1
|
Gularte T, Sumida PYG, Bergamo G, Rouse GW. Description of a new Osedax (Annelida, Polychaeta, Siboglinidae) species colonizing cow bones in the South Atlantic Ocean. Zookeys 2024; 1219:215-231. [PMID: 39665071 PMCID: PMC11632350 DOI: 10.3897/zookeys.1219.134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 12/13/2024] Open
Abstract
A new species of Osedax is described here using molecular and morphological data. It was found at the depth of 550 m off the Brazilian coast through experimental deployment of cow bones. Osedaxnataliae sp. nov. is the second Osedax species from the Southwest Atlantic Ocean and had been previously reported as Osedax 'BioSuOr-4'. Phylogenetic analysis of five concatenated genetic makers (28S rDNA, Histone H3, 18S rDNA, 16S rDNA, and cytochrome c oxidase I) placed Osedaxnataliae sp. nov. within a well-supported Osedax Clade V, nested within a clade of Pacific Ocean Osedax though with poor support. The minimum interspecific COI distance between O.nataliae sp. nov. and another known Osedax was 13.92% (closest to O. 'sagami-3'). The maximum intraspecific COI diversity (uncorrected) within O.nataliae sp. nov. sampled here was 2.44% and population structure was visualized via haplotype network analysis. Morphologically, O.nataliae sp. nov. is characterized by its reddish orange crown of palps and a ventral yellowish collar on the anterior trunk where it meets the base of the crown. Osedaxnataliae sp. nov. shares features with other Clade V species, notably pinnules inserted on the outer margin of palps. Additionally, the presence of dwarf males within the tube lumen of females was documented. Further sampling and research in the Southern Hemisphere are needed to understand the diversity and biogeography of Osedax across the world's oceans.
Collapse
Affiliation(s)
- Thammy Gularte
- Biological Oceanography Department, Oceanographic Institute – University of São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, BrazilUniversity of São PauloSão PauloBrazil
| | - Paulo Y. G. Sumida
- Biological Oceanography Department, Oceanographic Institute – University of São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, BrazilUniversity of São PauloSão PauloBrazil
| | - Gilberto Bergamo
- Biological Oceanography Department, Oceanographic Institute – University of São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, BrazilUniversity of São PauloSão PauloBrazil
| | - Greg W. Rouse
- Scripps Institution of Oceanography, UC San Diego, La Jolla CA, 92093-0202, USAScripps Institution of OceanographyLa JollaUnited States of America
| |
Collapse
|
2
|
Berman GH, Hiley AS, Read GB, Rouse GW. New Species of Osedax (Siboglinidae: Annelida) from New Zealand and the Gulf of Mexico. Zootaxa 2024; 5443:337-352. [PMID: 39645908 DOI: 10.11646/zootaxa.5443.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 12/10/2024]
Abstract
Osedax is now known to be distributed around the world with more than 30 named and undescribed species. Here we report the discovery of four new species from two localities: Osedax bozoi n. sp. and Osedax craigmcclaini n. sp. from the Gulf of Mexico and Osedax estcourti n. sp. and Osedax traceyae n. sp. from off New Zealand. Osedax bozoi n. sp., Osedax estcourti n. sp., and Osedax traceyae n. sp. belong to Clade II within Osedax, one of the nude palp or apinnulate clades. Osedax craigmcclaini n. sp. belongs to the pinnulate palp Clade V. This study relies primarily on phylogenetic analysis, with some morphological analysis. Genetic data clearly show that the four new species are distinctive from their closest Osedax relatives. Two of the new species were found from less than 400 m depth, and incidences of shallower water Osedax in Clade II are shown here for the first time.
