1
|
Lynn MB, Geddes SD, Chahrour M, Maillé S, Caya-Bissonnette L, Harkin E, Harvey-Girard É, Haj-Dahmane S, Naud R, Béïque JC. Nonlinear recurrent inhibition through facilitating serotonin release in the raphe. Nat Neurosci 2025:10.1038/s41593-025-01912-7. [PMID: 40175691 DOI: 10.1038/s41593-025-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
Serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) receive a constellation of long-range inputs, yet guiding principles of local circuit organization and underlying computations in this nucleus are largely unknown. Using inputs from the lateral habenula to interrogate the processing features of the mouse DRN, we uncovered 5-HT1A receptor-mediated recurrent connections between 5-HT neurons, refuting classical theories of autoinhibition. Cellular electrophysiology and imaging of a genetically encoded 5-HT sensor revealed that these recurrent inhibitory connections spanned the raphe, were slow, stochastic, strongly facilitating and gated spike output. These features collectively conveyed highly nonlinear dynamics to this network, generating excitation-driven inhibition and winner-take-all computations. In vivo optogenetic activation of lateral habenula inputs to DRN, at frequencies where these computations are predicted to ignite, transiently disrupted expression of a reward-conditioned response in an auditory conditioning task. Together, these data identify a core computation supported by an unsuspected slow serotonergic recurrent inhibitory network.
Collapse
Affiliation(s)
- Michael B Lynn
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sean D Geddes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohamad Chahrour
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Maillé
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Léa Caya-Bissonnette
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emerson Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Érik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2025; 50:596-604. [PMID: 39300273 PMCID: PMC11735851 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
3
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
4
|
Iigaya K, Larsen T, Fong T, O'Doherty JP. Computational and Neural Evidence for Altered Fast and Slow Learning from Losses in Problem Gambling. J Neurosci 2025; 45:e0080242024. [PMID: 39557579 DOI: 10.1523/jneurosci.0080-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Learning occurs across multiple timescales, with fast learning crucial for adapting to sudden environmental changes, and slow learning beneficial for extracting robust knowledge from multiple events. Here, we asked if miscalibrated fast vs slow learning can lead to maladaptive decision-making in individuals with problem gambling. We recruited participants with problem gambling (PG; N = 20; 9 female and 11 male) and a recreational gambling control group without any symptoms associated with PG (N = 20; 10 female and 10 male) from the community in Los Angeles, CA. Participants performed a decision-making task involving reward-learning and loss-avoidance while being scanned with fMRI. Using computational model fitting, we found that individuals in the PG group showed evidence for an excessive dependence on slow timescales and a reduced reliance on fast timescales during learning. fMRI data implicated the putamen, an area associated with habit, and medial prefrontal cortex (PFC) in slow loss-value encoding, with significantly more robust encoding in medial PFC in the PG group compared to controls. The PG group also exhibited stronger loss prediction error encoding in the insular cortex. These findings suggest that individuals with PG have an impaired ability to adjust their predictions following losses, manifested by a stronger influence of slow value learning. This impairment could contribute to the behavioral inflexibility of problem gamblers, particularly the persistence in gambling behavior typically observed in those individuals after incurring loss outcomes.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- Center for Theoretical Neuroscience and Zuckerman Institute, Columbia University, New York, New York 10027
- New York State Psychiatric Institute, New York, New York 10032
| | - Tobias Larsen
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| | - Timothy Fong
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90024
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
5
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
6
|
Taira M, Miyazaki KW, Miyazaki K, Chen J, Okitsu-Sakurayama S, Chaudhary A, Nishio M, Miyake T, Yamanaka A, Tanaka KF, Doya K. The differential effect of optogenetic serotonergic manipulation on sustained motor actions and waiting for future rewards in mice. Front Neurosci 2024; 18:1433061. [PMID: 39385850 PMCID: PMC11461476 DOI: 10.3389/fnins.2024.1433061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Serotonin is an essential neuromodulator that affects behavioral and cognitive functions. Previous studies have shown that activation of serotonergic neurons in the dorsal raphe nucleus (DRN) promotes patience to wait for future rewards. However, it is still unclear whether serotonergic neurons also regulate persistence to act for future rewards. Here we used optogenetic activation and inhibition of DRN serotonergic neurons to examine their effects on sustained motor actions for future rewards. We trained mice to perform waiting and repeated lever-pressing tasks with variable reward delays and tested effects of optogenetic activation and inhibition of DRN serotonergic neurons on task performance. Interestingly, in the lever-pressing task, mice tolerated longer delays as they repeatedly pressed a lever than in the waiting task, suggesting that lever-pressing actions may not simply be costly, but may also be subjectively rewarding. Optogenetic activation of DRN serotonergic neurons prolonged waiting duration in the waiting task, consistent with previous studies. However, its effect on lever presses was nuanced, and was detected only by focusing on the period before premature reward check and by subtracting the trends within and across sessions using generalized linear model. While optogenetic inhibition decreased waiting, it did not affect lever pressing time or numbers. These results revealed that the necessity of motor actions may increase motivation for delayed rewards and that DRN serotonergic neurons more significantly promote waiting rather than persistent motor actions for future rewards.
