1
|
Zhu X, Huang L, Li G, Deng B, Wang X, Yang H, Zhang Y, Wen Q, Wang C, Zhang J, Zhao Y, Li K, Liu Y. Genome-Wide Silencer Screening Reveals Key Silencer Modulating Reprogramming Efficiency in Mouse Induced Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408839. [PMID: 40112175 PMCID: PMC12079485 DOI: 10.1002/advs.202408839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/07/2025] [Indexed: 03/22/2025]
Abstract
The majority of the mouse genome is composed of non-coding regions, which harbor numerous regulatory sequences essential for gene regulation. While extensive research focuses on enhancers that activate gene expression, the role of silencers that repress gene expression remains less explored. In this study, the first genome-wide identification of silencers in the mouse genome is conducted. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs), 89 596 and 115 165 silencers are identified, respectively. These silencers are ubiquitously distributed across the genome and are predominantly associated with low-expression genes. Additionally, these silencers are mainly cell-specific and function by binding to repressive transcription factors (TFs). Further, these silencers are notably enriched with the histone modification H3K9me3. It is observed that the transformation between dual-function silencers and enhancers is correlated with intracellular transcription factor concentrations, accompanied by changes in epigenetic modifications. In terms of biological effects, we have identified silencers that can enhance the induction efficiency of MEFs and influence the pluripotency of mESCs. Collectively, this work offers the first comprehensive silencer landscape in the mouse genome and provides strong evidence for the role of silencers in the induction of induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Xiusheng Zhu
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Lei Huang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Guoli Li
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Biao Deng
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- State Key Laboratory of Genetic Resources and EvolutionYunnan Laboratory of Molecular Biology of Domestic AnimalsKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunming650204China
| | - Xiaoxiao Wang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Hu Yang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Yuanyuan Zhang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Qiuhan Wen
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Chao Wang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Jingshu Zhang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Yunxiang Zhao
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science and TechnologyGuangxi UniversityNanning530004China
| | - Kui Li
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Yuwen Liu
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
2
|
Saadeldin IM, Ehab S, Alshammari MEF, Abdelazim AM, Assiri AM. The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness. Stem Cells Cloning 2025; 18:15-34. [PMID: 39991743 PMCID: PMC11846613 DOI: 10.2147/sccaa.s513982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Seif Ehab
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Aaser M Abdelazim
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
3
|
Sichani AS, Khoddam S, Shakeri S, Tavakkoli Z, Jafroodi AR, Dabbaghipour R, Sisakht M, Fallahi J. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Cell Reprogram 2024; 26:10-23. [PMID: 38381402 DOI: 10.1089/cell.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
Collapse
Affiliation(s)
- Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tavakkoli
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arad Ranji Jafroodi
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Lasry R, Maoz N, Cheng AW, Yom Tov N, Kulenkampff E, Azagury M, Yang H, Ople C, Markoulaki S, Faddah DA, Makedonski K, Orzech D, Sabag O, Jaenisch R, Buganim Y. Complex haploinsufficiency in pluripotent cells yields somatic cells with DNA methylation abnormalities and pluripotency induction defects. Stem Cell Reports 2023; 18:2174-2189. [PMID: 37832543 PMCID: PMC10679652 DOI: 10.1016/j.stemcr.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.
Collapse
Affiliation(s)
- Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noam Maoz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nataly Yom Tov
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisabeth Kulenkampff
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hui Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cora Ople
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Styliani Markoulaki
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina A Faddah
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
5
|
scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:475-492. [PMID: 34252628 PMCID: PMC8896229 DOI: 10.1016/j.gpb.2020.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 12/26/2020] [Indexed: 11/23/2022]
Abstract
A system-level understanding of the regulation and coordination mechanisms of gene expression is essential for studying the complexity of biological processes in health and disease. With the rapid development of single-cell RNA sequencing technologies, it is now possible to investigate gene interactions in a cell type-specific manner. Here we propose the scLink method, which uses statistical network modeling to understand the co-expression relationships among genes and construct sparse gene co-expression networks from single-cell gene expression data. We use both simulation and real data studies to demonstrate the advantages of scLink and its ability to improve single-cell gene network analysis. The scLink R package is available at https://github.com/Vivianstats/scLink.
Collapse
|
6
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Park SJ, Kwon W, Park S, Jeong J, Kim D, Jang S, Kim SY, Sung Y, Kim MO, Choi SK, Ryoo ZY. Jazf1 acts as a regulator of insulin-producing β-cell differentiation in induced pluripotent stem cells and glucose homeostasis in mice. FEBS J 2021; 288:4412-4427. [PMID: 33555104 DOI: 10.1111/febs.15751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/02/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Genetic susceptibility of type 2 diabetes and Juxtaposed with another zinc finger protein 1 (Jazf1) has been reported; however, the precise role of Jazf1 in metabolic processes remains elusive. In this study, using Jazf1-knockout (KO)-induced pluripotent stem cells (iPSC), pancreatic beta cell line MIN6 cells, and Jazf-1 heterozygous KO (Jazf1+/- ) mice, the effect of Jazf1 on gradual differentiation was investigated. We checked the alterations of the genes related with β-cell specification, maturation, and insulin release against glucose treatment by the gain and loss of the Jazf1 gene in the MIN6 cells. Because undifferentiated Jazf1-KO iPSC were not significantly different from wild-type (WT) iPSC, the size and endoderm marker expression after embryoid body (EB) and teratoma formation were investigated. Compared to EB and teratomas formed with WT iPSC, the EB and teratomas from with Jazf1-KO iPSC were smaller, and in teratomas, the expression of proliferation markers was reduced. Moreover, the expression of the gene sets for β-cell differentiation and the levels of insulin and C-peptide secreted by insulin precursor cells were notably reduced in β-cells differentiated from Jazf1-KO iPSC compared with those differentiated from WT iPSC. A comparison of Jazf1+/- and WT mice showed that Jazf1+/- mice had lower levels of serum insulin, pancreatic insulin expression, and decreased pancreatic β-cell size, which resulted in defects in the glucose homeostasis. These findings suggest that Jazf1 plays a pivotal role in the differentiation of β-cells and glucose homeostasis.