Collapse
Affiliation(s)
- Gabriella H Berman
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| | - Avery S Hiley
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| | - Geoffrey B Read
- National Institute of Water & Atmospheric Research (NIWA); 301 Evans Bay Parade; Hataitai; Wellington New Zealand.
| | - Greg W Rouse
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| |
Collapse
|
3
|
Worsaae K, Rouan A, Seaver E, Miyamoto N, Tilic E. Postembryonic development and male paedomorphosis in Osedax (Siboglinidae, Annelida). Front Neurosci 2024; 18:1369274. [PMID: 38562300 PMCID: PMC10984269 DOI: 10.3389/fnins.2024.1369274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Most species of the bone-devouring marine annelid, Osedax, display distinct sexual dimorphism with macroscopic sedentary females rooted in bones and free-living microscopic dwarf males. The paedomorphic male resembles the non-feeding metatrochophore larva in size, presence of eight pairs of chaetae, and a head ciliation potentially representing a residual prototroch. The male development may thus uniquely reiterate and validate the theoretical heterochrony process "progenesis", which suggests that an accelerated sexual maturation and early arrest of somatic growth can lead to a miniaturized and paedomorphic adult. In this study, we describe the postembryonic larval and juvenile organogenesis of Osedax japonicus to test for a potential synchronous arrest of somatic growth during male development. Five postembryonic stages could be distinguished, resembling day one to five in the larval development at 10°C: (0D) first cleavage of fertilized eggs (embryos undergo unequal spiral cleavage), (1D) pre-trochophore, with apical organ, (2D) early trochophore, + prototroch, brain, circumesophageal connectives and subesophageal commissure, (3D) trochophore, + telotroch, four ventral nerves, (4D) early metatrochophore, + protonephridia, dorsal and terminal sensory organs, (5D) metatrochophore, + two ventral paratrochs, mid-ventral nerve, posterior trunk commissure, two dorsal nerves; competent for metamorphosis. The larval development largely mirrors that of other lecithotrophic annelid larvae but does not show continuous chaetogenesis or full gut development. Additionally, O. japonicus larvae exhibit an unpaired, mid-dorsal, sensory organ. Female individuals shed their larval traits during metamorphosis and continue organogenesis (including circulatory system) and extensive growth for 2-3 weeks before developing oocytes. In contrast, males develop sperm within a day of metamorphosis and display a synchronous metamorphic arrest in neural and muscular development, retaining a large portion of larval features post metamorphosis. Our findings hereby substantiate male miniaturization in Osedax to be the outcome of an early and synchronous offset of somatic development, fitting the theoretical process "progenesis". This may be the first compelling morpho-developmental exemplification of a progenetic origin of a microscopic body plan. The presented morphological staging system will further serve as a framework for future examination of molecular patterns and pathways determining Osedax development.
Collapse
Affiliation(s)
- Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alice Rouan
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elaine Seaver
- The Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, United States
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Ekin Tilic
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
| |
Collapse
|
4
|
Berman GH, Johnson SB, Seid CA, Vrijenhoek RC, Rouse GW. Range extensions of Pacific bone-eating worms (Annelida, Siboglinidae, Osedax). Biodivers Data J 2023; 11:e102803. [PMID: 38327359 PMCID: PMC10848615 DOI: 10.3897/bdj.11.e102803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 02/09/2024] Open
Abstract
First described in 2004 off California, Osedax worms are now known from many of the world's oceans, ranging from 10 to over 4000 m in depth. Currently, little is known about species ranges, since most descriptions are from single localities. In this study, we used new sampling in the north-eastern Pacific and available GenBank data from off Japan and Brazil to report expanded ranges for five species: Osedaxfrankpressi, O.knutei, O.packardorum, O.roseus and O.talkovici. We also provided additional DNA sequences from previously reported localities for two species: Osedaxpriapus and O.randyi. To assess the distribution of each species, we used cytochrome c oxidase subunit I (COI) sequences to generate haplotype networks and assess connectivity amongst localities where sampling permitted. Osedaxfrankpressi, O.packardorum, O.priapus, O.roseus and O.talkovici all had one or more dominant COI haplotypes shared by individuals at multiple localities, suggesting high connectivity throughout some or all of their ranges. Low ΦST values amongst populations for O.packardorum, O.roseus and O.talkovici confirmed high levels of gene flow throughout their known ranges. High ΦST values for O.frankpressi between the eastern Pacific and the Brazilian Atlantic showed little gene flow, reflected by the haplotype network, which had distinct Pacific and Atlantic haplotype clusters. This study greatly expands the ranges and provides insights into the phylogeography for these nine species.