Collapse
Affiliation(s)
- Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Kayoko W. Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuhiko Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jianning Chen
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shiho Okitsu-Sakurayama
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anupama Chaudhary
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mika Nishio
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, Tohoku University, Sendai, Japan
| | - Tsukasa Miyake
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
Bukwich M, Campbell MG, Zoltowski D, Kingsbury L, Tomov MS, Stern J, Kim HR, Drugowitsch J, Linderman SW, Uchida N. Competitive integration of time and reward explains value-sensitive foraging decisions and frontal cortex ramping dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556267. [PMID: 37732217 PMCID: PMC10508756 DOI: 10.1101/2023.09.05.556267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Patch foraging presents a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Mouse behavior could be explained by a model integrating time and rewards antagonistically, scaled by a latent patience state. The model accounted for deviations from predictions of optimal foraging theory. Neural recordings throughout frontal areas revealed encoding of decision variables from the integrator model, most robustly in frontal cortex. Regression modeling followed by unsupervised clustering identified a subset of ramping neurons. These neurons' firing rates ramped up gradually (up to tens of seconds), were inhibited by rewards, and were better described as a continuous ramp than a discrete stepping process. Together, these results identify integration via frontal cortex ramping dynamics as a candidate mechanism for solving patch foraging problems.
Collapse
Affiliation(s)
- Michael Bukwich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Current address: Sainsbury Wellcome Centre, University College London, London, W1T 4JG, UK
| | - Malcolm G Campbell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - David Zoltowski
- Department of Statistics, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Lyle Kingsbury
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - Momchil S Tomov
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Current address: Motional AD LLC, Boston, MA 02210
| | - Joshua Stern
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| | - HyungGoo R Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
- Center for Brain Science, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
8
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
9
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
10
|
Koloski MF, Terry A, Lee N, Ramanathan DS. Methylphenidate, but not citalopram, decreases impulsive choice in rats performing a temporal discounting task. Front Psychiatry 2024; 15:1385502. [PMID: 38779546 PMCID: PMC11109432 DOI: 10.3389/fpsyt.2024.1385502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Drugs targeting monoamine systems remain the most common treatment for disorders with impulse control impairments. There is a body of literature suggesting that drugs affecting serotonin reuptake and dopamine reuptake can modulate distinct aspects of impulsivity - though such tests are often performed using distinct behavioral tasks prohibiting easy comparisons. Methods Here, we directly compare pharmacologic agents that affect dopamine (methylphenidate) vs serotonin (citalopram) manipulations on choice impulsivity in a temporal discounting task where rats could choose between a small, immediate reward or a large reward delayed at either 2 or 10s. In control conditions, rats preferred the large reward at a small (2s) delay and discounted the large reward at a long (10s) delay. Results Methylphenidate, a dopamine transport inhibitor that blocks reuptake of dopamine, dose-dependently increased large reward preference in the long delay (10s) block. Citalopram, a selective serotonin reuptake inhibitor, had no effect on temporal discounting behavior. Impulsive behavior on the temporal discounting task was at least partially mediated by the nucleus accumbens shell. Bilateral lesions to the nucleus accumbens shell reduced choice impulsivity during the long delay (10s) block. Following lesions, methylphenidate did not impact impulsivity. Discussion Our results suggest that striatal dopaminergic systems modulate choice impulsivity via actions within the nucleus accumbens shell, whereas serotonin systems may regulate different aspects of behavioral inhibition/impulsivity.
Collapse
Affiliation(s)
- Miranda F. Koloski
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Department of Psychiatry, University of California-San Diego, San Diego, CA, United States
| | - Alyssa Terry
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
| | - Noelle Lee
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
| | - Dhakshin S. Ramanathan
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Department of Psychiatry, University of California-San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Mitsui K, Takahashi A. Aggression modulator: Understanding the multifaceted role of the dorsal raphe nucleus. Bioessays 2024; 46:e2300213. [PMID: 38314963 DOI: 10.1002/bies.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.
Collapse
Affiliation(s)
- Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aki Takahashi
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Gutierrez-Castellanos N, Sarra D, Godinho BS, Mainen ZF. Maturation of cortical input to dorsal raphe nucleus increases behavioral persistence in mice. eLife 2024; 13:e93485. [PMID: 38477558 PMCID: PMC10994666 DOI: 10.7554/elife.93485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.
Collapse
Affiliation(s)
| | - Dario Sarra
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Beatriz S Godinho
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
13
|
Colas JT, O’Doherty JP, Grafton ST. Active reinforcement learning versus action bias and hysteresis: control with a mixture of experts and nonexperts. PLoS Comput Biol 2024; 20:e1011950. [PMID: 38552190 PMCID: PMC10980507 DOI: 10.1371/journal.pcbi.1011950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Active reinforcement learning enables dynamic prediction and control, where one should not only maximize rewards but also minimize costs such as of inference, decisions, actions, and time. For an embodied agent such as a human, decisions are also shaped by physical aspects of actions. Beyond the effects of reward outcomes on learning processes, to what extent can modeling of behavior in a reinforcement-learning task be complicated by other sources of variance in sequential action choices? What of the effects of action bias (for actions per se) and action hysteresis determined by the history of actions chosen previously? The present study addressed these questions with incremental assembly of models for the sequential choice data from a task with hierarchical structure for additional complexity in learning. With systematic comparison and falsification of computational models, human choices were tested for signatures of parallel modules representing not only an enhanced form of generalized reinforcement learning but also action bias and hysteresis. We found evidence for substantial differences in bias and hysteresis across participants-even comparable in magnitude to the individual differences in learning. Individuals who did not learn well revealed the greatest biases, but those who did learn accurately were also significantly biased. The direction of hysteresis varied among individuals as repetition or, more commonly, alternation biases persisting from multiple previous actions. Considering that these actions were button presses with trivial motor demands, the idiosyncratic forces biasing sequences of action choices were robust enough to suggest ubiquity across individuals and across tasks requiring various actions. In light of how bias and hysteresis function as a heuristic for efficient control that adapts to uncertainty or low motivation by minimizing the cost of effort, these phenomena broaden the consilient theory of a mixture of experts to encompass a mixture of expert and nonexpert controllers of behavior.
