1
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. Dev Biol 2025; 524:105-115. [PMID: 40349907 DOI: 10.1016/j.ydbio.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
During the first cell fate decision in mammalian embryos, the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell and nuclear shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
3
|
Zhang W, An S, Hou S, He X, Xiang J, Yan H, Liu X, Dong L, Wang X, Yang Y. Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1337-1351. [PMID: 40024996 DOI: 10.1007/s11427-024-2774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 03/04/2025]
Abstract
As an alternative model for studying the dynamic process of early mammalian embryonic development, much progress has been made in using mouse embryonic stem cells (mESCs) to generate embryo-like structures, especially by modifying the starting cells. A previous study has demonstrated that totipotent blastomere-like cells (TBLCs) can be obtained by continuous treatment of mESCs with a low-dose splicing inhibitor, Pladienolide B (PlaB). However, these totipotent mESCs have limited proliferative capacity. Here, we report that short-term high-dose PlaB treatment can also induce mESCs to acquire totipotency. This treatment equips this novel type of stem cells with the ability to self-organize into blastoids and recapitulate key preimplantation developmental processes. Therefore, the stem cells are termed transient totipotent blastomere-like stem cells (tTBLCs). Transcriptome analysis showed that tTBLC blastoids bore similarities to mouse E3.5 blastocysts, E4.5 blastocysts, and TBLC blastoids. Additionally, we found that tTBLC blastoids could develop beyond the implantation stage, forming egg-cylinder-like structures both in vitro and in vivo. In summary, our research provides an alternative rapid and convenient method to generate the starting cells capable of developing into blastoids, which have immense application in various fields, not only in the basic study of early mouse embryogenesis but also in high-throughput drug screening.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyu An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shuyue Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xingsi He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinfeng Xiang
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210004, China
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, 210004, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaorui Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lingling Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Prenatal Diagnosis of the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, China.
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Jeong M, Han D, Bhetariya P, Welling DB, Stojkovic M, Stankovic KM. NF2 is Essential for Human Endoderm Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410909. [PMID: 39921490 PMCID: PMC12061267 DOI: 10.1002/advs.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Indexed: 02/10/2025]
Abstract
Vertebrate embryogenesis requires the precisely timed specification of 3 germ cell layers- ectoderm, mesoderm, and endoderm- which give rise to tissues and organs in the developing organism. The tumor suppressor gene NF2, moesin-ezrin-radixin like (MERLIN) tumor suppressor (Nf2) is expressed in all 3 germ layers during mouse development and its homozygous deletion causes embryonic lethality. People with heterozygous NF2 mutations typically develop Schwann cell tumors, especially vestibular schwannoma, but the specific role of NF2 in human embryonic development is unclear. Here, human induced pluripotent stem cells (hiPSCs) are used to demonstrate that NF2 is essential for endoderm specification and formation in humans. Although endoderm differentiation is not impaired in hiPSCs with heterozygous NF2 mutation, NF2 knockout (NF2-/-) abolished the capacity to form endoderm in vitro, confirmed by loss of expression of endoderm-related genes and proteins, or teratomas in vivo. This defect is mediated by the nuclear translocation of yes-associated protein 1 (YAP1), a transcription co-activator regulating lineage fate via the Hippo pathway and subsequent YAP1-mediated shutdown of Activin/Nodal signaling. Endoderm formation can be rescued via YAP1 knockdown or forced re-expression of NF2 in NF2-/- cells. Taken together, the essential role of NF2 during endoderm specification in human embryogenesis as a regulator of YAP1 is reported.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Dongjun Han
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Preetida Bhetariya
- Bioinformatics CoreHarvard T.H. Chan School of Public HealthBostonMA02115USA
| | - D. Bradley Welling
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Miodrag Stojkovic
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCA94305USA
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMA02114USA
- Department of NeurosurgeryStanford University School of MedicineStanfordCA94304USA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
| |
Collapse
|
5
|
Saito S, Nishiyama K, Bai H, Takahashi M, Kawahara M. Polarization-independent regulation of the subcellular localization of Yes-associated protein 1 during preimplantation development. J Biol Chem 2025; 301:108429. [PMID: 40118454 PMCID: PMC12018982 DOI: 10.1016/j.jbc.2025.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025] Open
Abstract
Cell polarization is a crucial developmental process that determines cell differentiation in mouse embryos. During this process, an extensively expressed transcriptional regulator, Yes-associated protein 1 (YAP1), is localized either to the cytoplasm or to the nucleus via HIPPO signaling. In mouse premorula embryos, YAP1 is present in the nuclei of all cells. Thereafter, YAP1 is distributed to the nuclei of outer cells or cytoplasm of inner cells, depending on the establishment of cell polarity and morula formation. However, the dynamics of YAP1 localization in other species, including ruminants, remain unclear. To gain an in-depth understanding of cell differentiation in mammalian embryos, we investigated YAP1 localization changes in bovine embryos. Unlike in mouse morulae, YAP1 displayed cytoplasmic localization in most cells, including the outer cells of bovine morulae, after the 32-cell stage. Next, we analyzed the relationship between cell polarity and nuclear localization of YAP1. Polarization of outer cells in the bovine morula began at the late 16-cell stage and was established by the late 32-cell stage, indicating that polarization preceded the nuclear localization of YAP1 in bovine embryos. To explore the regulation of YAP1 localization in bovine morula, we analyzed zona-free embryos and found that the presence of the zona pellucida significantly enhanced YAP1 cytoplasmic localization. Moreover, we observed ectopic expression of SRY-box transcription factor 2 in zona-free blastocysts, which indicated that cytoplasmic localization of YAP1 was associated with the suppression of pluripotency in the trophectoderm. These findings provide valuable insights into the molecular mechanisms underlying the first cell differentiation in mammalian embryos.