Collapse
Affiliation(s)
- Gabriella H. Berman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| | - Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, United States of AmericaMonterey Bay Aquarium Research InstituteMoss LandingUnited States of America
| | - Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| | - Robert C. Vrijenhoek
- Monterey Bay Aquarium Research Institute, Moss Landing, United States of AmericaMonterey Bay Aquarium Research InstituteMoss LandingUnited States of America
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of AmericaScripps Institution of Oceanography, University of California San DiegoLa Jolla, CAUnited States of America
| |
Collapse
|
5
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Lang AS, Gehrmann T, Cronberg N. Genetic Diversity and Population Structure in Bryophyte With Facultative Nannandry. FRONTIERS IN PLANT SCIENCE 2021; 12:517547. [PMID: 33897717 PMCID: PMC8059434 DOI: 10.3389/fpls.2021.517547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Among plants, gender dimorphism occurs in about 10% of all angiosperms and more than 50% of all moss taxa, with dwarf males (DM) found exclusively in some unisexual mosses. In this study, we explore the role of male dwarfism as a reproductive strategy in the widespread acrocarpous moss Dicranum scoparium, which has facultative male dwarfism, having both dwarf males (DMs) and normal-sized males (NMs). We retrieved 119 SNP markers from transcriptomes which were used to genotype 403 samples from 11 sites at seven localities in southern Sweden. Our aims were to compare the genetic variability and genetic structure of sexually reproducing populations at different geographic levels (cushion, site, and locality) and compare in particular the relative contribution of females, dwarf males and normal-sized males to the observed genetic diversity. The numbers of DMs differed strongly between sites, but when present, they usually outnumbered both females and NMs. Low genetic differentiation was found at locality level. Genetic differentiation was strongest between cushions for females and NMs and within cushions for DMs indicating small scale structuring and sometimes inbreeding. NMs were more clonal than either DMs or females. Genetic diversity was similar between females and DMs, but lower for NMs. Two haplotypes were shared between females and DMs and one haplotype was shared between a DM and a NM. In conclusion, our results show that DMs and NMs play different roles in reproduction, inbreeding may occur at cushion level, but gene flow is high enough to prevent substantial genetic drift.
Collapse
Affiliation(s)
| | - Thies Gehrmann
- Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Nils Cronberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Hewitt OH, Díez-Vives C, Taboada S. Microbial insights from Antarctic and Mediterranean shallow-water bone-eating worms. Polar Biol 2020. [DOI: 10.1007/s00300-020-02731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBone-eating worms of the genus Osedax (Annelida, Siboglinidae) form unique holobionts (functional entity comprising host and associated microbiota), highly adapted to inhabit bone tissue of marine vertebrates. These gutless worms have developed nutritional symbioses housing intracellular, horizontally acquired, heterotrophic bacteria hypothesised to harness nutrients from organic compounds, sequestered within the bone. Despite previous efforts, critical mechanisms mediating activity and acquisition of diverse bacterial assemblages remain unclear. Using 16S rRNA amplicon sequencing, we performed detailed taxonomic and predicted functional analyses shedding light on the microbial communities of two shallow-water Osedax species (Osedax deceptionensis and Osedax ‘mediterranea’) from contrasting habitats (Antarctic and Mediterranean Sea), in two tissue types (roots and palps). Comparative assessments between host species revealed distinct microbial assemblages whilst, within host species and body tissue, relative symbiont frequencies retained high variability. We reported relatively high abundances of microbes previously classified as primary endosymbionts, Ribotype 1 (order Oceanospirillales), and diverse likely secondary epibionts warranting further exploration as recurrent Osedax associates. Surprisingly, O. ‘mediterranea’ exhibited relatively low abundance of Oceanospirillales, but increased abundance of other potentially hydrocarbon degrading bacteria from the family Alteromonadaceae. We hypothesise the presence of functionally similar, non-Oceanospirillales primary endosymbionts within O. ‘mediterranea’. Functional metagenomic profiling (using 16S rRNA sequences) predicted broad metabolic capabilities, encompassing relatively large abundances of genes associated with amino acid metabolism. Comparative analyses between host body tissue communities highlighted several genes potentially providing critical functions to the Osedax host or that confer adaptations for intracellular life, housed within bone embedded host root tissues.
