. Finally, we find that chemical inhibition of KIF15 reduces the ability of cells to acquire resistance to K5Is, highlighting the centrality of KIF15 to K5I resistance and the value of these inhibitors as tools with which to study KIF15 in a physiological context.
Collapse
Affiliation(s)
- April L. Solon
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Taylor M. Zaniewski
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Patrick O’Brien
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Martin Clasby
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Ryoma Ohi ()
| |
Collapse
|
7
|
Favre-Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol 2022; 32:932-946. [PMID: 35672197 PMCID: PMC9588623 DOI: 10.1016/j.tcb.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Optical tweezers (OT) provide a noninvasive approach for delivering minute physical forces to targeted objects. Controlling such forces in living cells or in vitro preparations allows for the measurement and manipulation of numerous processes relevant to the form and function of cells. As such, OT have made important contributions to our understanding of the structures of proteins and nucleic acids, the interactions that occur between microscopic structures within cells, the choreography of complex processes such as mitosis, and the ways in which cells interact with each other. In this review, we highlight recent contributions made to the field of cell biology using OT and provide basic descriptions of the physics, the methods, and the equipment that made these studies possible.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; School of Mathematics and Physics, The University of Queensland, 4067, Brisbane, Australia.
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Hotta T, McAlear TS, Yue Y, Higaki T, Haynes SE, Nesvizhskii AI, Sept D, Verhey KJ, Bechstedt S, Ohi R. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules. Curr Biol 2022; 32:3898-3910.e14. [PMID: 35963242 PMCID: PMC9530018 DOI: 10.1016/j.cub.2022.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Tubulin post-translational modifications (PTMs) alter microtubule properties by affecting the binding of microtubule-associated proteins (MAPs). Microtubule detyrosination, which occurs by proteolytic removal of the C-terminal tyrosine from ɑ-tubulin, generates the oldest known tubulin PTM, but we lack comprehensive knowledge of MAPs that are regulated by this PTM. We developed a screening pipeline to identify proteins that discriminate between Y- and ΔY-microtubules and found that echinoderm microtubule-associated protein-like 2 (EML2) preferentially interacts with Y-microtubules. This activity depends on a Y-microtubule interaction motif built from WD40 repeats. We show that EML2 tracks the tips of shortening microtubules, a behavior not previously seen among human MAPs in vivo, and influences dynamics to increase microtubule stability. Our screening pipeline is readily adapted to identify proteins that specifically recognize a wide range of microtubule PTMs.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S McAlear
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology (FAST), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Zou YJ, Shan MM, Wan X, Liu JC, Zhang KH, Ju JQ, Xing CH, Sun SC. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis. Cell Mol Life Sci 2022; 79:422. [PMID: 35835966 PMCID: PMC11072983 DOI: 10.1007/s00018-022-04447-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Microtubule dynamics ensure multiple cellular events during oocyte meiosis, which is critical for the fertilization and early embryo development. KIF15 (also termed Hklp2) is a member of kinesin-12 family motor proteins, which participates in Eg5-related bipolar spindle formation in mitosis. In present study, we explored the roles of KIF15 in mouse oocyte meiosis. KIF15 expressed during oocyte maturation and localized with microtubules. Depletion or inhibition of KIF15 disturbed meiotic cell cycle progression, and the oocytes which extruded the first polar body showed a high aneuploidy rate. Further analysis showed that disruption of KIF15 did not affect spindle morphology but resulted in chromosome misalignment. This might be due to the reduced stability of the K-fibers, which further induced the loss of kinetochore-microtubule attachment and activated spindle assembly checkpoint, showing with the failed release of Bub3 and BubR1. Based on mass spectroscopy analysis and coimmunoprecipitation data we showed that KIF15 was responsible for recruiting HDAC6, NAT10 and SIRT2 to maintain the acetylated tubulin level, which further affected tubulin acetylation for microtubule stability. Taken together, these results suggested that KIF15 was essential for the microtubule acetylation and cell cycle control during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
11
|
Kenchappa RS, Dovas A, Argenziano MG, Meyer CT, Stopfer LE, Banu MA, Pereira B, Griffith J, Mohammad A, Talele S, Haddock A, Zarco N, Elmquist W, White F, Quaranta V, Sims P, Canoll P, Rosenfeld SS. Activation of STAT3 through combined SRC and EGFR signaling drives resistance to a mitotic kinesin inhibitor in glioblastoma. Cell Rep 2022; 39:110991. [PMID: 35732128 PMCID: PMC10018805 DOI: 10.1016/j.celrep.2022.110991] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.
Collapse
Affiliation(s)
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael G Argenziano
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christian T Meyer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren E Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matei A Banu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Afroz Mohammad
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - William Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Forest White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
12
|
Palumbo J, Tai E, Forth S. Directly Measuring Forces within Reconstituted Active Microtubule Bundles. J Vis Exp 2022:10.3791/63819. [PMID: 35635475 PMCID: PMC10790399 DOI: 10.3791/63819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Microtubule networks are employed in cells to accomplish a wide range of tasks, ranging from acting as tracks for vesicle transport to working as specialized arrays during mitosis to regulate chromosome segregation. Proteins that interact with microtubules include motors such as kinesins and dynein, which can generate active forces and directional motion, as well as non-motor proteins that crosslink filaments into higher-order networks or regulate filament dynamics. To date, biophysical studies of microtubule-associated proteins have overwhelmingly focused on the role of single motor proteins needed for vesicle transport, and significant progress has been made in elucidating the force-generating properties and mechanochemical regulation of kinesins and dyneins. However, for processes in which microtubules act both as cargo and track, such as during filament sliding within the mitotic spindle, much less is understood about the biophysical regulation of ensembles of the crosslinking proteins involved. Here, we detail our methodology for directly probing force generation and response within crosslinked microtubule minimal networks reconstituted from purified microtubules and mitotic proteins. Microtubule pairs are crosslinked by proteins of interest, one microtubule is immobilized to a microscope coverslip, and the second microtubule is manipulated by an optical trap. Simultaneous total internal reflection fluorescence microscopy allows for multichannel visualization of all the components of this microtubule network as the filaments slide apart to generate force. We also demonstrate how these techniques can be used to probe pushing forces exerted by kinesin-5 ensembles and how viscous braking forces arise between sliding microtubule pairs crosslinked by the mitotic MAP PRC1. These assays provide insights into the mechanisms of spindle assembly and function and can be more broadly adapted to study dense microtubule network mechanics in diverse contexts, such as the axon and dendrites of neurons and polar epithelial cells.