Collapse
Affiliation(s)
- Jaron T. Colas
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, United States of America
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - John P. O’Doherty
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - Scott T. Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
14
|
Costello H, Husain M, Roiser JP. Apathy and Motivation: Biological Basis and Drug Treatment. Annu Rev Pharmacol Toxicol 2024; 64:313-338. [PMID: 37585659 DOI: 10.1146/annurev-pharmtox-022423-014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
15
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
16
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Martianova E, Sadretdinova R, Pageau A, Pausic N, Gentiletti TD, Leblanc D, Rivera AM, Labonté B, Proulx CD. Hypothalamic neuronal outputs transmit sensorimotor signals at the onset of locomotor initiation. iScience 2023; 26:108328. [PMID: 38026162 PMCID: PMC10665817 DOI: 10.1016/j.isci.2023.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The lateral hypothalamus (LH) plays a critical role in sensory integration to organize behavior responses. However, how projection-defined LH neuronal outputs dynamically transmit sensorimotor signals to major downstream targets to organize behavior is unknown. Here, using multi-fiber photometry, we show that three major LH neuronal outputs projecting to the dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and lateral habenula (LHb) exhibit significant coherent activity in mice engaging sensory-evoked or self-initiated motor responses. Increased activity at LH axon terminals precedes movement initiation during active coping responses and the activity of serotonin neurons and dopamine neurons. The optogenetic activation of LH axon terminals in either of the DRN, VTA, or LHb was sufficient to increase motor initiation but had different effects on passive avoidance and sucrose consumption. Our findings support the complementary role of three projection-defined LH neuronal outputs in the transmission of sensorimotor signals to major downstream regions at movement onset.
Collapse
Affiliation(s)
- Ekaterina Martianova
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Renata Sadretdinova
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Alicia Pageau
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Nikola Pausic
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Tommy Doucet Gentiletti
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Danahé Leblanc
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Arturo Marroquin Rivera
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Benoît Labonté
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Christophe D. Proulx
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
20
|
Michely J, Martin IM, Dolan RJ, Hauser TU. Boosting Serotonin Increases Information Gathering by Reducing Subjective Cognitive Costs. J Neurosci 2023; 43:5848-5855. [PMID: 37524494 PMCID: PMC10423044 DOI: 10.1523/jneurosci.1416-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/02/2023] Open
Abstract
Serotonin is implicated in the valuation of aversive costs, such as delay or physical effort. However, its role in governing sensitivity to cognitive effort, for example, deliberation costs during information gathering, is unclear. We show that treatment with a serotonergic antidepressant in healthy human individuals of either sex enhances a willingness to gather information when trying to maximize reward. Using computational modeling, we show this arises from a diminished sensitivity to subjective deliberation costs during the sampling process. This result is consistent with the notion that serotonin alleviates sensitivity to aversive costs in a domain-general fashion, with implications for its potential contribution to a positive impact on motivational deficits in psychiatric disorders.SIGNIFICANCE STATEMENT Gathering information about the world is essential for successfully navigating it. However, sampling information is costly, and we need to balance between gathering too little and too much information. The neurocomputational mechanisms underlying this arbitration between a putative gain, such as reward, and the associated costs, such as allocation of cognitive resources, remain unclear. In this study, we show that week-long daily treatment with a serotonergic antidepressant enhances a willingness to gather information when trying to maximize reward. Computational modeling indicates this arises from a reduced perception of aversive costs, rendering information gathering less cognitively effortful. This finding points to a candidate mechanism by which serotonergic treatment might help alleviate motivational deficits in a range of mental illnesses.