Collapse
Affiliation(s)
- Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koji Nishiyama
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Haddad A, Golan-Lev T, Benvenisty N, Goldberg M. Genome-wide screening in human embryonic stem cells identifies genes and pathways involved in the p53 pathway. Mol Med 2025; 31:97. [PMID: 40082762 PMCID: PMC11907909 DOI: 10.1186/s10020-025-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The tumor suppressor protein, p53, which is mutated in half of human tumors, plays a critical role in cellular responses to DNA damage and maintenance of genome stability. Therefore, increasing our understanding of the p53 pathway is essential for improving cancer treatment and diagnosis. METHODS This study, which aimed to identify genes and pathways that mediate resistance to p53 upregulation, used genome-wide CRISPR-Cas9 loss-of-function screening done with Nutlin-3a, which inhibits p53-MDM2 interaction, resulting in p53 accumulation and apoptotic cell death. We used bioinformatics analysis for the identification of genes and pathways that are involved in the p53 pathway and cell survival assays to validate specific genes. In addition, we used RNA-seq to identify differentially expressed p53 target genes in gene knockout (KO) cell lines. RESULTS Our screen revealed three significantly enriched pathways: The heparan sulfate glycosaminoglycan biosynthesis, diphthamide biosynthesis and Hippo pathway. Notably, TRIP12 was significantly enriched in our screen. We found that TRIP12 is required for the p53-dependent transcription of several pro-apoptotic genes. CONCLUSION Our study has identified two novel pathways that play a role in p53-mediated growth restriction. Moreover, we have highlighted the interaction between the Hippo and the p53 pathways. Interestingly, we have shown that TRIP12 plays an important function in the p53 pathway by selectively affecting its role as a transcription factor.
Collapse
Affiliation(s)
- Amir Haddad
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tamar Golan-Lev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Michal Goldberg
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
7
|
Chalifoux M, Avdeeva M, Posfai E. Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640568. [PMID: 40060487 PMCID: PMC11888467 DOI: 10.1101/2025.02.27.640568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.
Collapse
Affiliation(s)
- Madeleine Chalifoux
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
8
|
Huang H, Gao S, Bao M. Exploring Mechanical Forces Shaping Self-Organization and Morphogenesis During Early Embryo Development. Annu Rev Cell Dev Biol 2024; 40:75-96. [PMID: 38608312 DOI: 10.1146/annurev-cellbio-120123-105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Embryonic development is a dynamic process orchestrated by a delicate interplay of biochemical and biophysical factors. While the role of genetics and biochemistry in embryogenesis has been extensively studied, recent research has highlighted the significance of mechanical regulation in shaping and guiding this intricate process. Here, we provide an overview of the current understanding of the mechanical regulation of embryo development. We explore how mechanical forces generated by cells and tissues play a crucial role in driving the development of different stages. We examine key morphogenetic processes such as compaction, blastocyst formation, implantation, and egg cylinder formation, and discuss the mechanical mechanisms and cues involved. By synthesizing the current body of literature, we highlight the emerging concepts and open questions in the field of mechanical regulation. We aim to provide an overview of the field, inspiring future investigations and fostering a deeper understanding of the mechanical aspects of embryo development.
Collapse
Affiliation(s)
- Hong Huang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China;
| | - Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| |
Collapse
|
9
|
Pfeffer PL. The first lineage determination in mammals. Dev Biol 2024; 513:12-30. [PMID: 38761966 DOI: 10.1016/j.ydbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
This review describes in detail the morphological, cytoskeletal and gene expression events leading to the gene regulatory network bifurcation point of trophoblast and inner cell mass cells in a variety of mammalian preimplantation embryos. The interrelated processes of compaction and polarity establishment are discussed in terms of how they affect YAP/WWTR activity and the location and fate of cells. Comparisons between mouse, human, cattle, pig and rabbit embryos suggest a conserved role for YAP/WWTR signalling in trophoblast induction in eutherian animals though the mechanisms for, and timing of, YAP/WWTR activation differs among species. Downstream targets show further differences, with the trophoblast marker GATA3 being a direct target in all examined mammals, while CDX2-positive and SOX2-negative regulation varies.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Goda N, Ito Y, Saito S, Suzuki M, Bai H, Takahashi M, Wakai T, Kawahara M. Hippo pathway inactivation through subcellular localization of NF2/merlin in outer cells of mouse embryos. Development 2024; 151:dev202639. [PMID: 39077779 DOI: 10.1242/dev.202639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.
Collapse
Affiliation(s)
- Nanami Goda
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Ito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Miyabi Suzuki
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
11
|
Lee CJM, Autio MI, Zheng W, Song Y, Wang SC, Wong DCP, Xiao J, Zhu Y, Yusoff P, Yei X, Chock WK, Low BC, Sudol M, Foo RSY. Genome-Wide CRISPR Screen Identifies an NF2-Adherens Junction Mechanistic Dependency for Cardiac Lineage. Circulation 2024; 149:1960-1979. [PMID: 38752370 DOI: 10.1161/circulationaha.122.061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/05/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.
Collapse
Affiliation(s)
- Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | | | - Wenhao Zheng
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Yoohyun Song
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Shyi Chyi Wang
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Darren Chen Pei Wong
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
| | - Yike Zhu
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | - Permeen Yusoff
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Xi Yei
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | | | - Boon Chuan Low
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
- University Scholars Programme (B.C.L.), National University of Singapore
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (M.S.)
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| |
Collapse
|
12
|
Li YM, Chung YL, Wu YF, Wang CK, Chen CM, Chen YH. Maternal exposure to hyperbaric oxygen at the preimplantation stages increases apoptosis and ectopic Cdx2 expression and decreases Oct4 expression in mouse blastocysts via Nrf2-Notch1 upregulation and Nf2 downregulation. Dev Dyn 2024; 253:467-489. [PMID: 37850827 DOI: 10.1002/dvdy.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The environmental oxygen tension has been reported to impact the blastocyst quality and cell numbers in the inner cell mass (ICM) during human and murine embryogenesis. While the molecular mechanisms leading to increased ICM cell numbers and pluripotency gene expression under hypoxia have been deciphered, it remains unknown which regulatory pathways caused the underweight fetal body and overweight placenta after maternal exposure to hyperbaric oxygen (HBO). RESULTS The blastocysts from the HBO-exposed pregnant mice revealed significantly increased signals of reactive oxygen species (ROS) and nuclear Nrf2 staining, decreased Nf2 and Oct4 expression, increased nuclear Tp53bp1 and active caspase-3 staining, and ectopic nuclear signals of Cdx2, Yap, and the Notch1 intracellular domain (N1ICD) in the ICM. In the ICM of the HBO-exposed blastocysts, both Nf2 cDNA microinjection and Nrf2 shRNA microinjection significantly decreased the ectopic nuclear expression of Cdx2, Tp53bp1, and Yap whereas increased Oct4 expression, while Nrf2 shRNA microinjection also significantly decreased Notch1 mRNA levels and nuclear expression of N1ICD and active caspase-3. CONCLUSION We show for the first time that maternal exposure to HBO at the preimplantation stage induces apoptosis and impairs ICM cell specification via upregulating Nrf2-Notch1-Cdx2 expression and downregulating Nf2-Oct4 expression.