Collapse
Affiliation(s)
- Jacob Palumbo
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
| | - Ellinor Tai
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
| | - Scott Forth
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute;
| |
Collapse
|
13
|
She ZY, Zhong N, Wei YL. Kinesin-5 Eg5 mediates centrosome separation to control spindle assembly in spermatocytes. Chromosoma 2022; 131:87-105. [PMID: 35437661 DOI: 10.1007/s00412-022-00772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Timely and accurate centrosome separation is critical for bipolar spindle organization and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is essential for centrosome separation and spindle organization in somatic cells; however, the detailed functions and mechanisms of Eg5 in spermatocytes remain unclear. In this study, we show that Eg5 proteins are located at spindle microtubules and centrosomes in spermatocytes both in vivo and in vitro. We reveal that the spermatocytes are arrested at metaphase I in seminiferous tubules after Eg5 inhibition. Eg5 ablation results in cell cycle arrest, the formation of monopolar spindle, and chromosome misalignment in cultured GC-2 spd cells. Importantly, we find that the long-term inhibition of Eg5 results in an increased number of centrosomes and chromosomal instability in spermatocytes. Our findings indicate that Eg5 mediates centrosome separation to control spindle assembly and chromosome alignment in spermatocytes, which finally contribute to chromosome stability and faithful cell division of the spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| |
Collapse
|
14
|
Zheng S, Tang D, Wang X, Liu C, Zuo N, Yan R, Wu C, Ma J, Wang C, Xu H, He Y, Liu D, Liu S. Kif15 Is Required in the Development of Auditory System Using Zebrafish as a Model. Front Mol Neurosci 2022; 15:844568. [PMID: 35370541 PMCID: PMC8971910 DOI: 10.3389/fnmol.2022.844568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Kif15, a kinesin family member, is powerful in the formation of bipolar spindles. There is emerging evidence indicating that Kif15 plays vital roles in influencing the growth of axons and interference with the progression of the tumor. However, the function of Kif15 in the auditory organs remains unknown. The Western blotting test was used to examine the effect of Kif15 downregulation by specific morpholino targeting Kif15 (Kif15-MO). The development of the inner ear and posterior lateral line (PLL) system in zebrafish was under continuous observation from spawns to 96 h postfertilization (hpf) to investigate the potential role of Kif15 in the auditory and vestibular system. We uncovered that Kif15 inhibition induced otic organ deformities in zebrafish, including malformed semicircular canals, abnormal number and location of otoliths, and reduced number of hair cells (HCs) both in utricle and saccule. Furthermore, a remarkable reduction in the number of PLL neuromasts was also explored in Kif15-MO morphants compared to the normal larvae. We also detected notably reduced activity in locomotion after Kif15 was knocked down. Additionally, we performed rescue experiments with co-injection of Kif15 mRNA and found that the Kif15 splicing MO-induced deformities in otic vesicle and PLL of zebrafish were successfully rescued, and the severely reduced locomotor activity caused by Kif15-MO was partially rescued compared to the control-MO (Con-MO) embryos. Our findings uncover that Kif15 is essential in the early development of auditory and vestibular organs using zebrafish as models.
Collapse
Affiliation(s)
- Shimei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dongmei Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xin Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yingzi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yingzi He,
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
- Dong Liu, ,
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Shaofeng Liu,
| |
Collapse
|
15
|
Cavin-Meza G, Kwan MM, Wignall SM. Multiple motors cooperate to establish and maintain acentrosomal spindle bipolarity in C. elegans oocyte meiosis. eLife 2022; 11:e72872. [PMID: 35147496 PMCID: PMC8963883 DOI: 10.7554/elife.72872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While centrosomes organize spindle poles during mitosis, oocyte meiosis can occur in their absence. Spindles in human oocytes frequently fail to maintain bipolarity and consequently undergo chromosome segregation errors, making it important to understand the mechanisms that promote acentrosomal spindle stability. To this end, we have optimized the auxin-inducible degron system in Caenorhabditis elegans to remove the factors from pre-formed oocyte spindles within minutes and assess the effects on spindle structure. This approach revealed that dynein is required to maintain the integrity of acentrosomal poles; removal of dynein from bipolar spindles caused pole splaying, and when coupled with a monopolar spindle induced by depletion of the kinesin-12 motor KLP-18, dynein depletion led to a complete dissolution of the monopole. Surprisingly, we went on to discover that following monopole disruption, individual chromosomes were able to reorganize local microtubules and re-establish a miniature bipolar spindle that mediated chromosome segregation. This revealed the existence of redundant microtubule sorting forces that are undetectable when KLP-18 and dynein are active. We found that the kinesin-5 family motor BMK-1 provides this force, uncovering the first evidence that kinesin-5 contributes to C. elegans meiotic spindle organization. Altogether, our studies have revealed how multiple motors are working synchronously to establish and maintain bipolarity in the absence of centrosomes.
Collapse
Affiliation(s)
- Gabriel Cavin-Meza
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michelle M Kwan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
16
|
Begley MA, Solon AL, Davis EM, Sherrill MG, Ohi R, Elting MW. K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. Mol Biol Cell 2021; 32:br11. [PMID: 34668719 PMCID: PMC8694074 DOI: 10.1091/mbc.e20-06-0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule cross-linker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors.
