1
|
Uluç I, Daneshzand M, Jas M, Kotlarz P, Lankinen K, Fiedler JL, Mamashli F, Pajankar N, Turpin T, de Lara LN, Sundaram P, Raij T, Nummenmaa A, Ahveninen J. Decoding auditory working memory content from EEG responses to auditory-cortical TMS. Brain Stimul 2025; 18:649-658. [PMID: 40024366 PMCID: PMC12097927 DOI: 10.1016/j.brs.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/12/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Abstract
Working memory (WM), short term maintenance of information for goal directed behavior, is essential to human cognition. Identifying the neural mechanisms supporting WM is a focal point of neuroscientific research. One prominent theory hypothesizes that WM content is carried in "activity-silent" brain states involving short-term synaptic changes. Information carried in such brain states could be decodable from content-specific changes in responses to unrelated "impulse stimuli". Here, we used single-pulse transcranial magnetic stimulation (spTMS) as the impulse stimulus and then decoded content maintained in WM from EEG using multivariate pattern analysis (MVPA) with robust non-parametric permutation testing. The decoding accuracy of WM content significantly enhanced after spTMS was delivered to the posterior superior temporal cortex during WM maintenance. Our results show that WM maintenance involves brain states, which are activity silent relative to other intrinsic processes visible in the EEG signal.
Collapse
Affiliation(s)
- Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer L. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Netri Pajankar
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tori Turpin
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lucia Navarro de Lara
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Uluç I, Daneshzand M, Jas M, Kotlarz P, Lankinen K, Fiedler JL, Mamashli F, Pajankar N, Turpin T, de Lara LN, Sundaram P, Raij T, Nummenmaa A, Ahveninen J. Decoding auditory working memory content from EEG aftereffects of auditory-cortical TMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.04.583379. [PMID: 39975364 PMCID: PMC11838191 DOI: 10.1101/2024.03.04.583379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Working memory (WM), short term maintenance of information for goal directed behavior, is essential to human cognition. Identifying the neural mechanisms supporting WM is a focal point of neuroscientific research. One prominent theory hypothesizes that WM content is carried in "activity-silent" brain states involving short-term synaptic changes. Information carried in such brain states could be decodable from content-specific changes in responses to unrelated "impulse stimuli". Here, we used single-pulse transcranial magnetic stimulation (spTMS) as the impulse stimulus and then decoded content maintained in WM from EEG using multivariate pattern analysis (MVPA) with robust non-parametric permutation testing. The decoding accuracy of WM content significantly enhanced after spTMS was delivered to the posterior superior temporal cortex during WM maintenance. Our results show that WM maintenance involves brain states, which are activity silent relative to other intrinsic processes visible in the EEG signal.
Collapse
Affiliation(s)
- Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer L. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Netri Pajankar
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tori Turpin
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lucia Navarro de Lara
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Manippa V, Nitsche MA, Filardi M, Vilella D, Scianatico G, Logroscino G, Rivolta D. Temporal gamma tACS and auditory stimulation affect verbal memory in healthy adults. Psychophysiology 2024; 61:e14653. [PMID: 39014532 DOI: 10.1111/psyp.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
| | - Gaetano Scianatico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Pulvermüller F. Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks. Prog Neurobiol 2023; 230:102511. [PMID: 37482195 PMCID: PMC10518464 DOI: 10.1016/j.pneurobio.2023.102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Cluster of Excellence 'Matters of Activity', Humboldt Universität zu Berlin, 10099 Berlin, Germany.