Collapse
|
8
|
Gąsiorowski L, Furu A, Hejnol A. Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males. Front Zool 2019; 16:33. [PMID: 31406495 PMCID: PMC6686465 DOI: 10.1186/s12983-019-0334-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background Monogononta is a large clade of rotifers comprised of diverse morphological forms found in a wide range of ecological habitats. Most monogonont species display cyclical parthenogenesis, where generations of asexually reproducing females are interspaced by mixis events when sexual reproduction occurs between mictic females and dwarf, haploid males. The morphology of monogonont feeding females is relatively well described, however data on male anatomy are very limited. Thus far, male musculature of only two species has been described with confocal laser scanning microscopy (CLSM) and it remains unknown how dwarfism influences the neuroanatomy of males on detailed level. Results Here, we provide a CLSM-based description of the nervous system of both sexes of Epiphanes senta, a freshwater monogonont rotifer. The general nervous system architecture is similar between males and females and shows a similar level of complexity. However, the nervous system in males is more compact and lacks a stomatogastric part. Conclusion Comparison of the neuroanatomy between male and normal-sized feeding females provides a better understanding of the nature of male dwarfism in Monogononta. We propose that dwarfism of monogonont non-feeding males is the result of a specific case of heterochrony, called “proportional dwarfism” as they, due to their inability to feed, retain a juvenile body size, but still develop a complex neural architecture comparable to adult females. Reduction of the stomatogastric nervous system in the males correlates with the loss of the entire digestive tract and associated morphological structures. Electronic supplementary material The online version of this article (10.1186/s12983-019-0334-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Anlaug Furu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| |
Collapse
|
9
|
Tonnabel J, David P, Klein EK, Pannell JR. Sex‐specific selection on plant architecture through “budget” and “direct” effects in experimental populations of the wind‐pollinated herb,
Mercurialis annua. Evolution 2019; 73:897-912. [DOI: 10.1111/evo.13714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jeanne Tonnabel
- Department of Ecology and EvolutionUniversity of Lausanne CH‐1015 Lausanne Switzerland
| | - Patrice David
- CEFE, CNRS, Univ MontpellierUniv Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | | | - John R. Pannell
- Department of Ecology and EvolutionUniversity of Lausanne CH‐1015 Lausanne Switzerland
| |
Collapse
|
10
|
Fujiwara Y, Jimi N, Sumida PYG, Kawato M, Hiroshi Kitazato. New species of bone-eating worm Osedax from the abyssal South Atlantic Ocean (Annelida, Siboglinidae). Zookeys 2019:53-69. [PMID: 30651712 PMCID: PMC6333729 DOI: 10.3897/zookeys.814.28869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/28/2018] [Indexed: 11/12/2022] Open
Abstract
A new species of bone-eating annelid, Osedaxbraziliensis sp. n., found in a sunken whale carcass at a depth of 4,204 m at the base of the São Paulo Ridge in the South Atlantic Ocean off the Brazilian coast is described. The organism was retrieved using the human-occupied vehicle Shinkai 6500 during the QUELLE 2013 expedition. This is the 26th species of the genus and the first discovery from the South Atlantic Ocean, representing the deepest record of Osedax worldwide to date. This species morphologically resembles Osedaxfrankpressi but is distinguished by the presence of a yellow bump or patch behind the prostomium and its trunk length. Molecular phylogenetic analysis using three genetic markers (COI, 16S, and 18S) showed that O.braziliensis sp. n. is distinct from all other Osedax worms reported and is a sister species of O.frankpressi.