Collapse
Affiliation(s)
- Si Jun Park
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Wookbong Kwon
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Division of Biotechnology, DGIST, Daegu, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Jain Jeong
- Core Protein Resources Center, DGIST, Daegu, Korea.,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dongjun Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Soyoung Jang
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Si-Yong Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Yonghun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Korea.,Core Protein Resources Center, DGIST, Daegu, Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Luke Krishnan CS, Brasch HD, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Stemness-Associated Markers Are Expressed in Extracranial Arteriovenous Malformation. Front Surg 2021; 8:621089. [PMID: 33816543 PMCID: PMC8017302 DOI: 10.3389/fsurg.2021.621089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Arteriovenous malformation (AVM) consists of a nidus with poorly formed low-resistance vessels in place of a functional capillary network. The role of somatic mutations in embryonic stem cells (ESCs) and vascular anomalies and the presence of primitive populations in vascular anomalies led us to investigate the presence of a primitive population in extracranial AVM. Methods: Extracranial AVM tissue samples from 12 patients were stained for stemness-associated markers OCT4, SOX2, NANOG, KLF4, and c-MYC using immunohistochemical staining. In situ hybridization (ISH) was performed on six tissue samples to determine transcript expression. Western blotting and RT-qPCR were performed on two AVM-derived primary cell lines to determine protein and transcript expression of these markers, respectively. Immunofluorescence staining was performed on two tissue samples to investigate marker co-localization. Results: Immunohistochemical staining demonstrated the expression of OCT4, SOX2, KLF4, and c-MYC on the endothelium and media of lesional vessels and cells within the stroma of the nidus in all 12 AVM tissue samples. ISH and RT-qPCR confirmed transcript expression of all five markers. Western blotting showed protein expression of all markers except NANOG. Immunofluorescence staining demonstrated an OCT4+/SOX2+/KLF4+/c-MYC+ population within the endothelium and media of the lesional vessels and cells within the stroma of the AVM nidus. Conclusions: Our findings may suggest the presence of a primitive population within the AVM nidus. Further investigation may lead to novel therapeutic targeting of this population.
Collapse
Affiliation(s)
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study & Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand.,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Human ES Cell Culture Conditions Fail to Preserve the Mouse Epiblast State. Stem Cells Int 2021; 2021:8818356. [PMID: 33828592 PMCID: PMC8004371 DOI: 10.1155/2021/8818356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) are the pluripotent stem cells (PSCs), derived from the inner cell mass (ICM) of preimplantation embryos at embryonic day 3.5 (E3.5) and postimplantation embryos at E5.5-E7.5, respectively. Depending on their environment, PSCs can exist in the so-called naïve (ESCs) or primed (EpiSCs) states. Exposure to EpiSC or human ESC (hESC) culture condition can convert mESCs towards an EpiSC-like state. Here, we show that the undifferentiated epiblast state is however not stabilized in a sustained manner when exposing mESCs to hESC or EpiSC culture condition. Rather, prolonged exposure to EpiSC condition promotes a transition to a primitive streak- (PS-) like state via an unbiased epiblast-like intermediate. We show that the Brachyury-positive PS-like state is likely promoted by endogenous WNT signaling, highlighting a possible species difference between mouse epiblast-like stem cells and human Embryonic Stem Cells.
Collapse
|
10
|
FOXC1 Downregulates Nanog Expression by Recruiting HDAC2 to Its Promoter in F9 Cells Treated by Retinoic Acid. Int J Mol Sci 2021; 22:ijms22052255. [PMID: 33668324 PMCID: PMC7956269 DOI: 10.3390/ijms22052255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.
Collapse
|
11
|
Kovina AP, Petrova NV, Razin SV, Kantidze OL. L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming. Acta Naturae 2020; 12:5-14. [PMID: 33456974 PMCID: PMC7800602 DOI: 10.32607/actanaturae.11060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022] Open
Abstract
Recent studies have significantly expanded our understanding of the mechanisms of L-ascorbic acid (ASC, vitamin C) action, leading to the emergence of several hypotheses that validate the possibility of using ASC in clinical practice. ASC may be considered an epigenetic drug capable of reducing aberrant DNA and histone hypermethylation, which could be helpful in the treatment of some cancers and neurodegenerative diseases. The clinical potency of ASC is also associated with regenerative medicine; in particular with the production of iPSCs. The effect of ASC on somatic cell reprogramming is most convincingly explained by a combined enhancement of the activity of the enzymes involved in the active demethylation of DNA and histones. This review describes how ASC can affect the epigenetic status of a cell and how it can be used in anticancer therapy and stem cell reprogramming.