| |
Collapse
|
5
|
Rolls ET, Rauschecker JP, Deco G, Huang CC, Feng J. Auditory cortical connectivity in humans. Cereb Cortex 2023; 33:6207-6227. [PMID: 36573464 PMCID: PMC10422925 DOI: 10.1093/cercor/bhac496] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
- Institute for Advanced Study, Technical University, Munich, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
6
|
Deutsch P, Czoschke S, Fischer C, Kaiser J, Bledowski C. Decoding of Working Memory Contents in Auditory Cortex Is Not Distractor-Resistant. J Neurosci 2023; 43:3284-3293. [PMID: 36944488 PMCID: PMC10162453 DOI: 10.1523/jneurosci.1890-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Working memory enables the temporary storage of relevant information in the service of behavior. Neuroimaging studies have suggested that sensory cortex is involved in maintaining contents in working memory. This raised the question of how sensory regions maintain memory representations during the exposure to distracting stimuli. Multivariate pattern analysis of fMRI signals in visual cortex has shown that the contents of visual working memory could be decoded concurrently with passively viewed distractors. The present fMRI study tested whether this finding extends to auditory working memory and to active distractor processing. We asked participants to memorize the pitch of a target sound and to compare it with a probe sound presented after a 13 s delay period. In separate conditions, we compared a blank delay phase (no distraction) with either passive listening to, or active processing of, an auditory distractor presented throughout the memory delay. Consistent with previous reports, pitch-specific memory information could be decoded in auditory cortex during the delay in trials without distraction. In contrast, decoding of target sounds in early auditory cortex dropped to chance level during both passive and active distraction. This was paralleled by memory performance decrements under distraction. Extending the analyses beyond sensory cortex yielded some evidence for memory content-specific activity in inferior frontal and superior parietal cortex during active distraction. In summary, while our findings question the involvement of early auditory cortex in the maintenance of distractor-resistant working memory contents, further research should elucidate the role of hierarchically higher regions.SIGNIFICANCE STATEMENT Information about sensory features held in working memory can be read out from hemodynamic activity recorded in human sensory cortices. Moreover, visual cortex can in parallel store visual content and process newly incoming, task-irrelevant visual input. The present study investigated the role of auditory cortex for working memory maintenance under distraction. While memorized sound frequencies could be decoded in auditory cortex in the absence of distraction, auditory distraction during the delay phase impaired memory performance and prevented decoding of information stored in working memory. Apparently, early auditory cortex is not sufficient to represent working memory contents under distraction that impairs performance. However, exploratory analyses indicated that, under distraction, higher-order frontal and parietal regions might contribute to content-specific working memory storage.
Collapse
Affiliation(s)
- Philipp Deutsch
- Institute of Medical Psychology, Medical Faculty, Goethe University, Frankfurt am Main 60528, Germany
- Brain Imaging Center, Medical Faculty, Goethe University, Frankfurt am Main, 60528, Germany
| | - Stefan Czoschke
- Institute of Medical Psychology, Medical Faculty, Goethe University, Frankfurt am Main 60528, Germany
- Brain Imaging Center, Medical Faculty, Goethe University, Frankfurt am Main, 60528, Germany
| | - Cora Fischer
- Institute of Medical Psychology, Medical Faculty, Goethe University, Frankfurt am Main 60528, Germany
- Brain Imaging Center, Medical Faculty, Goethe University, Frankfurt am Main, 60528, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Medical Faculty, Goethe University, Frankfurt am Main 60528, Germany
- Brain Imaging Center, Medical Faculty, Goethe University, Frankfurt am Main, 60528, Germany
| | - Christoph Bledowski
- Institute of Medical Psychology, Medical Faculty, Goethe University, Frankfurt am Main 60528, Germany
- Brain Imaging Center, Medical Faculty, Goethe University, Frankfurt am Main, 60528, Germany
| |
Collapse
|
7
|
Ahveninen J, Uluç I, Raij T, Nummenmaa A, Mamashli F. Spectrotemporal content of human auditory working memory represented in functional connectivity patterns. Commun Biol 2023; 6:294. [PMID: 36941477 PMCID: PMC10027691 DOI: 10.1038/s42003-023-04675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Recent research suggests that working memory (WM), the mental sketchpad underlying thinking and communication, is maintained by multiple regions throughout the brain. Whether parts of a stable WM representation could be distributed across these brain regions is, however, an open question. We addressed this question by examining the content-specificity of connectivity-pattern matrices between subparts of cortical regions-of-interest (ROI). These connectivity patterns were calculated from functional MRI obtained during a ripple-sound auditory WM task. Statistical significance was assessed by comparing the decoding results to a null distribution derived from a permutation test considering all comparable two- to four-ROI connectivity patterns. Maintained WM items could be decoded from connectivity patterns across ROIs in frontal, parietal, and superior temporal cortices. All functional connectivity patterns that were specific to maintained sound content extended from early auditory to frontoparietal cortices. Our results demonstrate that WM maintenance is supported by content-specific patterns of functional connectivity across different levels of cortical hierarchy.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Anandakumar DB, Liu RC. More than the end: OFF response plasticity as a mnemonic signature of a sound's behavioral salience. Front Comput Neurosci 2022; 16:974264. [PMID: 36148326 PMCID: PMC9485674 DOI: 10.3389/fncom.2022.974264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