Collapse
Affiliation(s)
- Marcus A Begley
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | - April L Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
17
|
Neahring L, Cho NH, Dumont S. Opposing motors provide mechanical and functional robustness in the human spindle. Dev Cell 2021; 56:3006-3018.e5. [PMID: 34614397 DOI: 10.1016/j.devcel.2021.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
At each cell division, the spindle self-organizes from microtubules and motors. In human spindles, the motors dynein and Eg5 generate contractile and extensile stress, respectively. Inhibiting dynein or its targeting factor NuMA leads to unfocused, turbulent spindles, and inhibiting Eg5 leads to monopoles; yet, bipolar spindles form when both are inhibited together. What, then, are the roles of these opposing motors? Here, we generate NuMA/dynein- and Eg5-doubly inhibited spindles that not only attain a typical metaphase shape and size but also undergo anaphase. However, these spindles have reduced microtubule dynamics and are mechanically fragile, fracturing under force. Furthermore, they exhibit lagging chromosomes and a dramatic left-handed twist at anaphase. Thus, although these opposing motors are not required for spindle shape, they are essential to its mechanical and functional robustness. This work suggests a design principle whereby opposing active stresses provide robustness to force-generating cellular structures.
Collapse
Affiliation(s)
- Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA 94143, USA.
| | - Nathan H Cho
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA 94143, USA; Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Al Azzam O, Trussell CL, Reinemann DN. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers. Cytoskeleton (Hoboken) 2021; 78:111-125. [PMID: 34051127 DOI: 10.1002/cm.21678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Kinesins and microtubule associated proteins (MAPs) are critical to sustain life, facilitating cargo transport, cell division, and motility. To interrogate the mechanistic underpinnings of their function, these microtubule-based motors and proteins have been studied extensively at the single molecule level. However, a long-standing issue in the single molecule biophysics field has been how to investigate motors and associated proteins within a physiologically relevant environment in vitro. While the one motor/one filament orientation of a traditional optical trapping assay has revolutionized our knowledge of motor protein mechanics, this reductionist geometry does not reflect the structural hierarchy in which many motors work within the cellular environment. Here, we review approaches that combine the precision of optical tweezers with reconstituted ensemble systems of microtubules, MAPs, and kinesins to understand how each of these unique elements work together to perform large scale cellular tasks, such as but not limited to building the mitotic spindle. Not only did these studies develop novel techniques for investigating motor proteins in vitro, but they also illuminate ensemble filament and motor synergy that helps bridge the mechanistic knowledge gap between previous single molecule and cell level studies.
Collapse
Affiliation(s)
- Omayma Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Cameron Lee Trussell
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Dana N Reinemann
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA.,Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
19
|
Chemical tools for dissecting cell division. Nat Chem Biol 2021; 17:632-640. [PMID: 34035515 PMCID: PMC10157795 DOI: 10.1038/s41589-021-00798-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Components of the cell division machinery typically function at varying cell cycle stages and intracellular locations. To dissect cellular mechanisms during the rapid division process, small-molecule probes act as complementary approaches to genetic manipulations, with advantages of temporal and in some cases spatial control and applicability to multiple model systems. This Review focuses on recent advances in chemical probes and applications to address select questions in cell division. We discuss uses of both enzyme inhibitors and chemical inducers of dimerization, as well as emerging techniques to promote future investigations. Overall, these concepts may open new research directions for applying chemical probes to advance cell biology.
Collapse
|
20
|
Chen GY, Renda F, Zhang H, Gokden A, Wu DZ, Chenoweth DM, Khodjakov A, Lampson MA. Tension promotes kinetochore-microtubule release by Aurora B kinase. J Cell Biol 2021; 220:212027. [PMID: 33904910 PMCID: PMC8082439 DOI: 10.1083/jcb.202007030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/06/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Huaiying Zhang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alper Gokden
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Daniel Z Wu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Herrmann A, Livanos P, Zimmermann S, Berendzen K, Rohr L, Lipka E, Müller S. KINESIN-12E regulates metaphase spindle flux and helps control spindle size in Arabidopsis. THE PLANT CELL 2021; 33:27-43. [PMID: 33751090 PMCID: PMC8136872 DOI: 10.1093/plcell/koaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.
Collapse
Affiliation(s)
- Arvid Herrmann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Pantelis Livanos
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Steffi Zimmermann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kenneth Berendzen
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Leander Rohr
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Elisabeth Lipka
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sabine Müller
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Schlientz AJ, Bowerman B. C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion. PLoS Genet 2020; 16:e1008751. [PMID: 33027250 PMCID: PMC7571700 DOI: 10.1371/journal.pgen.1008751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/19/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
The requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants. In contrast, oocytes with similarly severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 both negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and influences the dynamics of the central spindle-associated proteins Aurora B/AIR-2 and MgcRacGAP/CYK-4. We suggest that proper regulation by CLS-2 of both oocyte cortical stiffness and central spindle protein dynamics may influence contractile ring assembly during polar body extrusion in C. elegans oocytes.