Collapse
Grants
- MAB-108-027 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MAB-109-029 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-110-031 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C06-111022 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C14-112058 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MOST-111-2635-B-016-002 Ministry of Science and Technology, Taiwan
- TSGH-D-109177 Tri-Service General Hospital in Taiwan, R.O.C.
- TSGH-E-109261 Tri-Service General Hospital in Taiwan, R.O.C.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu Lang Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-Kuo Wang
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
13
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
14
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Li K, Liu L, Liu H, Xing J, Hu P, Song J. LATS1/YAP1 Axis Controls Bone Regeneration on Distraction Osteogenesis by Activating Wnt/β-Catenin. Tissue Eng Part A 2024; 30:154-167. [PMID: 37930731 DOI: 10.1089/ten.tea.2023.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The Hippo signaling pathway inhibits cell growth, and its components and functions are highly conserved in mammals. LATS1 is a core component of the Hippo signaling pathway associated with lymphatic invasion, astrogliosis, apoptosis, and autophagy. Nevertheless, the role of Hippo/LATS1 in osteogenesis remains unclear. In this study, we used ribonucleic acid (RNA) lentiviruses to inhibit the expression of Lats1 in bone marrow-derived stem cells (BMSCs) and distraction osteogenic regions in rats. Increased osteogenic, proliferative, and migratory abilities of BMSCs were observed in Lats1-inhibited BMSCs, while these phenotypes were partially reversed by YAP1 inhibition. In vivo, we found that the LATS1/YAP1 axis promoted osteogenesis during distraction osteogenesis (DO). β-catenin was positively correlated with YAP1 expression in vivo and in vitro. When YAP1 was strongly positive in the nucleus, β-catenin expression was upregulated; when YAP1 expression was inhibited by verteporfin, β-catenin was not expressed in the nucleus. These findings suggest that the LATS1/YAP1 signaling axis promotes DO by activating the Wnt/β-catenin signaling pathway. This study provides insights into the molecular mechanism of osteogenesis and a potential therapeutic strategy for bone regeneration in DO by associating with LATS1/YAP1-β-catenin.
Collapse
Affiliation(s)
- Kehan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Gao Y, Han W, Dong R, Wei S, Chen L, Gu Z, Liu Y, Guo W, Yan F. Efficient Reprogramming of Mouse Embryonic Stem Cells into Trophoblast Stem-like Cells via Lats Kinase Inhibition. BIOLOGY 2024; 13:71. [PMID: 38392290 PMCID: PMC10886645 DOI: 10.3390/biology13020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Mouse zygotes undergo multiple rounds of cell division, resulting in the formation of preimplantation blastocysts comprising three lineages: trophectoderm (TE), epiblast (EPI), and primitive endoderm (PrE). Cell fate determination plays a crucial role in establishing a healthy pregnancy. The initial separation of lineages gives rise to TE and inner cell mass (ICM), from which trophoblast stem cells (TSC) and embryonic stem cells (ESC) can be derived in vitro. Studying lineage differentiation is greatly facilitated by the clear functional distinction between TSC and ESC. However, transitioning between these two types of cells naturally poses challenges. In this study, we demonstrate that inhibiting LATS kinase promotes the conversion of ICM to TE and also effectively reprograms ESC into stable, self-renewing TS-like cells (TSLC). Compared to TSC, TSLC exhibits similar molecular properties, including the high expression of marker genes such as Cdx2, Eomes, and Tfap2c, as well as hypomethylation of their promoters. Importantly, TSLC not only displays the ability to differentiate into mature trophoblast cells in vitro but also participates in placenta formation in vivo. These findings highlight the efficient reprogramming of ESCs into TSLCs using a small molecular inducer, which provides a new reference for understanding the regulatory network between ESCs and TSCs.
Collapse
Affiliation(s)
- Yake Gao
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
- Reproductive Medicine Center, Wuhan Women's and Children's Medical Care Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenrui Han
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Rui Dong
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shu Wei
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Lu Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhaolei Gu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiming Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fang Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
17
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Bissiere S, Hernandez B, Rubio C, Simón C, Plachta N. Updates on preimplantation embryo research. Fertil Steril 2023; 120:467-472. [PMID: 37150393 DOI: 10.1016/j.fertnstert.2023.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Preimplantation development is the only stage of human development that can be studied outside the body in real time, as human embryos can be produced by in vitro fertilization and cultured in the laboratory as self-contained structures until the blastocyst stage. Here, we focus some of the key cellular and morphogenetic processes by which the 1-cell embryo is transformed gradually into a blastocyst ready for implantation. Although most of our knowledge about the dynamic series of events patterning preimplantation human development derives from work in mouse embryos, we discuss key differences that could exist with humans. Furthermore, we highlight how new approaches may enable to reveal many of the unknown processes driving human preimplantation development, particularly using noninvasive imaging and genetic technologies.