In studying how neural populations in sensory cortex code dynamically varying stimuli to guide behavior, the role of spiking after stimuli have ended has been underappreciated. This is despite growing evidence that such activity can be tuned, experience-and context-dependent and necessary for sensory decisions that play out on a slower timescale. Here we review recent studies, focusing on the auditory modality, demonstrating that this so-called OFF activity can have a more complex temporal structure than the purely phasic firing that has often been interpreted as just marking the end of stimuli. While diverse and still incompletely understood mechanisms are likely involved in generating phasic and tonic OFF firing, more studies point to the continuing post-stimulus activity serving a short-term, stimulus-specific mnemonic function that is enhanced when the stimuli are particularly salient. We summarize these results with a conceptual model highlighting how more neurons within the auditory cortical population fire for longer duration after a sound's termination during an active behavior and can continue to do so even while passively listening to behaviorally salient stimuli. Overall, these studies increasingly suggest that tonic auditory cortical OFF activity holds an echoic memory of specific, salient sounds to guide behavioral decisions.
Collapse
Affiliation(s)
- Dakshitha B. Anandakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Liu Q, Ulloa A, Horwitz B. The Spatiotemporal Neural Dynamics of Intersensory Attention Capture of Salient Stimuli: A Large-Scale Auditory-Visual Modeling Study. Front Comput Neurosci 2022; 16:876652. [PMID: 35645750 PMCID: PMC9133449 DOI: 10.3389/fncom.2022.876652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal dynamics of the neural mechanisms underlying endogenous (top-down) and exogenous (bottom-up) attention, and how attention is controlled or allocated in intersensory perception are not fully understood. We investigated these issues using a biologically realistic large-scale neural network model of visual-auditory object processing of short-term memory. We modeled and incorporated into our visual-auditory object-processing model the temporally changing neuronal mechanisms for the control of endogenous and exogenous attention. The model successfully performed various bimodal working memory tasks, and produced simulated behavioral and neural results that are consistent with experimental findings. Simulated fMRI data were generated that constitute predictions that human experiments could test. Furthermore, in our visual-auditory bimodality simulations, we found that increased working memory load in one modality would reduce the distraction from the other modality, and a possible network mediating this effect is proposed based on our model.
Collapse
Affiliation(s)
- Qin Liu
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Department of Physics, University of Maryland, College Park, College Park, MD, United States
| | - Antonio Ulloa
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Center for Information Technology, National Institutes of Health, Bethesda, MD, United States
| | - Barry Horwitz
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Barry Horwitz,
| |
Collapse
|
10
|
Cabrera L, Lorenzini I, Rosen S, Varnet L, Lorenzi C. Temporal integration for amplitude modulation in childhood: Interaction between internal noise and memory. Hear Res 2021; 415:108403. [PMID: 34879987 DOI: 10.1016/j.heares.2021.108403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
It is still unclear whether the gradual improvement in amplitude-modulation (AM) sensitivity typically found in children up to 10 years of age reflects an improvement in "processing efficiency" (the central ability to use information extracted by sensory mechanisms). This hypothesis was tested by evaluating temporal integration for AM, a capacity relying on memory and decision factors. This was achieved by measuring the effect of increasing the number of AM cycles (2 vs 8) on AM-detection thresholds for three groups of children aged from 5 to 11 years and a group of young adults. AM-detection thresholds were measured using a forced-choice procedure and sinusoidal AM (4 or 32 Hz rate) applied to a 1024-Hz pure-tone carrier. All age groups demonstrated temporal integration for AM at both rates; that is, significant improvements in AM sensitivity with a higher number of AM cycles. However, an effect of age is observed as both 5-6 year olds and adults exhibited more temporal integration compared to 7-8 and 10-11 year olds at both rates. This difference is due to: (i) the 5-6 year olds displaying the worst thresholds with 2 AM cycles, but similar thresholds with 8 cycles compared to the 7-8 and 10-11 year olds, and, (ii) adults showing the best thresholds with 8 AM cycles but similar thresholds with 2 cycles compared to the 7-8 and 10-11 year olds. Computational modelling indicated that higher levels of internal noise combined with poorer short-term memory capacities in children accounted for the developmental trends. Improvement in processing efficiency may therefore account for the development of AM detection in childhood. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Laurianne Cabrera
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France; Speech, Hearing and Phonetic Sciences, UCL, United Kingdom.