Collapse
Affiliation(s)
- A. P. Kovina
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - N. V. Petrova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - O. L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
12
|
Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells 2020; 9:cells9020324. [PMID: 32019273 PMCID: PMC7072148 DOI: 10.3390/cells9020324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in many cancer types. This study identified and characterized CSCs in head and neck metastatic malignant melanoma (HNmMM) to regional lymph nodes using induced pluripotent stem cell (iPSC) markers. Immunohistochemical (IHC) staining performed on 20 HNmMM tissue samples demonstrated expression of iPSC markers OCT4, SOX2, KLF4, and c-MYC in all samples, while NANOG was expressed at low levels in two samples. Immunofluorescence (IF) staining demonstrated an OCT4+/SOX2+/KLF4+/c-MYC+ CSC subpopulation within the tumor nests (TNs) and another within the peritumoral stroma (PTS) of HNmMM tissues. IF also showed expression of NANOG by some OCT4+/SOX2+/KLF4+/c-MYC+ cells within the TNs in an HNmMM tissue sample that expressed NANOG on IHC staining. In situ hybridization (n = 6) and reverse-transcription quantitative polymerase chain reaction (n = 5) on the HNmMM samples confirmed expression of all five iPSC markers. Western blotting of primary cell lines derived from four of the 20 HNmMM tissue samples showed expression of SOX2, KLF4, and c-MYC but not OCT4 and NANOG, and three of these cell lines formed tumorspheres in vitro. We demonstrate the presence of two putative CSC subpopulations within HNmMM, which may be a novel therapeutic target in the treatment of this aggressive cancer.
Collapse
|
13
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
14
|
Suo X, Zhang J, Zhang Y, Liang XJ, Zhang J, Liu D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J Mater Chem B 2020; 8:3985-4001. [DOI: 10.1039/d0tb00311e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) exhibit high resistance to conventional therapy and are responsible for cancer metastasis and tumor relapse.
Collapse
Affiliation(s)
- Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Juncai Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Yue Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology
- Beijing 100190
- People's Republic of China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| |
Collapse
|
15
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
- *Both the authors contributed equally to this article
| |
Collapse
|
16
|
Ramonet D, Dietz GPH. Novel Cell-Based Assay for Identification of LRRK2 Inhibitors Using Its Aberrant Regulation of a Pluripotency Gene. SLAS DISCOVERY 2019; 25:104-112. [PMID: 31373835 DOI: 10.1177/2472555219864086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2), such as the G2019S mutation, are the most common cause of familial Parkinson's disease (PD). The G2019S mutation impairs neurite outgrowth. We hypothesized that those effects could be related to an altered expression of pluripotency genes, which may provide a readout for a screening assay based on LRRK2 function. Here, we show that the G2019S mutation mediates a sustained aberrant upregulation of the transcription factors Nanog and Oct4 that in wild-type are downregulated after differentiation. The aberrant regulation of Nanog can be concentration dependently reversed by LRRK2 tool inhibitors. Building on this knowledge, we developed an assay for the identification and assessment of compounds that inhibit the aberrant pathophysiological activity of mutant LRRK2. Furthermore, the aberrant neural pluripotency is consistent with Parkinson's pathophysiology and with the epidemiological association between the G2019S genotype and cancer risk.
Collapse
Affiliation(s)
- David Ramonet
- Department Neurodegeneration, H. Lundbeck A/S, Valby, Denmark.,Centre for Molecular Medicine Norway, Oslo University, Oslo, Norway
| | | |
Collapse
|
17
|
Lee Chong T, Ahearn EL, Cimmino L. Reprogramming the Epigenome With Vitamin C. Front Cell Dev Biol 2019; 7:128. [PMID: 31380368 PMCID: PMC6646595 DOI: 10.3389/fcell.2019.00128] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The erasure of epigenetic modifications across the genome of somatic cells is an essential requirement during their reprogramming into induced pluripotent stem cells (iPSCs). Vitamin C plays a pivotal role in remodeling the epigenome by enhancing the activity of Jumonji-C domain-containing histone demethylases (JHDMs) and the ten-eleven translocation (TET) proteins. By maintaining differentiation plasticity in culture, vitamin C also improves the quality of tissue specific stem cells derived from iPSCs that are highly sought after for use in regenerative medicine. The ability of vitamin C to potentiate the activity of histone and DNA demethylating enzymes also has clinical application in the treatment of cancer. Vitamin C deficiency has been widely reported in cancer patients and has recently been shown to accelerate cancer progression in disease models. Therapies involving high-dose vitamin C administration are currently gaining traction in the treatment of epigenetic dysregulation, by targeting aberrant histone and DNA methylation patterns associated with cancer progression.
Collapse
Affiliation(s)
- Taylor Lee Chong
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily L Ahearn
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
18
|
Kuciak M, Mas C, Borges I, Sánchez-Gómez P, Ruiz i Altaba A. Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. Sci Rep 2019; 9:3891. [PMID: 30846719 PMCID: PMC6405761 DOI: 10.1038/s41598-019-39473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Targeting stemness promises new therapeutic strategies against highly invasive tumors. While a number of approaches are being tested, inhibiting the core transcription regulatory network of cancer stem cells is an attractive yet challenging possibility. Here we have aimed to provide the proof of principle for a strategy, previously used in developmental studies, to directly repress the targets of a salient stemness and pluripotency factor: NANOG. In doing so we expected to inhibit the expression of so far unknown mediators of pro-tumorigenic NANOG function. We chose NANOG since previous work showed the essential requirement for NANOG activity for human glioblastoma (GBM) growth in orthotopic xenografts, and it is apparently absent from many adult human tissues thus likely minimizing unwanted effects on normal cells. NANOG repressor chimeras, which we name NANEPs, bear the DNA-binding specificity of NANOG through its homeodomain (HD), and this is linked to transposable human repressor domains. We show that in vitro and in vivo, NANEP5, our most active NANEP with a HES1 repressor domain, mimics knock-down (kd) of NANOG function in GBM cells. Competition orthotopic xenografts also reveal the effectiveness of NANEP5 in a brain tumor context, as well as the specificity of NANEP activity through the abrogation of its function via the introduction of specific mutations in the HD. The transcriptomes of cells expressing NANEP5 reveal multiple potential mediators of pro-tumorigenic NANEP/NANOG action including intercellular signaling components. The present results encourage further studies on the regulation of context-dependent NANEP abundance and function, and the development of NANEP-based anti-cancer therapies.