Collapse
Affiliation(s)
- Jochen Michely
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117 Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Charité Clinician Scientist Program, Berlin, 10117 Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
| | - Ingrid M Martin
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Center for Mental Health (DZPG)
| |
Collapse
|
21
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
22
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
23
|
Patel AM, Kawaguchi K, Seillier L, Nienborg H. Serotonergic modulation of local network processing in V1 mirrors previously reported signatures of local network modulation by spatial attention. Eur J Neurosci 2023; 57:1368-1382. [PMID: 36878879 PMCID: PMC11610500 DOI: 10.1111/ejn.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sensory processing is influenced by neuromodulators such as serotonin, thought to relay behavioural state. Recent work has shown that the modulatory effect of serotonin itself differs with the animal's behavioural state. In primates, including humans, the serotonin system is anatomically important in the primary visual cortex (V1). We previously reported that in awake fixating macaques, serotonin reduces the spiking activity by decreasing response gain in V1. But the effect of serotonin on the local network is unknown. Here, we simultaneously recorded single-unit activity and local field potentials (LFPs) while iontophoretically applying serotonin in V1 of alert monkeys fixating on a video screen for juice rewards. The reduction in spiking response we observed previously is the opposite of the known increase of spiking activity with spatial attention. Conversely, in the local network (LFP), the application of serotonin resulted in changes mirroring the local network effects of previous reports in macaques directing spatial attention to the receptive field. It reduced the LFP power and the spike-field coherence, and the LFP became less predictive of spiking activity, consistent with reduced functional connectivity. We speculate that together, these effects may reflect the sensory side of a serotonergic contribution to quiet vigilance: The lower gain reduces the salience of stimuli to suppress an orienting reflex to novel stimuli, whereas at the network level, visual processing is in a state comparable to that of spatial attention.
Collapse
Affiliation(s)
- Aashay M. Patel
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Katsuhisa Kawaguchi
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Lenka Seillier
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| |
Collapse
|
24
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
25
|
Eckard ML, Welle K, Sobolewski M, Cory-Slechta DA. A behavioral timing intervention upregulates striatal serotonergic markers and reduces impulsive action in adult male mice. Behav Brain Res 2023; 440:114267. [PMID: 36539165 PMCID: PMC9839656 DOI: 10.1016/j.bbr.2022.114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Many studies support the hypothesis that time-based interventions reduce impulsive behavior in rodents. However, few studies have directly assessed 1) how such interventions affect impulsive action rather than impulsive choice, 2) if intervention effects differ by sex, and 3) how time-based interventions affect neurochemistry in regions mediating decision-making and reward. Thus, we assessed how a fixed-interval (FI) intervention initiated during late adolescence and extending into adulthood affected dopaminergic and serotonergic analytes in the frontal cortex and striatum and subsequent impulsive action in adult male and female mice. Beginning on postnatal day (PND) 45, mice were either trained on a progressive series of FI schedules (FI 20, 40, & 60 s) or remained in the home cage. Following the intervention, increases in striatal serotonergic analytes were found in FI-exposed males and females (n = 8/sex/group) with few changes found in the frontal cortex. Impulsive action was assessed in the remaining mice (n = 10/sex/group) using a fixed-ratio waiting-for-reward (FR-wait) task in which completion of an FR-25 component initiated a "free" pellet component in which pellets were delivered at increasing intervals according to a fixed delay increment that varied across sessions. Responses reset the additive delay and initiated a new FR-25 component. FI-exposed males, but not females, showed fewer delay resets and no-wait resets relative to control mice. Importantly, FI-exposure did not affect discrimination reversal performance in either sex. These data suggest that time-based interventions may reduce impulsive action in addition to impulsive choice perhaps with increased male sensitivity. Additionally, time-based interventions appear to operate through striatal serotonergic augmentation.
Collapse
Affiliation(s)
- M L Eckard
- Department of Psychology, Radford University, Radford, VA, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
26
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Harkin EF, Lynn MB, Payeur A, Boucher JF, Caya-Bissonnette L, Cyr D, Stewart C, Longtin A, Naud R, Béïque JC. Temporal derivative computation in the dorsal raphe network revealed by an experimentally driven augmented integrate-and-fire modeling framework. eLife 2023; 12:72951. [PMID: 36655738 PMCID: PMC9977298 DOI: 10.7554/elife.72951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.
Collapse
Affiliation(s)
- Emerson F Harkin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Michael B Lynn
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Alexandre Payeur
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-François Boucher
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Léa Caya-Bissonnette
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Dominic Cyr
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Chloe Stewart
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - André Longtin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Richard Naud
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
28
|
Bari BA, Gershman SJ. Undermatching Is a Consequence of Policy Compression. J Neurosci 2023; 43:447-457. [PMID: 36639891 PMCID: PMC9864556 DOI: 10.1523/jneurosci.1003-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The matching law describes the tendency of agents to match the ratio of choices allocated to the ratio of rewards received when choosing among multiple options (Herrnstein, 1961). Perfect matching, however, is infrequently observed. Instead, agents tend to undermatch or bias choices toward the poorer option. Overmatching, or the tendency to bias choices toward the richer option, is rarely observed. Despite the ubiquity of undermatching, it has received an inadequate normative justification. Here, we assume agents not only seek to maximize reward, but also seek to minimize cognitive cost, which we formalize as policy complexity (the mutual information between actions and states of the environment). Policy complexity measures the extent to which the policy of an agent is state dependent. Our theory states that capacity-constrained agents (i.e., agents that must compress their policies to reduce complexity) can only undermatch or perfectly match, but not overmatch, consistent with the empirical evidence. Moreover, using mouse behavioral data (male), we validate a novel prediction about which task conditions exaggerate undermatching. Finally, in patients with Parkinson's disease (male and female), we argue that a reduction in undermatching with higher dopamine levels is consistent with an increased policy complexity.SIGNIFICANCE STATEMENT The matching law describes the tendency of agents to match the ratio of choices allocated to different options to the ratio of reward received. For example, if option a yields twice as much reward as option b, matching states that agents will choose option a twice as much. However, agents typically undermatch: they choose the poorer option more frequently than expected. Here, we assume that agents seek to simultaneously maximize reward and minimize the complexity of their action policies. We show that this theory explains when and why undermatching occurs. Neurally, we show that policy complexity, and by extension undermatching, is controlled by tonic dopamine, consistent with other evidence that dopamine plays an important role in cognitive resource allocation.