| | - Irene Lorenzini
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Stuart Rosen
- Speech, Hearing and Phonetic Sciences, UCL, United Kingdom
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs (UMR 8248), CNRS, Ecole normale supérieure, Université Paris Sciences & Lettres (PSL), Paris, France
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs (UMR 8248), CNRS, Ecole normale supérieure, Université Paris Sciences & Lettres (PSL), Paris, France
| |
Collapse
|
11
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Mamashli F, Khan S, Hämäläinen M, Jas M, Raij T, Stufflebeam SM, Nummenmaa A, Ahveninen J. Synchronization patterns reveal neuronal coding of working memory content. Cell Rep 2021; 36:109566. [PMID: 34433024 PMCID: PMC8428113 DOI: 10.1016/j.celrep.2021.109566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal oscillations are suggested to play an important role in auditory working memory (WM), but their contribution to content-specific representations has remained unclear. Here, we measure magnetoencephalography during a retro-cueing task with parametric ripple-sound stimuli, which are spectrotemporally similar to speech but resist non-auditory memory strategies. Using machine learning analyses, with rigorous between-subject cross-validation and non-parametric permutation testing, we show that memorized sound content is strongly represented in phase-synchronization patterns between subregions of auditory and frontoparietal cortices. These phase-synchronization patterns predict the memorized sound content steadily across the studied maintenance period. In addition to connectivity-based representations, there are indices of more local, “activity silent” representations in auditory cortices, where the decoding accuracy of WM content significantly increases after task-irrelevant “impulse stimuli.” Our results demonstrate that synchronization patterns across auditory sensory and association areas orchestrate neuronal coding of auditory WM content. This connectivity-based coding scheme could also extend beyond the auditory domain. Mamashli et al. use machine learning analyses of human magnetoencephalography (MEG) recordings to study “working memory,” maintenance of information in mind over brief periods of time. Their results show that the human brain maintains working memory content in transient functional connectivity patterns across sensory and association areas.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Departments of Physical Medicine and Rehabilitation and Neurobiology, Northwestern University, 710 North Lake Shore Drive, Chicago, IL 60611, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Zhu L, Xiong X, Dong X, Zhao Y, Kawczyński A, Chen A, Wang W. Working memory network plasticity after exercise intervention detected by task and resting-state functional MRI. J Sports Sci 2021; 39:1621-1632. [PMID: 33629647 DOI: 10.1080/02640414.2021.1891722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
The current study examined the effects of an 11-week exercise intervention on brain activity during a working memory (WM) task and resting-state functional network connectivity in deaf children. Twenty-six deaf children were randomly assigned to either an 11-week exercise intervention or control conditions. Before and after the exercise intervention, all participants were scanned with functional magnetic resonance imaging (fMRI) during N-back task performance and a resting state. The behavioural results showed that the exercise intervention improved WM performance. Task activation analyses showed an increase in the parietal, occipital, and temporal gyri and hippocampus and hippocampus (HIP). In addition, WM performance improvements were associated with greater activation in the left HIP region. Resting-state functional connectivity (Rs-FC) between HIP and certain other brain areas shown a significant interaction of group (exercise versus no exercise) and time (pre- and postintervention). Moreover, connectivity between the left HIP and left middle frontal gyrus was related to improved WM performance. These data extend current knowledge by indicating that an exercise intervention can improve WM in deaf children, and these enhancements may be related to the WM network plasticity changes induced by exercise.