Collapse
Affiliation(s)
- Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | - Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
- Oncotheis Sàrl. 18 chemin des Aulx, CH-1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Isabel Borges
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | | | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland.
| |
Collapse
|
19
|
The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells. Nat Commun 2019; 10:1109. [PMID: 30846691 PMCID: PMC6406003 DOI: 10.1038/s41467-019-09041-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Transcription factor networks, together with histone modifications and signalling pathways, underlie the establishment and maintenance of gene regulatory architectures associated with the molecular identity of each cell type. However, how master transcription factors individually impact the epigenomic landscape and orchestrate the behaviour of regulatory networks under different environmental constraints is only partially understood. Here, we show that the transcription factor Nanog deploys multiple distinct mechanisms to enhance embryonic stem cell self-renewal. In the presence of LIF, which fosters self-renewal, Nanog rewires the pluripotency network by promoting chromatin accessibility and binding of other pluripotency factors to thousands of enhancers. In the absence of LIF, Nanog blocks differentiation by sustaining H3K27me3, a repressive histone mark, at developmental regulators. Among those, we show that the repression of Otx2 plays a preponderant role. Our results underscore the versatility of master transcription factors, such as Nanog, to globally influence gene regulation during developmental processes.
Collapse
|
20
|
Feng Y, Ning Y, Lin X, Zhang D, Liao S, Zheng C, Chen J, Wang Y, Ma L, Xie D, Han C. Reprogramming p53-Deficient Germline Stem Cells Into Pluripotent State by Nanog. Stem Cells Dev 2018; 27:692-703. [PMID: 29631477 DOI: 10.1089/scd.2018.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cultured mouse spermatogonial stem cells (SSCs), also known as germline stem cells (GSCs), revert back to pluripotent state either spontaneously or upon being modified genetically. However, the reprogramming efficiencies are low, and the underlying mechanism remains poorly understood. In the present study, we conducted transcriptomic analysis and found that many transcription factors and epigenetic modifiers were differentially expressed between GSCs and embryonic stem cells. We failed in reprogramming GSCs to pluripotent state using the Yamanaka 4 Factors, but succeeded when Nanog and Tet1 were included. More importantly, reprogramming was also achieved with Nanog alone in a p53-deficient GSC line with an efficiency of 0.02‰. These GSC-derived-induced pluripotent stem cells possessed in vitro and in vivo differentiation abilities despite the low rate of chimera formation, which might be caused by abnormal methylation in certain paternally imprinted genes. Together, these results show that GSCs can be reprogrammed to pluripotent state via multiple avenues and contribute to our understanding of the mechanisms of GSC reprogramming.
Collapse
Affiliation(s)
- Yanmin Feng
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Yan Ning
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Xiwen Lin
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Daoqin Zhang
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Shangying Liao
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Chunwei Zheng
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Jian Chen
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Yang Wang
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Longfei Ma
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Dan Xie
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Chunsheng Han
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Yu P, Nie Q, Tang C, Zhang L. Nanog induced intermediate state in regulating stem cell differentiation and reprogramming. BMC SYSTEMS BIOLOGY 2018; 12:22. [PMID: 29486740 PMCID: PMC6389130 DOI: 10.1186/s12918-018-0552-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/21/2018] [Indexed: 01/18/2023]
Abstract
Background Heterogeneous gene expressions of cells are widely observed in self-renewing pluripotent stem cells, suggesting possible coexistence of multiple cellular states with distinct characteristics. Though the elements regulating cellular states have been identified, the underlying dynamic mechanisms and the significance of such cellular heterogeneity remain elusive. Results We present a gene regulatory network model to investigate the bimodal Nanog distribution in stem cells. Our model reveals a novel role of dynamic conversion between the cellular states of high and low Nanog levels. Model simulations demonstrate that the low-Nanog state benefits cell differentiation through serving as an intermediate state to reduce the barrier of transition. Interestingly, the existence of low-Nanog state dynamically slows down the reprogramming process, and additional Nanog activation is found to be essential to quickly attaining the fully reprogrammed cell state. Conclusions Nanog has been recognized as a critical pluripotency gene in stem cell regulation. Our modeling results quantitatively show a dual role of Nanog during stem cell differentiation and reprogramming, and the importance of the intermediate state during cell state transitions. Our approach offers a general method for analyzing key regulatory factors controlling cell differentiation and reprogramming. Electronic supplementary material The online version of this article (10.1186/s12918-018-0552-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peijia Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Qing Nie
- Department of Mathematics and Departmentof Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The ovary is part of the reproductive system, possessing very important functions in the reproduction process (ovum and embryo transfer, providing a suitable environment for sperm capacitation, etc.). There are two types of cells in the fallopian tubes: alveolar and secretive cells. These study shows the metabolic processes in pig oviductal epithelial cells associated with the activation of signaling pathways of amino acids metabolism and degradation during long-term in vitro culture. Oviductal epithelial cells from 45 colonies in the anestrous phase of the estrous cycle have been utilized in this study. RNA extract from the OEC primary cultures was pooled after 24h, 7days, 15 days and 30 days from the beginning of culture and the transcriptome investigated by Affymetrix® Porcine Gene 1.1 ST. From the whole transcript that consisted of 2009 different genes, 1537 were upregulated and 995 were downregulated after 7 days of culture, 1471 were upregulated and 1061 were downregulated after 15 days of culture and 1329 were upregulated and 1203 were downregulated after 30 days of culture. The results of these studies provide, for the first time, information on the activation of metabolic pathways of amino acids such as valine, leucine, isoleucine, cysteine, and methionine in the investigated tissue. They also indicate genes that may be OECs-specific genetic markers that are expressed or upregulated during long-term in vitro culture.