Collapse
Affiliation(s)
- Bilal A Bari
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
29
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Chen H, Dong G, Li K. Overview on brain function enhancement of Internet addicts through exercise intervention: Based on reward-execution-decision cycle. Front Psychiatry 2023; 14:1094583. [PMID: 36816421 PMCID: PMC9933907 DOI: 10.3389/fpsyt.2023.1094583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Internet addiction (IA) has become an impulse control disorder included in the category of psychiatric disorders. The IA trend significantly increased after the outbreak of the new crown epidemic. IA damages some brain functions in humans. Emerging evidence suggests that exercise exerts beneficial effects on the brain function and cognitive level damaged by IA. This work reviews the neurobiological mechanisms of IA and describes the brain function impairment by IA from three systems: reward, execution, and decision-making. Furthermore, we sort out the research related to exercise intervention on IA and its effect on improving brain function. The internal and external factors that produce IA must be considered when summarizing movement interventions from a behavioral perspective. We can design exercise prescriptions based on exercise interests and achieve the goal of quitting IA. This work explores the possible mechanisms of exercise to improve IA through systematic analysis. Furthermore, this work provides research directions for the future targeted design of exercise prescriptions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Sports, Quzhou University, Quzhou, China.,Department of Graduate School of Education, Shandong Sport University, Jinan, China
| | - Guijun Dong
- Department of Sports, Quzhou University, Quzhou, China.,Department of Graduate School of Education, Shandong Sport University, Jinan, China
| | - Kefeng Li
- Department of Medicine, Quzhou College of Technology, Quzhou, China
| |
Collapse
|
31
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
32
|
Mazzucato L. Neural mechanisms underlying the temporal organization of naturalistic animal behavior. eLife 2022; 11:e76577. [PMID: 35792884 PMCID: PMC9259028 DOI: 10.7554/elife.76577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Naturalistic animal behavior exhibits a strikingly complex organization in the temporal domain, with variability arising from at least three sources: hierarchical, contextual, and stochastic. What neural mechanisms and computational principles underlie such intricate temporal features? In this review, we provide a critical assessment of the existing behavioral and neurophysiological evidence for these sources of temporal variability in naturalistic behavior. Recent research converges on an emergent mechanistic theory of temporal variability based on attractor neural networks and metastable dynamics, arising via coordinated interactions between mesoscopic neural circuits. We highlight the crucial role played by structural heterogeneities as well as noise from mesoscopic feedback loops in regulating flexible behavior. We assess the shortcomings and missing links in the current theoretical and experimental literature and propose new directions of investigation to fill these gaps.
Collapse
Affiliation(s)
- Luca Mazzucato
- Institute of Neuroscience, Departments of Biology, Mathematics and Physics, University of OregonEugeneUnited States
| |
Collapse
|
33
|
Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022; 16:791749. [PMID: 35250501 PMCID: PMC8892181 DOI: 10.3389/fnbeh.2022.791749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit. From this perspective, this review focuses on impulse control as a competition over behavioral output between an initially learned response-reward outcome association, and a subsequently acquired opposing inhibitory association. Our goal is to present a synthesis of research from humans and animal models that supports this dual-systems approach to understanding the behavioral and neural substrates that contribute to impulsivity, with a focus on the neuromodulatory role of serotonin. We review evidence for the role of serotonin signaling in mediating the balance of the "drive" and "brake" circuits. Additionally, we consider parallels of these competing instrumental systems in impulsivity within classical conditioning processes (e.g., extinction) in order to point us to potential behavioral and neural mechanisms that may modulate the competing instrumental associations. Finally, we consider how the balance of these competing associations might contribute to, or be extracted from, our experimental assessments of impulsivity. A careful understanding of the underlying behavioral and circuit level contributions to impulsivity is important for understanding the pathogenesis of increased impulsivity present in a number of psychiatric disorders. Pathological levels of impulsivity in such disorders are likely subserved by deficits in the balance of motivational and inhibitory processes.