Collapse
Affiliation(s)
- Lina Zhu
- College of Physical Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Zhao
- Department of Medical Imaging, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Adam Kawczyński
- Department of Paralympics Sports, University School of Physical Education, Wrocław, Poland
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical Imaging, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Yu L, Hu J, Shi C, Zhou L, Tian M, Zhang J, Xu J. The causal role of auditory cortex in auditory working memory. eLife 2021; 10:64457. [PMID: 33913809 PMCID: PMC8169109 DOI: 10.7554/elife.64457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
Working memory (WM), the ability to actively hold information in memory over a delay period of seconds, is a fundamental constituent of cognition. Delay-period activity in sensory cortices has been observed in WM tasks, but whether and when the activity plays a functional role for memory maintenance remains unclear. Here, we investigated the causal role of auditory cortex (AC) for memory maintenance in mice performing an auditory WM task. Electrophysiological recordings revealed that AC neurons were active not only during the presentation of the auditory stimulus but also early in the delay period. Furthermore, optogenetic suppression of neural activity in AC during the stimulus epoch and early delay period impaired WM performance, whereas suppression later in the delay period did not. Thus, AC is essential for information encoding and maintenance in auditory WM task, especially during the early delay period.
Collapse
Affiliation(s)
- Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawei Hu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chenlin Shi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Zhou
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Maozhi Tian
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Abstract
Working memory (WM) is a fundamental construct of human cognition. The neural basis of auditory WM is thought to reflect a distributed brain network consisting of canonical memory and central executive brain regions including frontal lobe and hippocampus. Yet, the role of auditory (sensory) cortex in supporting active memory representations remains controversial. Here, we recorded neuroelectric activity via electroencephalogram as listeners actively performed an auditory version of the Sternberg memory task. Memory load was taxed by parametrically manipulating the number of auditory tokens (letter sounds) held in memory. Source analysis of scalp potentials showed that sustained neural activity maintained in auditory cortex (AC) prior to memory retrieval closely scaled with behavioral performance. Brain-behavior correlations revealed that lateralized modulations in left (but not right) AC were predictive of individual differences in auditory WM capacity. Our findings confirm a prominent role of AC, traditionally viewed as a sensory-perceptual processor, in actively maintaining memory traces and dictating individual differences in behavioral WM limits.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| | - Jane A. Brown
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Pouya Bashivan
- University of Montreal, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada
| |
Collapse
|
16
|
Nonverbal auditory communication - Evidence for integrated neural systems for voice signal production and perception. Prog Neurobiol 2020; 199:101948. [PMID: 33189782 DOI: 10.1016/j.pneurobio.2020.101948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
While humans have developed a sophisticated and unique system of verbal auditory communication, they also share a more common and evolutionarily important nonverbal channel of voice signaling with many other mammalian and vertebrate species. This nonverbal communication is mediated and modulated by the acoustic properties of a voice signal, and is a powerful - yet often neglected - means of sending and perceiving socially relevant information. From the viewpoint of dyadic (involving a sender and a signal receiver) voice signal communication, we discuss the integrated neural dynamics in primate nonverbal voice signal production and perception. Most previous neurobiological models of voice communication modelled these neural dynamics from the limited perspective of either voice production or perception, largely disregarding the neural and cognitive commonalities of both functions. Taking a dyadic perspective on nonverbal communication, however, it turns out that the neural systems for voice production and perception are surprisingly similar. Based on the interdependence of both production and perception functions in communication, we first propose a re-grouping of the neural mechanisms of communication into auditory, limbic, and paramotor systems, with special consideration for a subsidiary basal-ganglia-centered system. Second, we propose that the similarity in the neural systems involved in voice signal production and perception is the result of the co-evolution of nonverbal voice production and perception systems promoted by their strong interdependence in dyadic interactions.