Collapse
|
23
|
Gagnon JA, Obbad K, Schier AF. The primary role of zebrafish nanog is in extra-embryonic tissue. Development 2018; 145:dev.147793. [PMID: 29180571 DOI: 10.1242/dev.147793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
Abstract
The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZnanog) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZnanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.
Collapse
Affiliation(s)
- James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kamal Obbad
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA .,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett 2017; 592:852-877. [DOI: 10.1002/1873-3468.12826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Nick Owens
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Pablo Navarro
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| |
Collapse
|
25
|
Targeted Disruption of TCF12 Reveals HEB as Essential in Human Mesodermal Specification and Hematopoiesis. Stem Cell Reports 2017; 9:779-795. [PMID: 28803914 PMCID: PMC5599183 DOI: 10.1016/j.stemcr.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells arise from mesoderm-derived hemogenic endothelium (HE) during embryogenesis in a process termed endothelial-hematopoietic transition (EHT). To better understand the gene networks that control this process, we investigated the role of the transcription factor HEB (TCF12) by disrupting the TCF12 gene locus in human embryonic stem cells (hESCs) and inducing them to differentiate toward hematopoietic outcomes. HEB-deficient hESCs retained key features of pluripotency, including expression of SOX2 and SSEA-4 and teratoma formation, while NANOG expression was reduced. Differentiation of HEB−/− hESCs toward hematopoietic fates revealed a severe defect in mesodermal development accompanied by decreased expression of regulators of mesoendodermal fate choices. We also identified independent defects in HE formation at the molecular and cellular levels, as well as a failure of T cell development. All defects were largely rescued by re-expression of HEB. Taken together, our results identify HEB as a critical regulator of human mesodermal and hematopoietic specification. Genome editing targeting TCF12 in hESCs to study human embryonic development HEB is required for NANOG and TGFβ signaling but not for hESC pluripotency Requirement for HEB in mesoderm development and pre-hematopoietic events HEB is required for expression of Notch1 and Runx1 in endothelial cells
Collapse
|
26
|
Velasquez-Mao AJ, Tsao CJM, Monroe MN, Legras X, Bissig-Choisat B, Bissig KD, Ruano R, Jacot JG. Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells. PLoS One 2017; 12:e0177824. [PMID: 28545044 PMCID: PMC5435315 DOI: 10.1371/journal.pone.0177824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
Congenital heart defects are the most common birth defect. The limiting factor in tissue engineering repair strategies is an autologous source of functional cardiomyocytes. Amniotic fluid contains an ideal cell source for prenatal harvest and use in correction of congenital heart defects. This study aims to investigate the potential of amniotic fluid-derived stem cells (AFSC) to undergo non-viral reprogramming into induced pluripotent stem cells (iPSC) followed by growth-factor-free differentiation into functional cardiomyocytes. AFSC from human second trimester amniotic fluid were transfected by non-viral vesicle fusion with modified mRNA of OCT4, KLF4, SOX2, LIN28, cMYC and nuclear GFP over 18 days, then differentiated using inhibitors of GSK3 followed 48 hours later by inhibition of WNT. AFSC-derived iPSC had high expression of OCT4, NANOG, TRA-1-60, and TRA-1-81 after 18 days of mRNA transfection and formed teratomas containing mesodermal, ectodermal, and endodermal germ layers in immunodeficient mice. By Day 30 of cardiomyocyte differentiation, cells contracted spontaneously, expressed connexin 43 and β-myosin heavy chain organized in sarcomeric banding patterns, expressed cardiac troponin T and β-myosin heavy chain, showed upregulation of NKX2.5, ISL-1 and cardiac troponin T with downregulation of POU5F1, and displayed calcium and voltage transients similar to those in developing cardiomyocytes. These results demonstrate that cells from human amniotic fluid can be differentiated through a pluripotent state into functional cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Madeline N. Monroe
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Xavier Legras
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Beatrice Bissig-Choisat
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Karl-Dimiter Bissig
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Texas Children’s Hospital, Houston, TX, United States of America
| | - Jeffrey G. Jacot
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- Congenital Heart Surgery Service, Texas Children’s Hospital, Houston, TX, United States of America
- University of Colorado Denver, Department of Bioengineering, Aurora, CO, United States of America
| |
Collapse
|
27
|
Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 2017; 74:1805-1817. [PMID: 27999898 PMCID: PMC11107721 DOI: 10.1007/s00018-016-2438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Christopher Y T Yen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.
- Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University and Hospital, Taipei, 100, Taiwan.