Collapse
Affiliation(s)
- Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Carlos Simón
- Department of Pediatrics Obstetrics & Gynecology, University of Valencia, & INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Otsuka T, Shimojo H, Sasaki H. Daughter cells inherit YAP localization from mother cells in early preimplantation embryos. Dev Growth Differ 2023; 65:360-369. [PMID: 37309238 DOI: 10.1111/dgd.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The first stage of cell differentiation during mouse development is the differentiation into the trophectoderm and inner cell mass, which occurs during the 8-32-cell stages of preimplantation embryos. This differentiation is regulated by the Hippo signaling pathway. At the 32-cell stage, embryos establish a position-dependent distribution of the Hippo pathway coactivator, Yes-associated protein 1 (YAP, encoded by Yap1). The outer and inner cells showed nuclear and cytoplasmic localization of YAP, respectively. However, the process by which embryos establish position-dependent YAP localization remains elusive. Here, we established a YAP-reporter mouse line, Yap1mScarlet , and examined YAP-mScarlet protein dynamics during the 8-32-cell stages using live imaging. During mitosis, YAP-mScarlet diffused throughout the cells. YAP-mScarlet dynamics in daughter cells varied depending on the cell division patterns. YAP-mScarlet localization in daughter cells at the completion of cell division coincided with that in mother cells. Experimental manipulation of YAP-mScarlet localization in mother cells also altered its localization in daughter cells upon completion of cell division. In daughter cells, YAP-mScarlet localization gradually changed to the final pattern. In some divisions during the 8-16-cell stages, the cytoplasmic YAP-mScarlet localization preceded cell internalization. These results suggest that cell position is not a primary determinant of YAP localization and that the Hippo signaling status of the mother cell is inherited by the daughter cells, which likely contributes to the stabilization of the cell fate specification process beyond cell division.
Collapse
Affiliation(s)
- Tomoaki Otsuka
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
22
|
Heidari Khoei H, Javali A, Kagawa H, Sommer TM, Sestini G, David L, Slovakova J, Novatchkova M, Scholte Op Reimer Y, Rivron N. Generating human blastoids modeling blastocyst-stage embryos and implantation. Nat Protoc 2023; 18:1584-1620. [PMID: 36792779 PMCID: PMC7617227 DOI: 10.1038/s41596-023-00802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023]
Abstract
Human early development sets the stage for embryonic and adult life but remains difficult to investigate. A solution came from the ability of stem cells to organize into structures resembling preimplantation embryos-blastocysts-that we termed blastoids. This embryo model is available in unlimited numbers and could thus support scientific and medical advances. However, its predictive power depends on how faithfully it recapitulates the blastocyst. Here, we describe how we formed human blastoids that (1) efficiently achieve the morphology of the blastocyst and (2) form lineages according to the pace and sequence of blastocyst development, (3) ultimately forming cells that transcriptionally reflect the blastocyst (preimplantation stage). We employ three different commercially available 96- and 24-well microwell plates with results similar to our custom-made ones, and show that blastoids form in clinical in vitro fertilization medium and can be cryopreserved for shipping. Finally, we explain how blastoids replicate the directional process of implantation into endometrial organoids, specifically when these are hormonally stimulated. It takes 4 d for human blastoids to form and 10 d to prepare the endometrial implantation assay, and we have cultured blastoids up to 6 d (time-equivalent of day 13). On the basis of our experience, we anticipate that a person with ~1 year of human pluripotent stem cell culture experience and of organoid culture should be able to perform the protocol. Altogether, blastoids offer an opportunity to establish scientific and biomedical discovery programs for early pregnancy, and an ethical alternative to the use of embryos.
Collapse
Affiliation(s)
- Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Alok Javali
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CR2TI, UMR 1064, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, BioCore, Nantes, France
| | - Jana Slovakova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), IMBA Stem Cell Core Facility (ISCCF), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Yvonne Scholte Op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
23
|
Gerri C, McCarthy A, Mei Scott G, Regin M, Stamatiadis P, Brumm S, Simon CS, Lee J, Montesinos C, Hassitt C, Hockenhull S, Hampshire D, Elder K, Snell P, Christie L, Fouladi-Nashta AA, Van de Velde H, Niakan KK. A conserved role of the Hippo signalling pathway in initiation of the first lineage specification event across mammals. Development 2023; 150:dev201112. [PMID: 36971487 PMCID: PMC10263151 DOI: 10.1242/dev.201112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gwen Mei Scott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Campus, Potters Bar AL9 7TA, UK
| | - Marius Regin
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Panagiotis Stamatiadis
- Department of Reproduction and Immunology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire S. Simon
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Janet Lee
- Hewitt Fertility Centre, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | | | - Caroline Hassitt
- Hewitt Fertility Centre, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Sarah Hockenhull
- Hewitt Fertility Centre, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Daniel Hampshire
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Campus, Potters Bar AL9 7TA, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Ali A. Fouladi-Nashta
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Campus, Potters Bar AL9 7TA, UK
| | - Hilde Van de Velde
- Department of Reproduction and Immunology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Brussels IVF, UZ-Brussel, 1090 Brussels, Belgium
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
24
|
Lamba A, Zernicka-Goetz M. The role of polarization and early heterogeneities in the mammalian first cell fate decision. Curr Top Dev Biol 2023; 154:169-196. [PMID: 37100517 DOI: 10.1016/bs.ctdb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The first cell fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, representing the beginning of patterning during development. In mammals, this process separates an embryonic inner cell mass lineage (future new organism) from an extra-embryonic trophectoderm lineage (future placenta), and in the mouse, this is classically attributed to the consequences of apical-basal polarity. The mouse embryo acquires this polarity at the 8-cell stage, indicated by cap-like protein domains on the apical surface of each cell; those cells which retain polarity over subsequent divisions are specified as trophectoderm, and the rest as inner cell mass. Recent research has advanced our knowledge of this process - this review will discuss mechanisms behind the establishment of polarity and distribution of the apical domain, different factors affecting the first cell fate decision including heterogeneities between cells of the very early embryo, and the conservation of developmental mechanisms across species, including human.