Collapse
|
17
|
Cooke JE, Lee JJ, Bartlett EL, Wang X, Bendor D. Post-stimulatory activity in primate auditory cortex evoked by sensory stimulation during passive listening. Sci Rep 2020; 10:13885. [PMID: 32807854 PMCID: PMC7431571 DOI: 10.1038/s41598-020-70397-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Under certain circumstances, cortical neurons are capable of elevating their firing for long durations in the absence of a stimulus. Such activity has typically been observed and interpreted in the context of performance of a behavioural task. Here we investigated whether post-stimulatory activity is observed in auditory cortex and the medial geniculate body of the thalamus in the absence of any explicit behavioural task. We recorded spiking activity from single units in the auditory cortex (fields A1, R and RT) and auditory thalamus of awake, passively-listening marmosets. We observed post-stimulatory activity that lasted for hundreds of milliseconds following the termination of the acoustic stimulus. Post-stimulatory activity was observed following both adapting, sustained and suppressed response profiles during the stimulus. These response types were observed across all cortical fields tested, but were largely absent from the auditory thalamus. As well as being of shorter duration, thalamic post-stimulatory activity emerged following a longer latency than in cortex, indicating that post-stimulatory activity may be generated within auditory cortex during passive listening. Given that these responses were observed in the absence of an explicit behavioural task, post-stimulatory activity in sensory cortex may play a functional role in processes such as echoic memory and temporal integration that occur during passive listening.
Collapse
Affiliation(s)
- James E Cooke
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| | - Julie J Lee
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
- Institute of Ophthalmology, University College London (UCL), London, WC1H 0AP, UK
| | - Edward L Bartlett
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, 47907, USA
| | - Xiaoqin Wang
- Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205, USA
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| |
Collapse
|
18
|
Abstract
Working memory is characterized by neural activity that persists during the retention interval of delay tasks. Despite the ubiquity of this delay activity across tasks, species and experimental techniques, our understanding of this phenomenon remains incomplete. Although initially there was a narrow focus on sustained activation in a small number of brain regions, methodological and analytical advances have allowed researchers to uncover previously unobserved forms of delay activity various parts of the brain. In light of these new findings, this Review reconsiders what delay activity is, where in the brain it is found, what roles it serves and how it may be generated.
Collapse
Affiliation(s)
- Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Teichert T, Gurnsey K. Formation and decay of auditory short-term memory in the macaque monkey. J Neurophysiol 2019; 121:2401-2415. [PMID: 31017849 DOI: 10.1152/jn.00821.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echoic memory (EM) is a short-lived, precategorical, and passive form of auditory short-term memory (STM). A key hallmark of EM is its rapid exponential decay with a time constant between 1 and 2 s. It is not clear whether auditory STM in the rhesus, an important model system, shares this rapid exponential decay. To resolve this shortcoming, two rhesus macaques were trained to perform a delayed frequency discrimination task. Discriminability of delayed tones was measured as a function of retention duration and the number of times the standard had been repeated before the target. Like in the human, our results show a rapid decline of discriminability with retention duration. In addition, the results suggest a gradual strengthening of discriminability with repetition number. Model-based analyses suggest the presence of two components of auditory STM: a short-lived component with a time constant on the order of 550 ms that most likely corresponds to EM and a more stable memory trace with time constants on the order of 10 s that strengthens with repetition and most likely corresponds to auditory recognition memory. NEW & NOTEWORTHY This is the first detailed quantification of the rapid temporal dynamics of auditory short-term memory in the rhesus. Much of the auditory information in short-term memory is lost within the first couple of seconds. Repeated presentations of a tone strengthen its encoding into short-term memory. Model-based analyses suggest two distinct components: an echoic memory homolog that mediates the rapid decay and a more stable but less detail-rich component that mediates strengthening of the trace with repetition.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Liu Y, Fan H, Li J, Jones JA, Liu P, Zhang B, Liu H. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates. Front Neurosci 2018. [PMID: 29535605 PMCID: PMC5835062 DOI: 10.3389/fnins.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Fan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baofeng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Scott BH, Leccese PA, Saleem KS, Kikuchi Y, Mullarkey MP, Fukushima M, Mishkin M, Saunders RC. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey. Cereb Cortex 2018; 27:809-840. [PMID: 26620266 DOI: 10.1093/cercor/bhv277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Paul A Leccese