Collapse
Affiliation(s)
- Yoshihiro Fujiwara
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naoto Jimi
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| | - Paulo Y G Sumida
- Biological Oceanography Department, Oceanographic Institute - University of São Paulo, Praça do Oceanográfico, 191 - 05508-120, São Paulo-SP, Brazil
| | - Masaru Kawato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroshi Kitazato
- Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.,School of Marine Resources and Environment, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
11
|
Nampijja M, Kizindo R, Apule B, Lule S, Muhangi L, Titman A, Elliott A, Alcock K, Lewis C. The role of the home environment in neurocognitive development of children living in extreme poverty and with frequent illnesses: a cross-sectional study. Wellcome Open Res 2018; 3:152. [PMID: 30687794 PMCID: PMC6338129 DOI: 10.12688/wellcomeopenres.14702.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The home environment is reported to contribute significantly to children’s developing cognitive skills. However, it is not yet evident whether this role prevails in the context of extreme poverty and frequent ill-health. We therefore investigated the role of the home environment in Ugandan children taking into account the frequent infections and extreme poverty in which they lived. Methods: Cognitive abilities of 163 5-year-old children were assessed. Home environments of these children, their health status and family socioeconomic status (SES) were assessed respectively using the EC-HOME, anthropometry and illnesses, and traditional SES measures. Structural equation analyses compared five models on the influence of the home environment, SES, and child health on the cognitive scores. Results: The model in which the home environment mediates the combined influence of SES and child health on cognitive performance showed a particularly good fit to the data compared with the four alternative models, i.e. those in which the HOME, SES and health independently influence cognitive performance. Conclusions: Home environments providing cognitive stimulation can enable children to overcome effects of major adverse life experiences on cognitive development.
Collapse
Affiliation(s)
- Margaret Nampijja
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Robert Kizindo
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Barbara Apule
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Swaib Lule
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Lawrence Muhangi
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Andrew Titman
- Department of Psychology, Lancaster University, Fylde College LA1 4YF, Lancaster, LA1 4YF, UK
| | - Alison Elliott
- Coinfections Programme, MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road Entebbe. P.O. Box 49, Entebbe, Uganda
| | - Katie Alcock
- Department of Psychology, Lancaster University, Fylde College LA1 4YF, Lancaster, LA1 4YF, UK
| | - Charlie Lewis
- Department of Psychology, Lancaster University, Fylde College LA1 4YF, Lancaster, LA1 4YF, UK
| |
Collapse
|
12
|
Miyamoto N, Yoshida MA, Koga H, Fujiwara Y. Genetic mechanisms of bone digestion and nutrient absorption in the bone-eating worm Osedax japonicus inferred from transcriptome and gene expression analyses. BMC Evol Biol 2017; 17:17. [PMID: 28086748 PMCID: PMC5237233 DOI: 10.1186/s12862-016-0844-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone-eating worms of the genus Osedax (Annelida, Siboglinidae) have adapted to whale fall environments by acquiring a novel characteristic called the root, which branches and penetrates into sunken bones. The worms lack a digestive tract and mouth opening, and it has been suggested that Osedax degrade vertebrate bones and uptake nutrients through acidification and secretion of enzymes from the root. Symbiotic bacteria in the root tissue may have a crucial role in the metabolism of Osedax. However, the molecular mechanisms and cells responsible for bone digestion and nutrient uptake are still unclear, and information on the metabolic interaction between Osedax and symbiotic bacteria is limited. RESULTS We compared transcriptomes from three different RNA samples from the following tissues: trunk + palps, root + ovisac, and larva + male. A Pfam domain enrichment analysis revealed that protease- and transporter-related genes were enriched in the root + ovisac specific genes compared with the total transcriptome. Through targeted gene annotation we found gene family expansions resulting in a remarkably large number of matrix metalloproteinase (mmp) genes in the Osedax compared with other invertebrates. Twelve of these Osedax mmp genes were expressed in the root epidermal cells. Genes encoding various types of transporters, including amino acid, oligopeptide, bicarbonate, and sulfate/carboxylate transporters, were also expressed in root epidermal cells. In addition, amino acid and other metabolite transporter genes were expressed in bacteriocytes. These protease and transporter genes were first expressed in root tissues at the juvenile stage, when the root starts to develop. CONCLUSIONS The expression of various proteinase and transporter genes in the root epidermis supports the theory that the root epidermal cells are responsible for bone digestion and subsequent nutrient uptake. Expression of transporter genes in the host bacteriocytes suggests the presence of metabolic interaction between Osedax and symbiotic bacteria.