Collapse
Affiliation(s)
| | | | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
34
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
35
|
Khalighinejad N, Manohar S, Husain M, Rushworth MFS. Complementary roles of serotonergic and cholinergic systems in decisions about when to act. Curr Biol 2022; 32:1150-1162.e7. [PMID: 35150603 PMCID: PMC8926843 DOI: 10.1016/j.cub.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial’s value was less than the environment’s average value. Recordings of brain activity with fMRI revealed that activity in dorsal raphe nucleus (DRN)—a key source of serotonin (5-HT)—tracked average value of the environment. By contrast, activity in the basal forebrain (BF)—an important source of acetylcholine (ACh)—was related to decision time to act as a function of immediate and recent past context. Interactions between DRN and BF and the anterior cingulate cortex (ACC), another region with action initiation-related activity, occurred as a function of the decision time to act. Next, we performed two psychopharmacological studies. Manipulating systemic 5-HT by citalopram prolonged the time macaques waited to respond for a given opportunity. This effect was more evident during blocks with long inter-trial intervals (ITIs) where good opportunities were sparse. Manipulating systemic acetylcholine (ACh) by rivastigmine reduced the time macaques waited to respond given the immediate and recent past context, a pattern opposite to the effect observed with 5-HT. These findings suggest complementary roles for serotonin/DRN and acetylcholine/BF in decisions about when to initiate an action. Both immediate context and wider environment influence decisions about when to act DRN and 5-HT mediate the influence of wider environment BF and ACh mediate the influence of immediate context
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol 2022; 32:586-599.e7. [PMID: 34936883 PMCID: PMC8825708 DOI: 10.1016/j.cub.2021.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions should be slow in stable environments, but accelerate when that environment changes. Recognizing stability and detecting change are difficult in environments with noisy relationships between actions and outcomes. Under these conditions, theories propose that uncertainty can be used to modulate learning rates ("meta-learning"). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe serotonin neurons tracked both types of uncertainty in the foraging task as well as in a dynamic Pavlovian task. Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron activity, learning, and decision making.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Bilal A Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Principal Neurons and Interneurons in the Anterior Piriform Cortex. Front Neuroanat 2022; 16:821695. [PMID: 35221934 PMCID: PMC8864633 DOI: 10.3389/fnana.2022.821695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
- “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Magor L. Lőrincz,
| |
Collapse
|
38
|
Härmson O, Grima LL, Panayi MC, Husain M, Walton ME. 5-HT 2C receptor perturbation has bidirectional influence over instrumental vigour and restraint. Psychopharmacology (Berl) 2022; 239:123-140. [PMID: 34762147 PMCID: PMC8770415 DOI: 10.1007/s00213-021-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 10/25/2022]
Abstract
The serotonin (5-HT) system, particularly the 5-HT2C receptor, has consistently been implicated in behavioural control. However, while some studies have focused on the role 5-HT2C receptors play in regulating motivation to work for reward, others have highlighted its importance in response restraint. To date, it is unclear how 5-HT transmission at this receptor regulates the balance of response invigoration and restraint in anticipation of future reward. In addition, it remains to be established how 5-HT2C receptors gate the influence of internal versus cue-driven processes over reward-guided actions. To elucidate these issues, we investigated the effects of administering the 5-HT2C receptor antagonist SB242084, both systemically and directly into the nucleus accumbens core (NAcC), in rats performing a Go/No-Go task for small or large rewards. The results were compared to the administration of d-amphetamine into the NAcC, which has previously been shown to promote behavioural activation. Systemic perturbation of 5-HT2C receptors-but crucially not intra-NAcC infusions-consistently boosted rats' performance and instrumental vigour on Go trials when they were required to act. Concomitantly, systemic administration also reduced their ability to withhold responding for rewards on No-Go trials, particularly late in the holding period. Notably, these effects were often apparent only when the reward on offer was small. By contrast, inducing a hyperdopaminergic state in the NAcC with d-amphetamine strongly impaired response restraint on No-Go trials both early and late in the holding period, as well as speeding action initiation. Together, these findings suggest that 5-HT2C receptor transmission, outside the NAcC, shapes the vigour of ongoing goal-directed action as well as the likelihood of responding as a function of expected reward.
Collapse
Affiliation(s)
- Oliver Härmson
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
| | - Laura L Grima
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| | - Marios C Panayi
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- National Institute On Drug Abuse, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Baltimore, MD, 21224, USA
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK.
| |
Collapse
|
39
|
Role of brain serotonin in age-related decline in physical activity in mice. Proc Nutr Soc 2022. [DOI: 10.1017/s0029665122000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Trepka E, Spitmaan M, Bari BA, Costa VD, Cohen JY, Soltani A. Entropy-based metrics for predicting choice behavior based on local response to reward. Nat Commun 2021; 12:6567. [PMID: 34772943 PMCID: PMC8590026 DOI: 10.1038/s41467-021-26784-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
For decades, behavioral scientists have used the matching law to quantify how animals distribute their choices between multiple options in response to reinforcement they receive. More recently, many reinforcement learning (RL) models have been developed to explain choice by integrating reward feedback over time. Despite reasonable success of RL models in capturing choice on a trial-by-trial basis, these models cannot capture variability in matching behavior. To address this, we developed metrics based on information theory and applied them to choice data from dynamic learning tasks in mice and monkeys. We found that a single entropy-based metric can explain 50% and 41% of variance in matching in mice and monkeys, respectively. We then used limitations of existing RL models in capturing entropy-based metrics to construct more accurate models of choice. Together, our entropy-based metrics provide a model-free tool to predict adaptive choice behavior and reveal underlying neural mechanisms.
Collapse
Affiliation(s)
- Ethan Trepka
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Mehran Spitmaan
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Bilal A Bari
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent D Costa
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
41
|
Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021; 44:946-960. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.