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Kadharbatcha S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Yukiko Kikuchi
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA.,Present address: Institute of Neuroscience, Newcastle University Medical School, Newcastle Upon Tyne NE2 4HH, UK
| | - Matthew P Mullarkey
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Makoto Fukushima
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Holliday WB, Gurnsey K, Sweet RA, Teichert T. A putative electrophysiological biomarker of auditory sensory memory encoding is sensitive to pharmacological alterations of excitatory/inhibitory balance in male macaque monkeys. J Psychiatry Neurosci 2017; 43:170093. [PMID: 29236648 PMCID: PMC5915239 DOI: 10.1503/jpn.170093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 10/27/2017] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The amplitude of the auditory evoked N1 component that can be derived from noninvasive electroencephalographic recordings increases as a function of time between subsequent tones. N1 amplitudes in individuals with schizophrenia saturate at a lower asymptote, thus giving rise to a reduced dynamic range. Reduced N1 dynamic range is a putative electrophysiological biomarker of altered sensory memory function in individuals with the disease. To date, it is not clear what determines N1 dynamic range and what causes reduced N1 dynamic range in individuals with schizophrenia. Here we test the hypothesis that reduced N1 dynamic range results from a shift in excitatory/inhibitory (E/I) balance toward an excitation-deficient or inhibition-dominant state. METHODS We recorded auditory-evoked potentials (AEPs) while 4 macaque monkeys passively listened to sequences of sounds of random pitch and stimulus-onset asynchrony (SOA). Three independent experiments tested the effect of the N-methyl-d-aspartate receptor channel blockers ketamine and MK-801 as well as the γ-aminobutyric acid (GABA) A receptor-positive allosteric modulator midazolam on the dynamic range of a putative monkey N1 homologue and 4 other AEP components. RESULTS Ketamine, MK-801 and midazolam reduced peak N1 amplitudes for the longest SOAs. Other AEP components were also affected, but revealed distinct patterns of susceptibility for the glutamatergic and GABA-ergic drugs. Different patterns of susceptibility point toward differences in the circuitry maintaining E/I balance of individual components. LIMITATIONS The study used systemic pharmacological interventions that may have acted on targets outside of the auditory cortex. CONCLUSION The N1 dynamic range may be a marker of altered E/I balance. Reduced N1 dynamic range in individuals with schizophrenia may indicate that the auditory cortex is in an excitation-deficient or inhibition-dominant state. This may be the result of an incomplete compensation for a primary deficit in excitatory drive.
Collapse
Affiliation(s)
- William B Holliday
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Kate Gurnsey
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Robert A Sweet
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| | - Tobias Teichert
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA (Holliday, Gurnsey, Sweet, Teichert); the Department of Neurology, University of Pittsburgh, Pittsburgh, PA (Sweet); the Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA (Sweet); and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (Teichert)
| |
Collapse
|
23
|
Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory. J Neurosci 2017; 37:10323-10333. [PMID: 28951450 DOI: 10.1523/jneurosci.1329-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes.SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory.
Collapse
|
24
|
Scott BH, Saleem KS, Kikuchi Y, Fukushima M, Mishkin M, Saunders RC. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J Comp Neurol 2017; 525:3488-3513. [PMID: 28685822 DOI: 10.1002/cne.24283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/06/2023]
Abstract
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Kadharbatcha S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Yukiko Kikuchi
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Makoto Fukushima
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, Maryland
| |
Collapse
|
25
|
Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends Neurosci 2017; 40:328-346. [PMID: 28515011 DOI: 10.1016/j.tins.2017.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Working memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim. A variety of studies report that neurons in prefrontal, parietal, and inferotemporal association cortices show robust sustained activity encoding the location and features of memoranda during WM tasks. However, reports of WM-related sustained activity in early sensory areas are rare, and typically lack stimulus specificity. We propose that robust sustained activity that can support WM coding arises as a property of association cortices downstream from the early stages of sensory processing.