Collapse
Affiliation(s)
- Norio Miyamoto
- Japan Agency for Marine-Earth Science and Techonology, Yokosuka, Kanagawa, Japan.
| | - Masa-Aki Yoshida
- National Institute of Genetics, Mishima, Shizuoka, Japan.,Postodoctral research fellow, Japanese Society for Promotion of Science, Tokyo, Japan
| | - Hiroyuki Koga
- Postodoctral research fellow, Japanese Society for Promotion of Science, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Fujiwara
- Japan Agency for Marine-Earth Science and Techonology, Yokosuka, Kanagawa, Japan
| |
Collapse
|
13
|
Li Y, Kocot KM, Whelan NV, Santos SR, Waits DS, Thornhill DJ, Halanych KM. Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods. ZOOL SCR 2016. [DOI: 10.1111/zsc.12201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| | - Kevin M. Kocot
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
- Department of Biological Sciences & Alabama Museum of Natural History The University of Alabama 35847 Tuscaloosa AL USA
| | - Nathan V. Whelan
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| | - Scott R. Santos
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| | - Damien S. Waits
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| | - Daniel J. Thornhill
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| | - Kenneth M. Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University 36830 Auburn AL USA
| |
Collapse
|
14
|
Evolution of Sulfur Binding by Hemoglobin in Siboglinidae (Annelida) with Special Reference to Bone-Eating Worms, Osedax. J Mol Evol 2016; 82:219-29. [PMID: 27100359 DOI: 10.1007/s00239-016-9739-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Most members of Siboglinidae (Annelida) harbor endosymbiotic bacteria that allow them to thrive in extreme environments such as hydrothermal vents, methane seeps, and whale bones. These symbioses are enabled by specialized hemoglobins (Hbs) that are able to bind hydrogen sulfide for transportation to their chemosynthetic endosymbionts. Sulfur-binding capabilities are hypothesized to be due to cysteine residues at key positions in both vascular and coelomic Hbs, especially in the A2 and B2 chains. Members of the genus Osedax, which live on whale bones, do not have chemosynthetic endosymbionts, but instead harbor heterotrophic bacteria capable of breaking down complex organic compounds. Although sulfur-binding capabilities are important in other siboglinids, we questioned whether Osedax retained these cysteine residues and the potential ability to bind hydrogen sulfide. To answer these questions, we used high-throughput DNA sequencing to isolate and analyze Hb sequences from 8 siboglinid lineages. For Osedax mucofloris, we recovered three (A1, A2, and B1) Hb chains, but the B2 chain was not identified. Hb sequences from gene subfamilies A2 and B2 were translated and aligned to determine conservation of cysteine residues at previously identified key positions. Hb linker sequences were also compared to determine similarity between Osedax and siboglinids/sulfur-tolerant annelids. For O. mucofloris, our results found conserved cysteines within the Hb A2 chain. This finding suggests that Hb in O. mucofloris has retained some capacity to bind hydrogen sulfide, likely due to the need to detoxify this chemical compound that is abundantly produced within whale bones.