Collapse
Affiliation(s)
- Aleesa J. Schlientz
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
23
|
KSP siRNA/paclitaxel-loaded PEGylated cationic liposomes for overcoming resistance to KSP inhibitors: Synergistic antitumor effects in drug-resistant ovarian cancer. J Control Release 2020; 321:184-197. [PMID: 32035195 DOI: 10.1016/j.jconrel.2020.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Despite the promising anticancer effects of kinesin spindle protein (KSP) inhibition, functional plasticity of kinesins induced resistance against KSP inhibitors in a variety of cancers, leading to clinical failure. Additionally, paclitaxel is a widely used anticancer agent, but drug resistance has limited its use in the recurrent cancers. To overcome resistance against KSP inhibitors, we paired KSP inhibition with microtubule stabilization using KSP siRNA and paclitaxel. To enable temporal co-localization of both drugs in tumor cells in vivo, we exploited PEGylated cationic liposomes carrying both simultaneously. Drug synergism study shows that resistance against KSP inhibition can be suppressed by the action of microtubule-stabilizing paclitaxel, because microtubule stabilization prevents a different kinesin Kif15 from replacing all essential functions of KSP when KSP is inhibited. Our combination therapy showed more effective antiproliferative activity in vitro and in vivo than either paclitaxel or KSP siRNA alone. Ultimately, we could observe significantly improved therapeutic effects in the drug-resistant in vivo models, including cell line and patient-derived xenografts. Taken together, our combination therapy provides a potential anticancer strategy to overcome resistance against KSP inhibitors. Particularly, this strategy also provides an efficient approach to improve the therapeutic effects of paclitaxel in the drug-resistant cancers.
Collapse
|
24
|
Dudka D, Castrogiovanni C, Liaudet N, Vassal H, Meraldi P. Spindle-Length-Dependent HURP Localization Allows Centrosomes to Control Kinetochore-Fiber Plus-End Dynamics. Curr Biol 2019; 29:3563-3578.e6. [PMID: 31668617 DOI: 10.1016/j.cub.2019.08.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022]
Abstract
During mitosis, centrosomes affect the length of kinetochore fibers (k-fibers) and the stability of kinetochore-microtubule attachments, implying that they regulate k-fiber dynamics. However, the exact cellular and molecular mechanisms of this regulation remain unknown. Here, we created human cells with only one centrosome to investigate these mechanisms. Such cells formed asymmetric bipolar spindles that resulted in asymmetric cell divisions. K-fibers in the acentrosomal half-spindles were shorter, more stable, and had a reduced poleward microtubule flux at minus ends and more frequent pausing events at their plus ends. This indicates that centrosomes regulate k-fiber dynamics both locally at minus ends and far away at plus ends. At the molecular level, we find that the microtubule-stabilizing protein HURP is enriched on the k-fiber plus ends in the acentrosomal half-spindles of cells with only one centrosome. HURP depletion rebalances k-fiber stability and plus-end dynamics in such cells and improves spindle and cell division symmetry. Our data from 3 different cell lines indicate that HURP accumulates on k-fibers inversely proportionally to half-spindle length. We therefore propose that centrosomes regulate k-fiber plus ends indirectly via length-dependent accumulation of HURP.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Hélène Vassal
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; National Institute of Applied Sciences, Villeurbanne 69621, France
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
25
|
Malaby HLH, Dumas ME, Ohi R, Stumpff J. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15. J Cell Biol 2019; 218:1218-1234. [PMID: 30709852 PMCID: PMC6446846 DOI: 10.1083/jcb.201806195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Abstract
Kinesin-binding protein (KBP) is identified as a regulator of the kinesins KIF18A and KIF15 during mitosis. KBP buffers the activity of these motors to control chromosome alignment and spindle integrity in metaphase and prevent lagging chromosomes in anaphase. Mitotic kinesins must be regulated to ensure a precise balance of spindle forces and accurate segregation of chromosomes into daughter cells. Here, we demonstrate that kinesin-binding protein (KBP) reduces the activity of KIF18A and KIF15 during metaphase. Overexpression of KBP disrupts the movement and alignment of mitotic chromosomes and decreases spindle length, a combination of phenotypes observed in cells deficient for KIF18A and KIF15, respectively. We show through gliding filament and microtubule co-pelleting assays that KBP directly inhibits KIF18A and KIF15 motor activity by preventing microtubule binding. Consistent with these effects, the mitotic localizations of KIF18A and KIF15 are altered by overexpression of KBP. Cells depleted of KBP exhibit lagging chromosomes in anaphase, an effect that is recapitulated by KIF15 and KIF18A overexpression. Based on these data, we propose a model in which KBP acts as a protein buffer in mitosis, protecting cells from excessive KIF18A and KIF15 activity to promote accurate chromosome segregation.
Collapse
Affiliation(s)
- Heidi L H Malaby
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Megan E Dumas
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN
| | - Ryoma Ohi
- The Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
26
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
27
|
Saeki E, Yasuhira S, Shibazaki M, Tada H, Doita M, Masuda T, Maesawa C. Involvement of C-terminal truncation mutation of kinesin-5 in resistance to kinesin-5 inhibitor. PLoS One 2018; 13:e0209296. [PMID: 30557316 PMCID: PMC6296710 DOI: 10.1371/journal.pone.0209296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 11/22/2022] Open
Abstract
Cultured cells easily develop resistance to kinesin-5 inhibitors (K5Is) often by overexpressing a related motor protein, kinesin-12/KIF15, or by acquiring mutations in the N-terminal motor domain of kinesin-5/KIF11 itself. We aimed to identify novel mechanisms responsible for resistance to S-trityl L-cysteine (STLC), one of the K5Is, using human osteosarcoma cell lines. Among six lines examined, U-2OS and HOS survived chronic STLC treatment and gave rise to resistant cells with IC50s at least 10-fold higher than those of the respective parental lines. Depletion of KIF15 largely eliminated the acquired K5I resistance in both cases, consistent with the proposed notion that KIF15 is indispensable for it. In contrast to the KIF11-independent property of the cells derived from HOS, those derived from U-2OS still required KIF11 for their growth and, intriguingly, expressed a C-terminal truncated variant of KIF11 resulting from a frame shift mutation (S1017fs). All of the isolated clones harbored the same mutation, suggesting its clonal expansion in the cell population due to the growth advantage during chronic STLC treatment. Transgenic expression of KIF11S1017fs in the parental U-2OS cells, as well as in HeLa cells, conferred a moderate but reproducible STLC resistance, probably owing to STLC-resistant localization of the mutant KIF11 on mitotic spindle. Our observations indicate that both KIF15 and the C-terminal-truncated KIF11 contributes to the STLC resistance of the U-2OS derived cells.