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
28
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, Jiang C, Ge X, Xie X, Wang P. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 2016; 7:13594. [PMID: 27886188 PMCID: PMC5133637 DOI: 10.1038/ncomms13594] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Nanog is a master pluripotency factor of embryonic stem cells (ESCs). Stable expression of Nanog is essential to maintain the stemness of ESCs. However, Nanog is a short-lived protein and quickly degraded by the ubiquitin-dependent proteasome system. Here we report that the deubiquitinase USP21 interacts with, deubiquitinates and stabilizes Nanog, and therefore maintains the protein level of Nanog in mouse ESCs (mESCs). Loss of USP21 results in Nanog degradation, mESCs differentiation and reduces somatic cell reprogramming efficiency. USP21 is a transcriptional target of the LIF/STAT3 pathway and is downregulated upon differentiation. Moreover, differentiation cues promote ERK-mediated phosphorylation and dissociation of USP21 from Nanog, thus leading to Nanog degradation. In addition, USP21 is recruited to gene promoters by Nanog to deubiquitinate histone H2A at K119 and thus facilitates Nanog-mediated gene expression. Together, our findings provide a regulatory mechanism by which extrinsic signals regulate mESC fate via deubiquitinating Nanog. Nanog regulates embryonic stem cell (ESC) pluripotency but what controls Nanog protein stability is unclear. Here, the authors show that in mouse ESCs, Nanog protein is ubiquitinated and stabilized by the deubiquitinase USP21, which in turn is regulated by extrinsic signals, STAT3 and ERK.
Collapse
Affiliation(s)
- Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Cong Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhenping Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Cong Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cizhong Jiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Xin Xie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| |
Collapse
|
30
|
Park YS, Nemeño JGE, Choi NY, Lee JI, Ko K, Choi SC, Kim WS, Han DW, Tapia N, Ko K. Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts. Biol Chem 2016; 397:249-55. [PMID: 26733157 DOI: 10.1515/hsz-2015-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
Key regulatory genes in pluripotent stem cells are of interest not only as reprogramming factors but also as regulators driving tumorigenesis. Nanog is a transcription factor involved in the maintenance of embryonic stem cells and is one of the reprogramming factors along with Oct4, Sox2, and Lin28. Nanog expression has been detected in different types of tumors, and its expression is a poor prognosis for cancer patients. However, there is no clear evidence that Nanog is functionally involved in tumorigenesis. In this study, we induced overexpression of Nanog in mouse embryonic fibroblast cells and subsequently assessed their morphological changes, proliferation rate, and tumor formation ability. We found that Nanog overexpression induced immortalization of mouse embryonic fibroblast cells (MEFs) and increased their proliferation rate in vitro. We also found that formation of tumors after subcutaneous injection of retroviral-Nanog infected MEFs (N-MEFs) into athymic mouse. Cancer-related genes such as Bmi1 were expressed at high levels in N-MEFs. Hence, our results demonstrate that Nanog is able to transform normal somatic cells into tumor cells.
Collapse
|
31
|
Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. Proc Natl Acad Sci U S A 2016; 113:12202-12207. [PMID: 27729528 DOI: 10.1073/pnas.1608679113] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe2+ recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.
Collapse
|
32
|
Zhang L, Zheng Y, Sun Y, Zhang Y, Yan J, Chen Z, Jiang H. MiR-134-Mbd3 axis regulates the induction of pluripotency. J Cell Mol Med 2016; 20:1150-8. [PMID: 26929159 PMCID: PMC4882991 DOI: 10.1111/jcmm.12805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/07/2016] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression and play an important role in reprogramming process; however, relatively little is known about the underlying regulatory mechanism of miRNAs on how they epigenetically modulate reprogramming and pluripotency. Here, we report that the expression level of microRNA-134 (miR-134) was low in mouse embryonic stem cells (mESCs) but significantly up-regulated during neural differentiation, while down-regulated during the induction of induced pluripotent stem cells (iPSCs) from neural progenitor cells (NPCs). Inhibition of miR-134 by miR-134 sponge promoted the efficiency of reprogramming which also was highly similar to mESCs. On the contrary, up-regulation of miR-134 repressed iPSCs induction. We also found that inhibition of miR-134 promoted the maturation of pre-iPSCs and increased its pluripotency. We also showed that miR-134 can directly target to the pluripotency related factor Methyl-CpG-binding domain protein 3 (Mdb3) 3' untranslated regions (3' UTR) to down-regulate its expression. And Mbd3 was found to promote the induction of iPSCs and could block the repression of reprogramming caused by overexpression of miR-134. This work revealed the critical function of miR-134-Mbd3 axis on regulating reprogramming and pluripotency of iPSCs derived from the NPCs, and might provide an insight into the miR-134-Mbd3 axis on regulating the iPSCs quality for further clinical treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongchao Zheng
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanqing Sun
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Chen
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Olariu V, Lövkvist C, Sneppen K. Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 2016; 6:25438. [PMID: 27146218 PMCID: PMC4857071 DOI: 10.1038/srep25438] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 01/12/2023] Open
Abstract
A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells’ pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogramming of somatic cells as well as the early developmental decisions. Here we propose a multiple level model where the regulatory network of Oct4, Nanog and Tet1 includes positive feedback loops involving DNA-demethylation around the promoters of Oct4 and Tet1. We put forward a mechanistic understanding of the regulatory dynamics which account for i) Oct4 overexpression is sufficient to induce pluripotency in somatic cell types expressing the other Yamanaka reprogramming factors endogenously; ii) Tet1 can replace Oct4 in reprogramming cocktail; iii) Nanog is not necessary for reprogramming however its over-expression leads to enhanced self-renewal; iv) DNA methylation is the key to the regulation of pluripotency genes; v) Lif withdrawal leads to loss of pluripotency. Overall, our paper proposes a novel framework combining transcription regulation with DNA methylation modifications which, takes into account the multi-layer nature of regulatory mechanisms governing pluripotency acquisition through reprogramming.