Collapse
Affiliation(s)
- Adiyant Lamba
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
25
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
26
|
Catasús N, Rosas I, Bonache S, Negro A, Torres-Martin M, Plana-Pla A, Salvador H, Serra E, Blanco I, Castellanos E, NF2-related SWN Spanish National Reference Centre HUGTP-ICO-IGTP. Antisense oligonucleotides targeting exon 11 are able to partially rescue the NF2-related schwannomatosis phenotype in vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:493-505. [PMID: 36420221 PMCID: PMC9678674 DOI: 10.1016/j.omtn.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
NF2-related schwannomatosis (NF2-related SWN) is an autosomal dominant condition caused by loss of function variants in the NF2 gene, which codes for the protein Merlin and is characterized by the development of multiple tumors of the nervous system. The clinical presentation of the disease is variable and related to the type of the inherited germline variant. Here, we tested if phosphorodiamidate morpholino oligomers (PMOs) could be used to correct the splice signaling caused by variants at ±13 within the intron-exon boundary region and showed that the PMOs designed for these variants do not constitute a therapeutic approach. Furthermore, we evaluated the use of PMOs to decrease the severity of the effects of NF2 truncating variants with the aim of generating milder hypomorphic isoforms in vitro through the induction of the in-frame deletion of the exon-carrying variant. We were able to specifically induce the skipping of exons 4, 8, and 11 maintaining the NF2 gene reading frame at cDNA level. Only the skipping of exon 11 produced a hypomorphic Merlin (Merlin-e11), which is able to partially rescue the observed phenotype in primary fibroblast cultures from NF2-related SWN patients, being encouraging for the treatment of patients harboring truncating variants located in exon 11.
Collapse
Affiliation(s)
- Núria Catasús
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Inma Rosas
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Sandra Bonache
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Alex Negro
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Miguel Torres-Martin
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Adrià Plana-Pla
- Dermatology Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| | - Hector Salvador
- Pediatric Oncology Unit, Hospital Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP-PMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| | - Ignacio Blanco
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
| | - NF2-related SWN Spanish National Reference Centre HUGTP-ICO-IGTP
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Clinical Genetics Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Crta. Canyet, s/n. Badalona, Barcelona 08916, Spain
- Dermatology Department, Germans Trias i Pujol University Hospital (HUGTP), Can Ruti Campus, Badalona, Barcelona 08916, Spain
- Pediatric Oncology Unit, Hospital Sant Joan de Déu, Esplugues, Barcelona, Spain
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP-PMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| |
Collapse
|
27
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
28
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Ding B, Gao D, Wang X, Liu L, Sun J, Liang M, Wu F, Liu Y, Zhang Y, Li X, Li W. Maternal DDB1 regulates apoptosis and lineage differentiation in porcine preimplantation embryos. Reprod Fertil Dev 2022; 34:844-854. [PMID: 35724990 DOI: 10.1071/rd22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Maternal-effect genes (MEGs) play a critical role in modulating both cellular and molecular biology events in preimplantation embryonic development. Damage-specific DNA binding protein 1 (DDB1) is a gene that participates in meiotic resumption, ovulation, and embryonic stem cell maintenance. Its function in preimplantation development is not well-studied. AIMS We aimed to explore the expression pattern, genomic heritage, and potential molecular mechanisms of DDB1 in preimplantation embryos in porcine. METHODS In this study, RNA interference, microinjection, RT-qPCR, immunofluorescence staining and single-cell RNA sequencing were used to explore the molecular function of DDB1 in porcine preimplantation embryos. KEY RESULTS DDB1 was found to be expressed in germinal vesicle (GV) and Meiosis II (MII) oocytes and in preimplantation embryos. We confirmed it is a MEG. DDB1-deficient blastocysts had a significantly reduced number of trophectoderm cells, an increased apoptotic cell number and increased apoptosis index. According to a next-generation sequencing (NGS) analysis, 236 genes (131 upregulated and 105 downregulated) significantly changed in the DDB1-deficient morula. The myeloid leukaemia factor 1 (MLF1) and yes-associated protein 1 (YAP1) expressions were significantly upregulated and downregulated respectively, in the DDB1-deficient morula. In combination with the decreased expression of TEAD4, CDX2, GATA3, OCT4, and NANOG and the increased expression of SOX2 in the blastocyst, DDB1 may play a role in determining lineage differentiation and pluripotency maintenance. CONCLUSIONS DDB1 is a MEG and it plays a crucial role in porcine preimplantation embryonic development. IMPLICATIONS This study provides a theoretical basis for further understanding the molecular mechanisms of preimplantation embryo development.
Collapse
Affiliation(s)
- Biao Ding
- Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Di Gao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuegu Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Lei Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Junpei Sun
- Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
| | - Fengrui Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Li
- Reproductive Medicine Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China
| |
Collapse
|
30
|
Dong C, Fu S, Karvas RM, Chew B, Fischer LA, Xing X, Harrison JK, Popli P, Kommagani R, Wang T, Zhang B, Theunissen TW. A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nat Commun 2022; 13:2548. [PMID: 35538076 PMCID: PMC9090837 DOI: 10.1038/s41467-022-30207-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
The recent derivation of human trophoblast stem cells (hTSCs) provides a scalable in vitro model system of human placental development, but the molecular regulators of hTSC identity have not been systematically explored thus far. Here, we utilize a genome-wide CRISPR-Cas9 knockout screen to comprehensively identify essential and growth-restricting genes in hTSCs. By cross-referencing our data to those from similar genetic screens performed in other cell types, as well as gene expression data from early human embryos, we define hTSC-specific and -enriched regulators. These include both well-established and previously uncharacterized trophoblast regulators, such as ARID3A, GATA2, and TEAD1 (essential), and GCM1, PTPN14, and TET2 (growth-restricting). Integrated analysis of chromatin accessibility, gene expression, and genome-wide location data reveals that the transcription factor TEAD1 regulates the expression of many trophoblast regulators in hTSCs. In the absence of TEAD1, hTSCs fail to complete faithful differentiation into extravillous trophoblast (EVT) cells and instead show a bias towards syncytiotrophoblast (STB) differentiation, thus indicating that this transcription factor safeguards the bipotent lineage potential of hTSCs. Overall, our study provides a valuable resource for dissecting the molecular regulation of human placental development and diseases.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shuhua Fu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rowan M Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Chew
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jessica K Harrison
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ting Wang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Hsu SC, Lin CY, Lin YY, Collins CC, Chen CL, Kung HJ. TEAD4 as an Oncogene and a Mitochondrial Modulator. Front Cell Dev Biol 2022; 10:890419. [PMID: 35602596 PMCID: PMC9117765 DOI: 10.3389/fcell.2022.890419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4’s functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Yu Lin
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yi Lin
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin C. Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chia-Lin Chen
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| | - Hsing-Jien Kung
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| |
Collapse
|
32
|
Barry DJ, Gerri C, Bell DM, D'Antuono R, Niakan KK. GIANI: open-source software for automated analysis of 3D microscopy images. J Cell Sci 2022; 135:275227. [PMID: 35502739 PMCID: PMC9189431 DOI: 10.1242/jcs.259511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The study of cellular and developmental processes in physiologically relevant three-dimensional (3D) systems facilitates an understanding of mechanisms underlying cell fate, disease and injury. While cutting-edge microscopy technologies permit the routine acquisition of 3D datasets, there is currently a limited number of open-source software packages to analyse such images. Here, we describe General Image Analysis of Nuclei-based Images (GIANI; https://djpbarry.github.io/Giani), new software for the analysis of 3D images. The design primarily facilitates segmentation of nuclei and cells, followed by quantification of morphology and protein expression. GIANI enables routine and reproducible batch-processing of large numbers of images, and comes with scripting and command line tools. We demonstrate the utility of GIANI by quantifying cell morphology and protein expression in confocal images of mouse early embryos and by segmenting nuclei from light-sheet microscopy images of the flour beetle embryo. We also validate the performance of the software using simulated data. More generally, we anticipate that GIANI will be a useful tool for researchers in a variety of biomedical fields. Summary: General Image Analysis of Nuclei-based Images (GIANI) is a new plugin for the popular FIJI platform, designed for the automated analysis of 3D microscopy images of a wide range of sample types.