Collapse
Affiliation(s)
- Eri Saeki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
- Department of Orthopaedic Surgery, School of Medicine, Iwate Medical University, 16-1 Uchimaru, Morioka-shi, Iwate, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
- * E-mail:
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Hiroshi Tada
- Department of Orthopaedic Surgery, School of Medicine, Iwate Medical University, 16-1 Uchimaru, Morioka-shi, Iwate, Japan
| | - Minoru Doita
- Department of Orthopaedic Surgery, School of Medicine, Iwate Medical University, 16-1 Uchimaru, Morioka-shi, Iwate, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
| |
Collapse
|
28
|
Dumas ME, Chen GY, Kendrick ND, Xu G, Larsen SD, Jana S, Waterson AG, Bauer JA, Hancock W, Sulikowski GA, Ohi R. Dual inhibition of Kif15 by oxindole and quinazolinedione chemical probes. Bioorg Med Chem Lett 2018; 29:148-154. [PMID: 30528696 DOI: 10.1016/j.bmcl.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
Abstract
The mitotic spindle is a microtubule-based machine that segregates a replicated set of chromosomes during cell division. Many cancer drugs alter or disrupt the microtubules that form the mitotic spindle. Microtubule-dependent molecular motors that function during mitosis are logical alternative mitotic targets for drug development. Eg5 (Kinesin-5) and Kif15 (Kinesin-12), in particular, are an attractive pair of motor proteins, as they work in concert to drive centrosome separation and promote spindle bipolarity. Furthermore, we hypothesize that the clinical failure of Eg5 inhibitors may be (in part) due to compensation by Kif15. In order to test this idea, we screened a small library of kinase inhibitors and identified GW108X, an oxindole that inhibits Kif15 in vitro. We show that GW108X has a distinct mechanism of action compared with a commercially available Kif15 inhibitor, Kif15-IN-1 and may serve as a lead with which to further develop Kif15 inhibitors as clinically relevant agents.
Collapse
Affiliation(s)
- Megan E Dumas
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Geng-Yuan Chen
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, United States
| | - Nicole D Kendrick
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - George Xu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, United States
| | - Alex G Waterson
- Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, United States; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - William Hancock
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, United States
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
29
|
Mann BJ, Wadsworth P. Distribution of Eg5 and TPX2 in mitosis: Insight from CRISPR tagged cells. Cytoskeleton (Hoboken) 2018; 75:508-521. [DOI: 10.1002/cm.21486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- B. J. Mann
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| | - P. Wadsworth
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
30
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
32
|
Tang F, Pan MH, Lu Y, Wan X, Zhang Y, Sun SC. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes. Aging Dis 2018; 9:623-633. [PMID: 30090651 PMCID: PMC6065292 DOI: 10.14336/ad.2017.0901] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Kif4a, a member of the kinesin superfamily, has been reported to participate in a series of cellular processes such as chromosome condensation and cytokinesis during mitosis. However, the roles of KIF4a in meiosis are still unknown. In present study we found that the Kif4a protein expression decreased in maternal aged mouse oocytes. We then explored the roles of Kif4a in mouse oocyte meiosis by knockdown analysis. Kif4a was enriched at the spindle during mouse oocyte maturation. By specific knock down of the Kif4a using morpholino microinjection, we found that the disruption of Kif4a caused the failure of polar body extrusion. Further analysis indicated that Kif4a might affect the spindle morphology and chromosome alignment in the mouse oocytes, and this might be due to the regulation of tubulin acetylation. Moreover, our results showed that an increased proportion of aneuploidy in the Kif4a knock down oocytes, and this might be due to the loss of kinetochore-microtubule attachment. Taken together, these results suggested that Kif4a possibly regulated mouse oocyte meiosis through its effects on the spindle organization and accurate chromosome segregation, and the loss of Kif4a might be related with aneuploidy of aging oocytes.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Tan R, Foster PJ, Needleman DJ, McKenney RJ. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell 2018; 44:233-247.e4. [PMID: 29401420 DOI: 10.1016/j.devcel.2017.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
Cytoplasmic dynein-1 is a minus-end-directed motor protein that transports cargo over long distances and organizes the intracellular microtubule (MT) network. How dynein motor activity is harnessed for these diverse functions remains unknown. Here, we have uncovered a mechanism for how processive dynein-dynactin complexes drive MT-MT sliding, reorganization, and focusing, activities required for mitotic spindle assembly. We find that motors cooperatively accumulate, in limited numbers, at MT minus-ends. Minus-end accumulations drive MT-MT sliding, independent of MT orientation, resulting in the clustering of MT minus-ends. At a mesoscale level, activated dynein-dynactin drives the formation and coalescence of MT asters. Macroscopically, dynein-dynactin activity leads to bulk contraction of millimeter-scale MT networks, suggesting that minus-end accumulations of motors produce network-scale contractile stresses. Our data provide a model for how localized dynein activity is harnessed by cells to produce contractile stresses within the cytoskeleton, for example, during mitotic spindle assembly.
Collapse
Affiliation(s)
- Ruensern Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA
| | - Peter J Foster
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
McHugh T, Drechsler H, McAinsh AD, Carter NJ, Cross RA. Kif15 functions as an active mechanical ratchet. Mol Biol Cell 2018; 29:1743-1752. [PMID: 29771628 PMCID: PMC6080711 DOI: 10.1091/mbc.e18-03-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kif15 is a kinesin-12 that contributes critically to bipolar spindle assembly in humans. Here we use force-ramp experiments in an optical trap to probe the mechanics of single Kif15 molecules under hindering or assisting loads and in a variety of nucleotide states. While unloaded Kif15 is established to be highly processive, we find that under hindering loads, Kif15 takes <∼10 steps. As hindering load is increased, Kif15 forestep:backstep ratio decreases exponentially, with stall occurring at 6 pN. In contrast, under assisting loads, Kif15 detaches readily and rapidly, even from its AMPPNP state. Kif15 mechanics thus depend markedly on the loading direction. Kif15 interacts with a binding partner, Tpx2, and we show that Tpx2 locks Kif15 to microtubules under both hindering and assisting loads. Overall, our data predict that Kif15 in the central spindle will act as a mechanical ratchet, supporting spindle extension but resisting spindle compression.