Collapse
Affiliation(s)
- Varun M Bhave
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
42
|
Abstract
Identical physical inputs do not always evoke identical percepts. To investigate the role of stimulus history in tactile perception, we designed a task in which rats had to judge each vibrissal vibration, in a long series, as strong or weak depending on its mean speed. After a low-speed stimulus (trial n - 1), rats were more likely to report the next stimulus (trial n) as strong, and after a high-speed stimulus, they were more likely to report the next stimulus as weak, a repulsive effect that did not depend on choice or reward on trial n - 1. This effect could be tracked over several preceding trials (i.e., n - 2 and earlier) and was characterized by an exponential decay function, reflecting a trial-by-trial incorporation of sensory history. Surprisingly, the influence of trial n - 1 strengthened as the time interval between n - 1 and n grew. Human subjects receiving fingertip vibrations showed these same key findings. We are able to account for the repulsive stimulus history effect, and its detailed time scale, through a single-parameter model, wherein each new stimulus gradually updates the subject's decision criterion. This model points to mechanisms underlying how the past affects the ongoing subjective experience.
Collapse
|
43
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
44
|
Masilamoni GJ, Weinkle A, Papa SM, Smith Y. Cortical Serotonergic and Catecholaminergic Denervation in MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 32:1804-1822. [PMID: 34519330 DOI: 10.1093/cercor/bhab313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/14/2022] Open
Abstract
Decreased cortical serotonergic and catecholaminergic innervation of the frontal cortex has been reported at early stages of Parkinson's disease (PD). However, the limited availability of animal models that exhibit these pathological features has hampered our understanding of the functional significance of these changes during the course of the disease. In the present study, we assessed longitudinal changes in cortical serotonin and catecholamine innervation in motor-symptomatic and asymptomatic monkeys chronically treated with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Densitometry and unbiased stereological techniques were used to quantify changes in serotonin and tyrosine hydroxylase (TH) immunoreactivity in frontal cortices of 3 control monkeys and 3 groups of MPTP-treated monkeys (motor-asymptomatic [N = 2], mild parkinsonian [N = 3], and moderate parkinsonian [N = 3]). Our findings revealed a significant decrease (P < 0.001) in serotonin innervation of motor (Areas 4 and 6), dorsolateral prefrontal (Areas 9 and 46), and limbic (Areas 24 and 25) cortical areas in motor-asymptomatic MPTP-treated monkeys. Both groups of symptomatic MPTP-treated animals displayed further serotonin denervation in these cortical regions (P < 0.0001). A significant loss of serotonin-positive dorsal raphe neurons was found in the moderate parkinsonian group. On the other hand, the intensity of cortical TH immunostaining was not significantly affected in motor asymptomatic MPTP-treated monkeys, but underwent a significant reduction in the moderate symptomatic group (P < 0.05). Our results indicate that chronic intoxication with MPTP induces early pathology in the corticopetal serotonergic system, which may contribute to early non-motor symptoms in PD.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison Weinkle
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
46
|
Cunha C, Smiley JF, Chuhma N, Shah R, Bleiwas C, Menezes EC, Seal RP, Edwards RH, Rayport S, Ansorge MS, Castellanos FX, Teixeira CM. Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission. Mol Psychiatry 2021; 26:4795-4812. [PMID: 32398719 PMCID: PMC7657958 DOI: 10.1038/s41380-020-0763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.
Collapse
Affiliation(s)
- Catarina Cunha
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - John F Smiley
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Cynthia Bleiwas
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Rebecca P Seal
- Department of Neurobiology and Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, University of California, San Francisco School of Medicine, San Francisco, CA, 94143, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
47
|
Knockout of the Serotonin Transporter in the Rat Mildly Modulates Decisional Anhedonia. Neuroscience 2021; 469:31-45. [PMID: 34182055 DOI: 10.1016/j.neuroscience.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Serotonin transporter gene variance has long been considered an essential factor contributing to depression. However, meta-analyses yielded inconsistent findings recently, asking for further understanding of the link between the gene and depression-related symptoms. One key feature of depression is anhedonia. While data exist on the effect of serotonin transporter gene knockout (5-HTT-/-) in rodents on consummatory and anticipatory anhedonia, with mixed outcomes, the effect on decisional anhedonia has not been investigated thus far. Here, we tested whether 5-HTT-/- contributes to decisional anhedonia. To this end, we established a novel touchscreen-based go/go task of visual decision-making. During the learning of stimulus discrimination, 5-HTT+/+ rats performed more optimal decision-making compared to 5-HTT-/- rats at the beginning, but this difference did not persist throughout the learning period. During stimulus generalization, the generalization curves were similar between both genotypes and did not alter as the learning progress. Interestingly, the response time in 5-HTT+/+ rats increased as the session increased in general, while 5-HTT-/- rats tended to decrease. The response time difference might indicate that 5-HTT-/- rats altered willingness to exert cognitive effort to the categorization of generalization stimuli. These results suggest that the effect of 5-HTT ablation on decisional anhedonia is mild and interacts with learning, explaining the discrepant findings on the link between 5-HTT gene and depression.