Collapse
Affiliation(s)
- David J Barry
- Crick Advanced Light Microscopy, Francis Crick Institute, London, NW1 1ST, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London, NW1 1ST, UK.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Donald M Bell
- Crick Advanced Light Microscopy, Francis Crick Institute, London, NW1 1ST, UK
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy, Francis Crick Institute, London, NW1 1ST, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London, NW1 1ST, UK.,The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
33
|
Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod 2022; 28:6566308. [DOI: 10.1093/molehr/gaac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon which has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution, but also on whether it should be offered to patients at all.
We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known of the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?
Collapse
Affiliation(s)
- Marius Regin
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
34
|
Pomp O, Lim HYG, Skory RM, Moverley AA, Tetlak P, Bissiere S, Plachta N. A monoastral mitotic spindle determines lineage fate and position in the mouse embryo. Nat Cell Biol 2022; 24:155-167. [PMID: 35102267 DOI: 10.1038/s41556-021-00826-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
During mammalian development, the first asymmetric cell divisions segregate cells into inner and outer positions of the embryo to establish the pluripotent and trophectoderm lineages. Typically, polarity components differentially regulate the mitotic spindle via astral microtubule arrays to trigger asymmetric division patterns. However, early mouse embryos lack centrosomes, the microtubule-organizing centres (MTOCs) that usually generate microtubule asters. Thus, it remains unknown whether spindle organization regulates lineage segregation. Here we find that heterogeneities in cell polarity in the early 8-cell-stage mouse embryo trigger the assembly of a highly asymmetric spindle organization. This spindle arises in an unusual modular manner, forming a single microtubule aster from an apically localized, non-centrosomal MTOC, before joining it to the rest of the spindle apparatus. When fully assembled, this 'monoastral' spindle triggers spatially asymmetric division patterns to segregate cells into inner and outer positions. Moreover, the asymmetric inheritance of spindle components causes differential cell polarization to determine pluripotent versus trophectoderm lineage fate.
Collapse
Affiliation(s)
- Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Gu B, Bradshaw B, Zhu M, Sun Y, Hopyan S, Rossant J. Live imaging YAP signalling in mouse embryo development. Open Biol 2022; 12:210335. [PMID: 35042406 PMCID: PMC8767199 DOI: 10.1098/rsob.210335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
YAP protein is a critical regulator of mammalian embryonic development. By generating a near-infrared fusion YAP reporter mouse line, we have achieved high-resolution live imaging of YAP localization during mouse embryonic development. We have validated the reporter by demonstrating its predicted responses to blocking LATS kinase activity or blocking cell polarity. By time lapse imaging preimplantation embryos, we revealed a mitotic reset behaviour of YAP nuclear localization. We also demonstrated deep tissue live imaging in post-implantation embryos and revealed an intriguing nuclear YAP pattern in migrating cells. The YAP fusion reporter mice and imaging methods will open new opportunities for understanding dynamic YAP signalling in vivo in many different situations.