Collapse
Affiliation(s)
- Toni McHugh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Nicolas J Carter
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Milic B, Chakraborty A, Han K, Bassik MC, Block SM. KIF15 nanomechanics and kinesin inhibitors, with implications for cancer chemotherapeutics. Proc Natl Acad Sci U S A 2018; 115:E4613-E4622. [PMID: 29703754 PMCID: PMC5960320 DOI: 10.1073/pnas.1801242115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eg5, a mitotic kinesin, has been a target for anticancer drug development. Clinical trials of small-molecule inhibitors of Eg5 have been stymied by the development of resistance, attributable to mitotic rescue by a different endogenous kinesin, KIF15. Compared with Eg5, relatively little is known about the properties of the KIF15 motor. Here, we employed single-molecule optical-trapping techniques to define the KIF15 mechanochemical cycle. We also studied the inhibitory effects of KIF15-IN-1, an uncharacterized, commercially available, small-molecule inhibitor, on KIF15 motility. To explore the complementary behaviors of KIF15 and Eg5, we also scored the effects of small-molecule inhibitors on admixtures of both motors, using both a microtubule (MT)-gliding assay and an assay for cancer cell viability. We found that (i) KIF15 motility differs significantly from Eg5; (ii) KIF15-IN-1 is a potent inhibitor of KIF15 motility; (iii) MT gliding powered by KIF15 and Eg5 only ceases when both motors are inhibited; and (iv) pairing KIF15-IN-1 with Eg5 inhibitors synergistically reduces cancer cell growth. Taken together, our results lend support to the notion that a combination drug therapy employing both inhibitors may be a viable strategy for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Bojan Milic
- Biophysics Program, Stanford University, Stanford, CA 94305
| | | | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305;
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
36
|
Abstract
Kinesins are a superfamily of ATP-dependent motors important for many microtubule-based functions, including multiple roles in mitosis. Small-molecule inhibitors of mitotic kinesins disrupt cell division and are being developed as antimitotic therapies. We investigated the molecular mechanism of the multitasking human mitotic kinesin Kif18A and its inhibition by the small molecule BTB-1. We used cryo-electron microscopy to visualize nucleotide-dependent conformational changes in microtubule-bound Kif18A, and the conformation of microtubule-bound, BTB-1-bound Kif18A. We calculated a putative BTB-1–binding site and validated this site experimentally to reveal the BTB-1 inhibition mechanism. Our work points to a general mechanism of kinesin inhibition, with wide implications for a targeted blockade of these motors in both dividing and interphase cells. Kinesin motors play diverse roles in mitosis and are targets for antimitotic drugs. The clinical significance of these motors emphasizes the importance of understanding the molecular basis of their function. Equally important, investigations into the modes of inhibition of these motors provide crucial information about their molecular mechanisms. Kif18A regulates spindle microtubules through its dual functionality, with microtubule-based stepping and regulation of microtubule dynamics. We investigated the mechanism of Kif18A and its inhibition by the small molecule BTB-1. The Kif18A motor domain drives ATP-dependent plus-end microtubule gliding, and undergoes conformational changes consistent with canonical mechanisms of plus-end–directed motility. The Kif18A motor domain also depolymerizes microtubule plus and minus ends. BTB-1 inhibits both of these microtubule-based Kif18A activities. A reconstruction of BTB-1–bound, microtubule-bound Kif18A, in combination with computational modeling, identified an allosteric BTB-1–binding site near loop5, where it blocks the ATP-dependent conformational changes that we characterized. Strikingly, BTB-1 binding is close to that of well-characterized Kif11 inhibitors that block tight microtubule binding, whereas BTB-1 traps Kif18A on the microtubule. Our work highlights a general mechanism of kinesin inhibition in which small-molecule binding near loop5 prevents a range of conformational changes, blocking motor function.
Collapse
|
37
|
Reinemann DN, Sturgill EG, Das DK, Degen MS, Vörös Z, Hwang W, Ohi R, Lang MJ. Collective Force Regulation in Anti-parallel Microtubule Gliding by Dimeric Kif15 Kinesin Motors. Curr Biol 2017; 27:2810-2820.e6. [PMID: 28918951 PMCID: PMC5909953 DOI: 10.1016/j.cub.2017.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022]
Abstract
During cell division, the mitotic kinesin-5 Eg5 generates most of the force required to separate centrosomes during spindle assembly. However, Kif15, another mitotic kinesin, can replace Eg5 function, permitting mammalian cells to acquire resistance to Eg5 poisons. Unlike Eg5, the mechanism by which Kif15 generates centrosome separation forces is unknown. Here we investigated the mechanical properties and force generation capacity of Kif15 at the single-molecule level using optical tweezers. We found that the non-motor microtubule-binding tail domain interacts with the microtubule's E-hook tail with a rupture force higher than the stall force of the motor. This allows Kif15 dimers to productively and efficiently generate forces that could potentially slide microtubules apart. Using an in vitro optical trapping and fluorescence assay, we found that Kif15 slides anti-parallel microtubules apart with gradual force buildup while parallel microtubule bundles remain stationary with a small amount of antagonizing force generated. A stochastic simulation shows the essential role of Kif15's tail domain for load storage within the Kif15-microtubule system. These results suggest a mechanism for how Kif15 rescues bipolar spindle assembly.