Collapse
|
15
|
Worsaae K, Rimskaya-Korsakova NN, Rouse GW. Neural reconstruction of bone-eating Osedax spp. (Annelida) and evolution of the siboglinid nervous system. BMC Evol Biol 2016; 16:83. [PMID: 27080383 PMCID: PMC4832464 DOI: 10.1186/s12862-016-0639-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female's trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids. RESULTS The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments. CONCLUSIONS Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group.
Collapse
Affiliation(s)
- Katrine Worsaae
- />Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark
| | | | - Greg W. Rouse
- />Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0202 USA
| |
Collapse
|
16
|
Taboada S, Riesgo A, Bas M, Arnedo MA, Cristobo J, Rouse GW, Avila C. Bone-Eating Worms Spread: Insights into Shallow-Water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean Waters. PLoS One 2015; 10:e0140341. [PMID: 26581105 PMCID: PMC4651350 DOI: 10.1371/journal.pone.0140341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Osedax, commonly known as bone-eating worms, are unusual marine annelids belonging to Siboglinidae and represent a remarkable example of evolutionary adaptation to a specialized habitat, namely sunken vertebrate bones. Usually, females of these animals live anchored inside bone owing to a ramified root system from an ovisac, and obtain nutrition via symbiosis with Oceanospirillales gamma-proteobacteria. Since their discovery, 26 Osedax operational taxonomic units (OTUs) have been reported from a wide bathymetric range in the Pacific, the North Atlantic, and the Southern Ocean. Using experimentally deployed and naturally occurring bones we report here the presence of Osedax deceptionensis at very shallow-waters in Deception Island (type locality; Antarctica) and at moderate depths near South Georgia Island (Subantarctic). We present molecular evidence in a new phylogenetic analysis based on five concatenated genes (28S rDNA, Histone H3, 18S rDNA, 16S rDNA, and cytochrome c oxidase I-COI-), using Maximum Likelihood and Bayesian inference, supporting the placement of O. deceptionensis as a separate lineage (Clade VI) although its position still remains uncertain. This phylogenetic analysis includes a new unnamed species (O. 'mediterranea') recently discovered in the shallow-water Mediterranean Sea belonging to Osedax Clade I. A timeframe of the diversification of Osedax inferred using a Bayesian framework further suggests that Osedax diverged from other siboglinids during the Middle Cretaceous (ca. 108 Ma) and also indicates that the most recent common ancestor of Osedax extant lineages dates to the Late Cretaceous (ca. 74.8 Ma) concomitantly with large marine reptiles and teleost fishes. We also provide a phylogenetic framework that assigns newly-sequenced Osedax endosymbionts of O. deceptionensis and O. 'mediterranea' to ribospecies Rs1. Molecular analysis for O. deceptionensis also includes a COI-based haplotype network indicating that individuals from Deception Island and the South Georgia Island (ca. 1,600 km apart) are clearly the same species, confirming the well-developed dispersal capabilities reported in other congeneric taxa. In addition, we include a complete description of living features and morphological characters (including scanning and transmission electron microscopy) of O. deceptionensis, a species originally described from a single mature female, and compare it to information available for other congeneric OTUs.
Collapse
Affiliation(s)
- Sergi Taboada
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | - Ana Riesgo
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Maria Bas
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel A. Arnedo
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Javier Cristobo
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografía (IEO), Gijón, Spain
| | - Greg W. Rouse
- Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Conxita Avila
- Department of Animal Biology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Biodiversity Research Institute (IrBIO), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida). Mol Phylogenet Evol 2015; 85:221-9. [DOI: 10.1016/j.ympev.2015.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/06/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022]
|
18
|
Evolution: They Never Come Back, or Do They? Curr Biol 2015; 25:R62-R64. [DOI: 10.1016/j.cub.2014.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|