Collapse
Affiliation(s)
- Bin Gu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9.,Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Division of Orthopaedic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
36
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
37
|
Engel-Pizcueta C, Pujades C. Interplay Between Notch and YAP/TAZ Pathways in the Regulation of Cell Fate During Embryo Development. Front Cell Dev Biol 2021; 9:711531. [PMID: 34490262 PMCID: PMC8417249 DOI: 10.3389/fcell.2021.711531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cells in growing tissues receive both biochemical and physical cues from their microenvironment. Growing evidence has shown that mechanical signals are fundamental regulators of cell behavior. However, how physical properties of the microenvironment are transduced into critical cell behaviors, such as proliferation, progenitor maintenance, or differentiation during development, is still poorly understood. The transcriptional co-activators YAP/TAZ shuttle between the cytoplasm and the nucleus in response to multiple inputs and have emerged as important regulators of tissue growth and regeneration. YAP/TAZ sense and transduce physical cues, such as those from the extracellular matrix or the actomyosin cytoskeleton, to regulate gene expression, thus allowing them to function as gatekeepers of progenitor behavior in several developmental contexts. The Notch pathway is a key signaling pathway that controls binary cell fate decisions through cell-cell communication in a context-dependent manner. Recent reports now suggest that the crosstalk between these two pathways is critical for maintaining the balance between progenitor maintenance and cell differentiation in different tissues. How this crosstalk integrates with morphogenesis and changes in tissue architecture during development is still an open question. Here, we discuss how progenitor cell proliferation, specification, and differentiation are coordinated with morphogenesis to construct a functional organ. We will pay special attention to the interplay between YAP/TAZ and Notch signaling pathways in determining cell fate decisions and discuss whether this represents a general mechanism of regulating cell fate during development. We will focus on research carried out in vertebrate embryos that demonstrate the important roles of mechanical cues in stem cell biology and discuss future challenges.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Strepkos D, Markouli M, Papavassiliou KA, Papavassiliou AG, Piperi C. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options. Neuropathol Appl Neurobiol 2021; 48:e12762. [PMID: 34409639 DOI: 10.1111/nan.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
39
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
40
|
Baek SK, Jeon SB, Seo BG, Hwangbo C, Shin KC, Choi JW, An CS, Jeong MA, Kim TS, Lee JH. The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells. Cell Reprogram 2021; 23:221-238. [PMID: 34227846 DOI: 10.1089/cell.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine embryonic stem cells (pESCs) would provide potentials for agricultural- and biotechnological-related applications. However, authentic pESCs have not been established yet because standards for porcine stem cell-specific markers and culture conditions are not clear. Therefore, the present study reports attempts to derive pluripotent epiblast stem cells either from in vitro or in vivo derived porcine embryos. Nine epiblast cell lines (seven lines from Berkshire and two lines from Duroc) could only be isolated from day 9- to 9.5-old in vivo derived early conceptuses. Pluripotency features were analyzed in relation to the presence or absence of alkaline phosphatase (AP) activity. Interestingly, the mRNA expression of several marker genes for pluripotency or epiblast was different between putative epiblast stem cells of the two groups [AP-positive (+) pEpiSC-like cell 2 line and AP-negative (-) pEpiSC-like cell 8 line]. For example, expressions of OCT-3/4, NANOG, SOX2, c-MYC, FGF2, and NODAL in AP-negative (-) porcine epiblast stem cell (pEpiSC)-like cells were higher than those in AP-positive (+) pEpiSC-like cells. Expression of surface markers differed between the two groups to some extent. SSEA-1 was strongly expressed only in AP-negative (-) pEpiSC-like cells, whereas AP-positive (+) pEpiSC-like cells did not express. In addition, we report to have some differences in the in vitro differentiation capacity between AP-positive (+) and AP-negative (-) epiblast cell lines. Primary embryonic germ layer markers (cardiac actin, nestin, and GATA 6) and primordial germ cell markers (Dazl and Vasa) were strongly expressed in embryoid bodies (EBs) aggregated from AP-negative (-) pEpiSC-like cells, whereas EBs aggregated from AP-positive (+) pEpiSCs did not show expression of primary embryonic germ layers and primordial germ cell markers except GATA 6. These results indicate that pEpiSC-like cells display different pluripotency characteristics in relation to AP activity.
Collapse
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Keum-Chul Shin
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Seop An
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Mi-Ae Jeong
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
41
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
42
|
Sawai K. Roles of cell differentiation factors in preimplantation development of domestic animals. J Reprod Dev 2021; 67:161-165. [PMID: 33907058 PMCID: PMC8238671 DOI: 10.1262/jrd.2021-031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mammalian embryos, the first visible differentiation event is the segregation of the inner cell mass (ICM) and trophectoderm (TE) during the transition from
the morula to the blastocyst stage. The ICM, which is attached to the inside of the TE, develop into the fetus and extraembryonic tissues, while the TE, which
is a single layer surrounding the fluid-filled cavity called the blastocoel, will provide extraembryonic structures such as the placenta. ICM/TE differentiation
is regulated by the interaction between various transcriptional factors. However, little information is available on the segregation of the ICM and TE lineages
in preimplantation embryos of domestic animals, such as cattle and pigs. This review focuses on the roles of cell differentiation factors that regulate the
ICM/TE segregation of preimplantation bovine and porcine embryos. Understanding the mechanism of cell differentiation in early embryos is necessary to improve
the in vitro production systems for bovine and porcine embryos.
Collapse
Affiliation(s)
- Ken Sawai
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
43
|
Deng M, Wan Y, Chen B, Dai X, Liu Z, Yang Y, Cai Y, Zhang Y, Wang F. Long non-coding RNA lnc_3712 impedes nuclear reprogramming via repressing Kdm5b. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:54-66. [PMID: 33738138 PMCID: PMC7940708 DOI: 10.1016/j.omtn.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are involved in shaping chromosome conformation and regulation of preimplantation development. However, the role of lncRNA during somatic cell nuclear transfer (SCNT) reprogramming remains largely unknown. In the present study, we identified 114 upregulated lncRNAs in the 8-cell SCNT embryos as candidate key molecules involved in nuclear reprogramming in goat. We found that H3K4me3 was an epigenetic barrier in goat nuclear reprogramming that and injection of Kdm5b mRNA greatly improved SCNT embryos development through removal of H3K4me3. We further reported that knockdown of lnc_3712 increased the expression of Kdm5b, which led to H3K4me3 demethylation. Of note, the development of goat SCNT embryos was improved when lnc_3712 was knocked down, whereas the blastocyst rate showed no difference in lnc_3712 and Kdm5b double knockdown SCNT embryos compared with the negative control SCNT embryos. Specifically, in lnc_3712 knockdown SCNT embryos, partial of the transcriptional activity and the expression of critical embryonic genes (Wee1, Ctsb, and Ybx1) were similar with that of in vitro fertilization embryos. Therefore, our results elucidate the critical role of lnc_3712 in regulating the development of goat SCNT embryos via repressing Kdm5b, which advances our current understanding of the role of lncRNAs during nuclear reprogramming.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Sharma J, Antenos M, Madan P. A Comparative Analysis of Hippo Signaling Pathway Components during Murine and Bovine Early Mammalian Embryogenesis. Genes (Basel) 2021; 12:281. [PMID: 33669396 PMCID: PMC7920285 DOI: 10.3390/genes12020281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
The time required for successful blastocyst formation varies among multiple species. The formation of a blastocyst is governed by numerous molecular cell signaling pathways, such as the Hippo signaling pathway. The Hippo signaling pathway is initiated by increased cell-cell contact and via apical polarity proteins (AMOT, PARD6, and NF2) during the period of preimplantation embryogenesis. Cell-cell contact and cell polarity activate (phosphorylates) the core cascade components of the pathway (mammalian sterile twenty like 1 and 2 (MST1/2) and large tumor suppressor 1 and 2 (LATS1/2)), which in turn phosphorylate the downstream effectors of the pathway (YAP1/TAZ). The Hippo pathway remains inactive with YAP1 (Yes Associated protein 1) present inside the nucleus in the trophectoderm (TE) cells (polar blastomeres) of the mouse blastocyst. In the inner cell mass (ICM) cells (apolar blastomeres), the pathway is activated with p-YAP1 present in the cytoplasm. On the contrary, during bovine embryogenesis, p-YAP1 is exclusively present in the nucleus in both TE and ICM cells. Contrary to mouse embryos, transcription co activator with PDZ-binding motif (TAZ) (also known as WWTR1) is also predominantly present in the cytoplasm in all the blastomeres during bovine embryogenesis. This review outlines the major differences in the localization and function of Hippo signaling pathway components of murine and bovine preimplantation embryos, suggesting significant differences in the regulation of this pathway in between the two species. The variance observed in the Hippo signaling pathway between murine and bovine embryos confirms that both of these early embryonic models are quite distinct. Moreover, based on the similarity of the Hippo signaling pathway between bovine and human early embryo development, bovine embryos could be an alternate model for understanding the regulation of the Hippo signaling pathway in human embryos.