Collapse
Affiliation(s)
- Matthew L Leavitt
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Brain and Mind Institute, Department of Psychiatry, and Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
26
|
Schomers MR, Garagnani M, Pulvermüller F. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex. J Neurosci 2017; 37:3045-3055. [PMID: 28193685 PMCID: PMC5354338 DOI: 10.1523/jneurosci.2693-16.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage.SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary selection advantage.
Collapse
Affiliation(s)
- Malte R Schomers
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany,
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Max Garagnani
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany
- Centre for Robotics and Neural Systems, University of Plymouth, Plymouth PL4 8AA, United Kingdom, and
- Department of Computing, Goldsmiths, University of London, London SE14 6NW, United Kingdom
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
27
|
Huang Y, Matysiak A, Heil P, König R, Brosch M. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife 2016; 5. [PMID: 27438411 PMCID: PMC4974052 DOI: 10.7554/elife.15441] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.
Collapse
Affiliation(s)
- Ying Huang
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Artur Matysiak
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Peter Heil
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| | - Reinhard König
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Brosch
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
28
|
Plakke B, Romanski LM. Neural circuits in auditory and audiovisual memory. Brain Res 2016; 1640:278-88. [PMID: 26656069 PMCID: PMC4868791 DOI: 10.1016/j.brainres.2015.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023]
Abstract
Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- B Plakke
- University of Rochester School of Medicine & Dentistry, Department Neurobiology & Anatomy, United States.
| | - L M Romanski
- University of Rochester School of Medicine & Dentistry, Department Neurobiology & Anatomy, United States.
| |
Collapse
|
29
|
Scott BH, Mishkin M. Auditory short-term memory in the primate auditory cortex. Brain Res 2016; 1640:264-77. [PMID: 26541581 PMCID: PMC4853305 DOI: 10.1016/j.brainres.2015.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
Abstract
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Fritz JB, Malloy M, Mishkin M, Saunders RC. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices. Brain Res 2016; 1640:289-98. [PMID: 26707975 PMCID: PMC5890928 DOI: 10.1016/j.brainres.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 01/19/2023]
Abstract
While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Jonathan B Fritz
- Neural Systems Laboratory, Center for Acoustic and Auditory Research, Institute for Systems Research, University of Maryland, College Park, MD 20742, United States.
| | - Megan Malloy
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
31
|
Bigelow J, Ng CW, Poremba A. Local field potential correlates of auditory working memory in primate dorsal temporal pole. Brain Res 2015; 1640:299-313. [PMID: 26718730 DOI: 10.1016/j.brainres.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| | - Chi-Wing Ng
- Center for Neuroscience University of California, Davis, CA 95616, United States.
| | - Amy Poremba
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| |
Collapse
|
32
|
Wilsch A, Obleser J. What works in auditory working memory? A neural oscillations perspective. Brain Res 2015; 1640:193-207. [PMID: 26556773 DOI: 10.1016/j.brainres.2015.10.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022]
Abstract
Working memory is a limited resource: brains can only maintain small amounts of sensory input (memory load) over a brief period of time (memory decay). The dynamics of slow neural oscillations as recorded using magneto- and electroencephalography (M/EEG) provide a window into the neural mechanics of these limitations. Especially oscillations in the alpha range (8-13Hz) are a sensitive marker for memory load. Moreover, according to current models, the resultant working memory load is determined by the relative noise in the neural representation of maintained information. The auditory domain allows memory researchers to apply and test the concept of noise quite literally: Employing degraded stimulus acoustics increases memory load and, at the same time, allows assessing the cognitive resources required to process speech in noise in an ecologically valid and clinically relevant way. The present review first summarizes recent findings on neural oscillations, especially alpha power, and how they reflect memory load and memory decay in auditory working memory. The focus is specifically on memory load resulting from acoustic degradation. These findings are then contrasted with contextual factors that benefit neural as well as behavioral markers of memory performance, by reducing representational noise. We end on discussing the functional role of alpha power in auditory working memory and suggest extensions of the current methodological toolkit. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Anna Wilsch
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|