Collapse
Affiliation(s)
- Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emma G Sturgill
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dibyendu Kumar Das
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Miriam Steiner Degen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zsuzsanna Vörös
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wonmuk Hwang
- Departments of Biomedical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology and LSI, University of Michigan School of Medicine, Ann Arbor, MI 48109-2216, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast. Nat Commun 2017; 8:15286. [PMID: 28513584 PMCID: PMC5442317 DOI: 10.1038/ncomms15286] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/13/2017] [Indexed: 12/04/2022] Open
Abstract
Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. Bipolar spindle assembly requires a balance of kinesin 14 pulling and kinesin 5 pushing forces. Here, the authors show that in fission yeast, spindle formation can occur in the absence of kinesin 5 (Cut7) and 14 (Pkl1) but requires the microtubule-associated protein Ase1 for spindle bipolarity.
Collapse
|
39
|
Brouwers N, Mallol Martinez N, Vernos I. Role of Kif15 and its novel mitotic partner KBP in K-fiber dynamics and chromosome alignment. PLoS One 2017; 12:e0174819. [PMID: 28445502 PMCID: PMC5405935 DOI: 10.1371/journal.pone.0174819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 11/26/2022] Open
Abstract
Faithful segregation of the genetic material during the cell cycle is key for the continuation of life. Central to this process is the assembly of a bipolar spindle that aligns the chromosomes and segregates them to the two daughter cells. Spindle bipolarity is strongly dependent on the activity of the homotetrameric kinesin Eg5. However, another kinesin, Kif15, also provides forces needed to separate the spindle poles during prometaphase and to maintain spindle bipolarity at metaphase. Here we identify KBP as a specific interaction partner of Kif15 in mitosis. We show that KBP promotes the localization of Kif15 to the spindle equator close to the chromosomes. Both Kif15 and KBP are required for the alignment of all the chromosomes to the metaphase plate and the assembly of stable kinetochore fibers of the correct length. Taken together our data uncover a novel role for Kif15 in complex with KBP during mitosis.
Collapse
Affiliation(s)
- Nathalie Brouwers
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nuria Mallol Martinez
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
Sleiman PMA, March M, Nguyen K, Tian L, Pellegrino R, Hou C, Dridi W, Sager M, Housawi YH, Hakonarson H. Loss-of-Function Mutations in KIF15 Underlying a Braddock-Carey Genocopy. Hum Mutat 2017; 38:507-510. [PMID: 28150392 DOI: 10.1002/humu.23188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022]
Abstract
Braddock-Carey Syndrome (BCS) is characterized by microcephaly, congenital thrombocytopenia, Pierre-Robin sequence (PRS), and agenesis of the corpus callosum. BCS has been shown to be caused by a 21q22.11 microdeletion that encompasses multiple genes. Here, we report a BCS genocopy characterized by congenital thrombocytopenia and PRS that is caused by a loss-of-function mutation in KIF15 in a consanguineous Saudi Arabian family. Mutations of mitotic kinesins are a well-established cause of microcephaly. To our knowledge, KIF15 is the first kinesin to be associated with congenital thrombocytopenia.
Collapse
Affiliation(s)
- Patrick M A Sleiman
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael March
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kenny Nguyen
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lifeng Tian
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Renata Pellegrino
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cuiping Hou
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Walid Dridi
- Departments of Pediatrics, Pediatric Oncology, Pathology and Laboratory Medicine and Research, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohamed Sager
- Departments of Pediatrics, Pediatric Oncology, Pathology and Laboratory Medicine and Research, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Yousef H Housawi
- Departments of Pediatrics, Pediatric Oncology, Pathology and Laboratory Medicine and Research, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
43
|
Hu Z, Feng J, Bo W, Wu R, Dong Z, Liu Y, Qiang L, Liu M. Fidgetin regulates cultured astrocyte migration by severing tyrosinated microtubules at the leading edge. Mol Biol Cell 2016; 28:545-553. [PMID: 27974640 PMCID: PMC5305261 DOI: 10.1091/mbc.e16-09-0628] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/02/2022] Open
Abstract
Fign regulates cultured astrocyte migration by severing tyrosinated microtubules (MTs). Inhibition of cellular migration induced by Fign knockdown can be rescued with concomitant knockdown of kinesin-12. A working model is given for the MT reconfiguration underlying cellular migration elicited by the cooperation of two distinct MT-related proteins. Microtubule (MT) organization is essential for many cellular events, including mitosis, migration, and cell polarity. Fidgetin (Fign), an ATP-dependent, MT-severing protein, contributes to the regulation of MT configuration by cutting and trimming MT polymers. Functions of Fign have been indicated in neurite outgrowth, mitosis, meiosis, and cellular migration. Here we focus on migration of astrocytes. We find that Fign plays an essential role in cultured astrocyte migration by preferentially targeting MTs (or regions of MTs) that are rich in tyrosinated tubulin, a marker for especially dynamic MTs or especially dynamic regions of MTs. Inhibition of cellular migration induced by Fign knockdown can be rescued with concomitant knockdown of kinesin-12, a motor protein best known for its role in mitosis. We propose a novel working model for MT reconfiguration underlying cellular migration elicited by the functional cooperation of two distinct MT-related proteins.