Collapse
Affiliation(s)
| | | | - Pavneesh Madan
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.); (M.A.)
| |
Collapse
|
45
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Pennarossa G, Gandolfi F, Brevini TAL. "Biomechanical Signaling in Oocytes and Parthenogenetic Cells". Front Cell Dev Biol 2021; 9:646945. [PMID: 33644079 PMCID: PMC7905081 DOI: 10.3389/fcell.2021.646945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Oocyte-specific competence remains one of the major targets of current research in the field of reproduction. Several mechanisms are involved in meiotic maturation and the molecular signature of an oocyte is considered to reflect its quality and to predict its subsequent developmental and functional capabilities. In the present minireview, we focus on the possible role of mechanotransduction and mechanosensor signaling pathways, namely the Hippo and the RhoGTPase, in the maturing oocyte. Due to the limited access to female gametes, we propose the use of cells isolated from parthenogenetic embryos as a promising model to characterize and dissect the oocyte distinctive molecular signatures, given their exclusive maternal origin. The brief overview here reported suggests a role of the mechanosensing related pathways in oocyte quality and developmental competence and supports the use of uniparental cells as a useful tool for oocyte molecular signature characterization.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
47
|
Sharma J, Madan P. Characterisation of the Hippo signalling pathway during bovine preimplantation embryo development. Reprod Fertil Dev 2021; 32:392-401. [PMID: 31718770 DOI: 10.1071/rd18320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Blastocyst formation is an important milestone during preimplantation embryo development. During murine preimplantation embryogenesis, the Hippo signalling pathway is known to play a significant role in lineage segregation and henceforth the formation of blastocysts. However, the role of this cell signalling pathway during bovine embryogenesis remains unknown. Thus, the aim of the present study was to characterise the Hippo signalling pathway during bovine preimplantation embryo development. mRNA transcripts of Hippo signalling pathway constituents (i.e. crumbs cell polarity complex component 3 (CRB3), mammalian sterile 20-like 1 (MST1), mammalian sterile 20-like 2 (MST2), Yes associated protein 1 (YAP1), transcriptional coactivator with PDZ-binding motif (TAZ)) were observed during all stages of bovine preimplantation embryo development. To evaluate the localisation of Hippo pathway components, bovine embryos at timed stages of development were stained using specific antibodies and observed under a laser confocal microscope. Although MST1/2 proteins were in the cytoplasm during various stages of bovine embryonic development, TAZ and phosphorylated (p-) YAP were detected in the nucleus during the blastocyst stages. Localisation of TAZ and p-YAP proteins was distinct in the bovine compared with mouse model, suggesting that the Hippo signalling pathway is regulated differently in early bovine embryos.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; and Corresponding author.
| |
Collapse
|
48
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
49
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
50
|
Royer C, Leonavicius K, Kip A, Fortin D, Nandi K, Vincent A, Jones C, Child T, Coward K, Graham C, Srinivas S. Establishment of a relationship between blastomere geometry and YAP localisation during compaction. Development 2020; 147:dev.189449. [PMID: 32928909 PMCID: PMC7561472 DOI: 10.1242/dev.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023]
Abstract
Precise patterning within the three-dimensional context of tissues, organs and embryos implies that cells can sense their relative position. During preimplantation development, outside and inside cells rely on apicobasal polarity and the Hippo pathway to choose their fate. Despite recent findings suggesting that mechanosensing might be central to this process, the relationship between blastomere geometry (i.e. shape and position) and the Hippo pathway effector YAP remains unknown. We used a highly quantitative approach to analyse information on the geometry and YAP localisation of individual blastomeres of mouse and human embryos. We identified the proportion of exposed cell surface area as most closely correlating with the nuclear localisation of YAP. To test this relationship, we developed several hydrogel-based approaches to alter blastomere geometry in cultured embryos. Unbiased clustering analyses of blastomeres from such embryos revealed that this relationship emerged during compaction. Our results therefore pinpoint the time during early embryogenesis when cells acquire the ability to sense changes in geometry and provide a new framework for how cells might integrate signals from different membrane domains to assess their relative position within the embryo. Highlighted Article: Localisation of YAP, a key factor during the first cell fate decision, is linked to individual blastomere geometry within the three-dimentional environment of the preimplantation embryo.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Annemarie Kip
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Deborah Fortin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Kirtirupa Nandi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Tim Child
- Oxford Fertility, Institute of Reproductive Sciences, Oxford OX4 2HW, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|