Collapse
Affiliation(s)
- Victor Olariu
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Cecilia Lövkvist
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Novo CL, Tang C, Ahmed K, Djuric U, Fussner E, Mullin NP, Morgan NP, Hayre J, Sienerth AR, Elderkin S, Nishinakamura R, Chambers I, Ellis J, Bazett-Jones DP, Rugg-Gunn PJ. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes Dev 2016; 30:1101-15. [PMID: 27125671 PMCID: PMC4863740 DOI: 10.1101/gad.275685.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Abstract
Here, Novo et al. identify a new critical role for the transcription factor Nanog in maintaining an open heterochromatin state in pluripotent mouse embryonic stem cells and demonstrate that forced expression of Nanog is sufficient to remodel and decondense chromatin in more developmentally advanced mammalian cell types. This study delineates a direct connection between the pluripotency network and chromatin organization and shows that maintainence of an open heterochromatin architecture is highly regulated in embryonic stem cells. An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.
Collapse
Affiliation(s)
- Clara Lopes Novo
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Calvin Tang
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kashif Ahmed
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada
| | - Ugljesa Djuric
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eden Fussner
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Natasha P Morgan
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Jasvinder Hayre
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Arnold R Sienerth
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sarah Elderkin
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - James Ellis
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David P Bazett-Jones
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario MSG 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
35
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|
36
|
Allouba MH, ElGuindy AM, Krishnamoorthy N, Yacoub MH, Aguib YE. NaNog: A pluripotency homeobox (master) molecule. Glob Cardiol Sci Pract 2015; 2015:36. [PMID: 26566529 PMCID: PMC4625207 DOI: 10.5339/gcsp.2015.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023] Open
Abstract
One of the most intriguing aspects of cell biology is the state of pluripotency, where the cell is capable of self-renewal for as many times as deemed “necessary”, then at a specified time can differentiate into any type of cell. This fundamental process is required during organogenesis in foetal life and importantly during tissue repair in health and disease. Pluripotency is very tightly regulated, as any dysregulation can result in congenital defects, inability to repair damage, or cancer. Fuelled by the relatively recent interest in stem cell biology and tissue regeneration, the molecules implicated in regulating pluripotency have been the subject of extensive research. One of the important molecules involved in pluripotency, is NaNog, the subject of this article.
Collapse
Affiliation(s)
| | | | - Navaneethakrishnan Krishnamoorthy
- Qatar Cardiovascular Research Centre, Doha, Qatar ; Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
37
|
Sebban S, Buganim Y. Nuclear Reprogramming by Defined Factors: Quantity Versus Quality. Trends Cell Biol 2015; 26:65-75. [PMID: 26437595 DOI: 10.1016/j.tcb.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) and directly converted cells holds great promise in regenerative medicine. However, after in-depth studies of the murine system, we know that the current methodologies to produce these cells are not ideal and mostly yield cells of poor quality that might hold a risk in therapeutic applications. In this review we address the duality found in the literature regarding the use of 'quality' as a criterion for the clinic. We discuss the elements that influence reprogramming quality, and provide evidence that safety and functionality are directly linked to cell quality. Finally, because most of the available data come from murine systems, we speculate about what aspects can be applied to human cells.
Collapse
Affiliation(s)
- Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
38
|
Chantzoura E, Skylaki S, Menendez S, Kim SI, Johnsson A, Linnarsson S, Woltjen K, Chambers I, Kaji K. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports 2015; 5:350-364. [PMID: 26278041 PMCID: PMC4618455 DOI: 10.1016/j.stemcr.2015.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022] Open
Abstract
Since the first generation of induced pluripotent stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET) as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog(-/-) fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.
Collapse
Affiliation(s)
- Eleni Chantzoura
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sergio Menendez
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Anna Johnsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1, 171 77 Stockholm, Sweden
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland.
| |
Collapse
|
39
|
Stoyanova E, Mourdjeva M, Kyurkchiev S. Early selection of human fibroblast-derived induced pluripotent stem cells. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
40
|
Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes (Basel) 2015; 6:641-61. [PMID: 26193323 PMCID: PMC4584322 DOI: 10.3390/genes6030641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.
Collapse
|
41
|
Maza I, Caspi I, Zviran A, Chomsky E, Rais Y, Viukov S, Geula S, Buenrostro JD, Weinberger L, Krupalnik V, Hanna S, Zerbib M, Dutton JR, Greenleaf WJ, Massarwa R, Novershtern N, Hanna JH. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol 2015; 33:769-74. [PMID: 26098448 PMCID: PMC4500825 DOI: 10.1038/nbt.3270] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
Abstract
Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods.