Collapse
Affiliation(s)
- Zunlu Hu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Feng
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Weijuan Bo
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Liang Qiang
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Mei Liu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
44
|
Cooperation Between Kinesin Motors Promotes Spindle Symmetry and Chromosome Organization in Oocytes. Genetics 2016; 205:517-527. [PMID: 27932541 DOI: 10.1534/genetics.116.194647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
The oocyte spindle in most animal species is assembled in the absence of the microtubule-organizing centers called centrosomes. Without the organization provided by centrosomes, acentrosomal meiotic spindle organization may rely heavily on the bundling of microtubules by kinesin motor proteins. Indeed, the minus-end directed kinesin-14 NCD, and the plus-end directed kinesin-6 Subito are known to be required for oocyte spindle organization in Drosophila melanogaster How multiple microtubule-bundling kinesins interact to produce a functional acentrosomal spindle is not known. In addition, there have been few studies on the meiotic function of one of the most important microtubule-bundlers in mitotic cells, the kinesin-5 KLP61F. We have found that the kinesin-5 KLP61F is required for spindle and centromere symmetry in oocytes. The asymmetry observed in the absence of KLP61F depends on NCD, the kinesin-12 KLP54D, and the microcephaly protein ASP. In contrast, KLP61F and Subito work together in maintaining a bipolar spindle. We propose that the prominent central spindle, stabilized by Subito, provides the framework for the coordination of multiple microtubule-bundling activities. The activities of several proteins, including NCD, KLP54D, and ASP, generate asymmetries within the acentrosomal spindle, while KLP61F and Subito balance these forces, resulting in the capacity to accurately segregate chromosomes.
Collapse
|
45
|
Mann BJ, Balchand SK, Wadsworth P. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics. Mol Biol Cell 2016; 28:65-75. [PMID: 27852894 PMCID: PMC5221630 DOI: 10.1091/mbc.e16-06-0476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo.
Collapse
Affiliation(s)
- Barbara J Mann
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sai K Balchand
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Patricia Wadsworth
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
46
|
Abstract
Centrosomes are complex structures, which are embedded into the opposite poles of the mitotic spindle of most animals, acting as microtubule organizing centres. Surprisingly, in several biological systems, such as flies, chicken, or human cells, centrosomes are not essential for cell division. Nonetheless, they ensure faithful chromosome segregation. Moreover, mis-functioning centrosomes can act in a dominant-negative manner, resulting in erroneous mitotic progression. Here, I review the mechanisms by which centrosomes contribute to proper spindle organization and faithful chromosome segregation under physiological conditions and discuss how errors in centrosome function impair transmission of the genomic material in a pathological setting.
Collapse
|
47
|
Wolff ID, Tran MV, Mullen TJ, Villeneuve AM, Wignall SM. Assembly of Caenorhabditis elegans acentrosomal spindles occurs without evident microtubule-organizing centers and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1. Mol Biol Cell 2016; 27:3122-3131. [PMID: 27559133 PMCID: PMC5063619 DOI: 10.1091/mbc.e16-05-0291] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
Female reproductive cells of most species lack centrosomes, but how spindles form in their absence is poorly understood. Study of oocytes in Caenorhabditis elegans uncovers new steps in this process and reveals mechanisms required for acentrosomal spindle bipolarity via studies of two proteins, KLP-18/kinesin-12 and MESP-1. Although centrosomes contribute to spindle formation in most cell types, oocytes of many species are acentrosomal and must organize spindles in their absence. Here we investigate this process in Caenorhabditis elegans, detailing how acentrosomal spindles form and revealing mechanisms required to establish bipolarity. Using high-resolution imaging, we find that in meiosis I, microtubules initially form a “cage-like” structure inside the disassembling nuclear envelope. This structure reorganizes so that minus ends are sorted to the periphery of the array, forming multiple nascent poles that then coalesce until bipolarity is achieved. In meiosis II, microtubules nucleate in the vicinity of chromosomes but then undergo similar sorting and pole formation events. We further show that KLP-18/kinesin-12 and MESP-1, previously shown to be required for spindle bipolarity, likely contribute to bipolarity by sorting microtubules. After their depletion, minus ends are not sorted outward at the early stages of spindle assembly and instead converge. These proteins colocalize on microtubules, are interdependent for localization, and can interact, suggesting that they work together. We propose that KLP-18/kinesin-12 and MESP-1 form a complex that functions to sort microtubules of mixed polarity into a configuration in which minus ends are away from the chromosomes, enabling formation of nascent poles.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Michael V Tran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Timothy J Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University, Stanford, CA 94305
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
48
|
Affiliation(s)
- Megan E Dumas
- a Department of Cell and Developmental Biology , Vanderbilt University Medical School , Nashville , TN , USA
| | - Emma G Sturgill
- a Department of Cell and Developmental Biology , Vanderbilt University Medical School , Nashville , TN , USA
| | - Ryoma Ohi
- a Department of Cell and Developmental Biology , Vanderbilt University Medical School , Nashville , TN , USA
| |
Collapse
|
49
|
van Heesbeen RGHP, Raaijmakers JA, Tanenbaum ME, Halim VA, Lelieveld D, Lieftink C, Heck AJR, Egan DA, Medema RH. Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation. Chromosoma 2016; 126:473-486. [PMID: 27354041 PMCID: PMC5509784 DOI: 10.1007/s00412-016-0607-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
Abstract
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.
Collapse
Affiliation(s)
| | - Jonne A Raaijmakers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marvin E Tanenbaum
- Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincentius A Halim
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daphne Lelieveld
- Cell Screening Core, Department of Cell Biology, Center for Molecular Medicine, University Medical Centre, Utrecht, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - David A Egan
- Cell Screening Core, Department of Cell Biology, Center for Molecular Medicine, University Medical Centre, Utrecht, The Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Al-Obaidi N, Mitchison TJ, Crews CM, Mayer TU. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells. ACS Chem Biol 2016; 11:1544-51. [PMID: 27121275 DOI: 10.1021/acschembio.6b00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.
Collapse
Affiliation(s)
- Naowras Al-Obaidi
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Timothy J. Mitchison
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Craig M. Crews
- Departments
of Molecular, Cellular, and Developmental Biology, Chemistry, and
Pharmacology, Yale University, 219 Prospect St., New Haven, Connecticut, United States
| | - Thomas U. Mayer
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| |
Collapse
|