Collapse
Affiliation(s)
- Itay Maza
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. [2] The Department of Gastroenterology, Rambam Health Care Campus &Bruce Rappaport School of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Inbal Caspi
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Zviran
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Chomsky
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoach Rais
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Viukov
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Geula
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jason D Buenrostro
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Leehee Weinberger
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Vladislav Krupalnik
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Suhair Hanna
- 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. [2] The Department of Pediatrics and the Pediatric Immunology Unit, Rambam Health Care Campus &Bruce Rappaport School of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Mirie Zerbib
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Greenleaf
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rada Massarwa
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Novershtern
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA, Lipchina I, Huebner AJ, Mostoslavsky G, Hochedlinger K. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol 2015; 33:761-8. [PMID: 26098450 PMCID: PMC4840929 DOI: 10.1038/nbt.3247] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Brief expression of pluripotency-associated factors such as Oct4, Klf4, Sox2 and c-Myc (OKSM), in combination with differentiation-inducing signals, has been reported to trigger transdifferentiation of fibroblasts into other cell types. Here we show that OKSM expression in mouse fibroblasts gives rise to both induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) under conditions previously shown to induce only iNSCs. Fibroblast-derived iNSC colonies silenced retroviral transgenes and reactivated silenced X chromosomes, both hallmarks of pluripotent stem cells. Moreover, lineage tracing with an Oct4-CreER labeling system demonstrated that virtually all iNSC colonies originated from cells transiently expressing Oct4, whereas ablation of Oct4(+) cells prevented iNSC formation. Lastly, an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripotency yielded iPSCs and iNSCs carrying the Oct4-CreER-derived lineage label. Together, these data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state.
Collapse
Affiliation(s)
- Ori Bar-Nur
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Cassandra Verheul
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Andreia G Sommer
- 1] Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, USA. [2] Boston Medical Center, Boston, Massachusetts, USA
| | - Justin Brumbaugh
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Benjamin A Schwarz
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Inna Lipchina
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Aaron J Huebner
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Gustavo Mostoslavsky
- 1] Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, USA. [2] Boston Medical Center, Boston, Massachusetts, USA
| | - Konrad Hochedlinger
- 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [5] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Abstract
Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform "ground state" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
44
|
Zhang X, Kiang KM, Zhang GP, Leung GK. Long Non-Coding RNAs Dysregulation and Function in Glioblastoma Stem Cells. Noncoding RNA 2015; 1:69-86. [PMID: 29861416 PMCID: PMC5932540 DOI: 10.3390/ncrna1010069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common form of primary brain tumor, is highly resistant to current treatment paradigms and has a high rate of recurrence. Recent advances in the field of tumor-initiating cells suggest that glioblastoma stem cells (GSCs) may be responsible for GBM's rapid progression, treatment resistance, tumor recurrence and ultimately poor clinical prognosis. Understanding the biologically significant pathways that mediate GSC-specific characteristics offers promises in the development of novel biomarkers and therapeutics. Long non-coding RNAs (lncRNAs) have been increasingly implicated in the regulation of cancer cell biological behavior through various mechanisms. Initial studies strongly suggested that lncRNA expressions are highly dysregulated in GSCs and may play important roles in determining malignant phenotypes in GBM. Here, we review available evidence on aberrantly expressed lncRNAs identified by high throughput microarray profiling studies in GSCs. We also explore the potential functional pathways by analyzing their interactive proteins and miRNAs, with a view to shed lights on how this novel class of molecular candidates may mediate GSC maintenance and differentiation.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Karrie Meiyee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Grace Pingde Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Gilberto Kakit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Singovski G, Bernal C, Kuciak M, Siegl-Cachedenier I, Conod A, Ruiz i Altaba A. In vivo epigenetic reprogramming of primary human colon cancer cells enhances metastases. J Mol Cell Biol 2015; 8:157-73. [PMID: 26031752 PMCID: PMC4816146 DOI: 10.1093/jmcb/mjv034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
How metastases develop is not well understood and no genetic mutations have been reported as specific metastatic drivers. Here we have addressed the idea that epigenetic reprogramming by GLI-regulated pluripotent stemness factors promotes metastases. Using primary human colon cancer cells engrafted in mice, we find that transient expression of OCT4, SOX2, KLF4 +/− cMYC establishes an enhanced pro-metastatic state in the primary tumor that is stable through sequential engraftments and is transmitted through clonogenic cancer stem cells. Metastatic reprogramming alters NANOG methylation and stably boosts NANOG and NANOGP8 expression. Metastases and reprogrammed EMT-like phenotypes require endogenous NANOG, but enhanced NANOG is not sufficient to induce these phenotypes. Finally, reprogrammed tumors enhance GLI2, and we show that GLI2high and AXIN2low, which are markers of the metastatic transition of colon cancers, are prognostic of poor disease outcome in patients. We propose that metastases arise through epigenetic reprogramming of cancer stem cells within primary tumors.
Collapse
Affiliation(s)
- Grigori Singovski
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Carolina Bernal
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Irene Siegl-Cachedenier
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Arwen Conod
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| |
Collapse
|
46
|
Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proc Natl Acad Sci U S A 2015; 112:4666-71. [PMID: 25825768 DOI: 10.1073/pnas.1502855112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.
Collapse
|
47
|
Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R, Schmidt R, McKee R, Sado T, Tada T, Meissner A, Plath K. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 2015; 159:1681-97. [PMID: 25525883 DOI: 10.1016/j.cell.2014.11.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Tchieu
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Molly Uyeda
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anupama Sadhu Dimashkie
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dana Case
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernadett Papp
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanjeet Patel
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ritchie Ho
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Schmidt
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robin McKee
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Takashi Tada
- Department of Stem Cell Engineering, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
49
|
Peter Y, Weingarten M, Akhavan N, Hanau J. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
German SD, Campbell KHS, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram 2014; 17:19-27. [PMID: 25513856 DOI: 10.1089/cell.2014.0071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Collapse
Affiliation(s)
- Sergio D German
- 1 Division of Animal Sciences, School of Biosciences, University of Nottingham , Loughborough, LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|