Collapse
|
48
|
Del Rosario J, Speed A, Arrowood H, Motz C, Pardue M, Haider B. Diminished Cortical Excitation and Elevated Inhibition During Perceptual Impairments in a Mouse Model of Autism. Cereb Cortex 2021; 31:3462-3474. [PMID: 33677512 PMCID: PMC8525192 DOI: 10.1093/cercor/bhab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 01/02/2023] Open
Abstract
Sensory impairments are a core feature of autism spectrum disorder (ASD). These impairments affect visual perception and have been hypothesized to arise from imbalances in cortical excitatory and inhibitory activity. There is conflicting evidence for this hypothesis from several recent studies of transgenic mouse models of ASD; crucially, none have measured activity from identified excitatory and inhibitory neurons during simultaneous impairments of sensory perception. Here, we directly recorded putative excitatory and inhibitory population spiking in primary visual cortex (V1) while simultaneously measuring visual perceptual behavior in CNTNAP2-/- knockout (KO) mice. We observed quantitative impairments in the speed, accuracy, and contrast sensitivity of visual perception in KO mice. During these perceptual impairments, stimuli evoked more firing of inhibitory neurons and less firing of excitatory neurons, with reduced neural sensitivity to contrast. In addition, pervasive 3-10 Hz oscillations in superficial cortical layers 2/3 (L2/3) of KO mice degraded predictions of behavioral performance from neural activity. Our findings show that perceptual deficits relevant to ASD may be associated with elevated cortical inhibitory activity along with diminished and aberrant excitatory population activity in L2/3, a major source of feedforward projections to higher cortical regions.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Hayley Arrowood
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Cara Motz
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA 30033, USA
| | - Machelle Pardue
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA 30033, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
49
|
Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021; 41:4840-4849. [PMID: 33888606 PMCID: PMC8260159 DOI: 10.1523/jneurosci.2850-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/06/2023] Open
Abstract
The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and combinatorial optogenetics in mice, we show that GABAergic neurons in the LH selectively inhibit GABAergic neurons in the DR, resulting in increased firing of a substantial fraction of its neurons that ultimately promotes arousal. These DRGABA neurons are wake active and project to multiple brain areas involved in the control of arousal, including the LH, where their specific activation potently influences local network activity leading to arousal from sleep. Our results show how mutual inhibitory projections between the LH and the DR promote wakefulness and suggest a complex arousal control by intimate interactions between long-range connections and local circuit dynamics.SIGNIFICANCE STATEMENT: Multiple brain systems including the lateral hypothalamus and raphe serotonergic system are involved in the regulation of the sleep/wake cycle, yet the interaction between these systems have remained elusive. Here we show that mutual disinhibition mediated by long range inhibitory projections between these brain areas can promote wakefulness. The main importance of this work relies in revealing the interaction between a brain area involved in autonomic regulation and another in controlling higher brain functions including reward, patience, mood and sensory coding.
Collapse
Affiliation(s)
- Mary Gazea
- Centre for Experimental Neurology, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
| | - Szabina Furdan
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Péter Sere
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Lukas Oesch
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Benedek Molnár
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Giuseppe Di Giovanni
- Neurosci ence Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom
- Department of Physiology and Biochemistry, University of Malta, MSD 2080, Malta
| | - Lief E Fenno
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
| | | | - Joanna Mattis
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
| | - Karl Deisseroth
- Departments of Psychiatry & Behavioral Sciences and Bioengineering, Stanford University, Stanford 94305, California
- Howard Hughes Medical Institute, Stanford University, Stanford 94305, California
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston 02115, Massachusetts
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern 3010, Switzerland
- Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
| | - Magor L Lőrincz
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
- Neurosci ence Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
50
|
Findley TM, Wyrick DG, Cramer JL, Brown MA, Holcomb B, Attey R, Yeh D, Monasevitch E, Nouboussi N, Cullen I, Songco JO, King JF, Ahmadian Y, Smear MC. Sniff-synchronized, gradient-guided olfactory search by freely moving mice. eLife 2021; 10:e58523. [PMID: 33942713 PMCID: PMC8169121 DOI: 10.7554/elife.58523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 01/18/2023] Open
Abstract
For many organisms, searching for relevant targets such as food or mates entails active, strategic sampling of the environment. Finding odorous targets may be the most ancient search problem that motile organisms evolved to solve. While chemosensory navigation has been well characterized in microorganisms and invertebrates, spatial olfaction in vertebrates is poorly understood. We have established an olfactory search assay in which freely moving mice navigate noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient cues and do not require stereo olfaction for performance. During task performance, respiration and nose movement are synchronized with tens of milliseconds precision. This synchrony is present during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose movement is a strategic behavioral state rather than simply a constant accompaniment to fast breathing. To reveal the spatiotemporal structure of these active sensing movements, we used machine learning methods to parse motion trajectories into elementary movement motifs. Motifs fall into two clusters, which correspond to investigation and approach states. Investigation motifs lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of the sniff cycle. The allocentric structure of investigation and approach indicates an advantage to sampling both sides of the sharpest part of the odor gradient, consistent with a serial-sniff strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and guides ongoing work into the underlying neural mechanisms.
Collapse
Affiliation(s)
- Teresa M Findley
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - David G Wyrick
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jennifer L Cramer
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Morgan A Brown
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Blake Holcomb
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Robin Attey
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Dorian Yeh
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Eric Monasevitch
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Nelly Nouboussi
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Isabelle Cullen
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jeremea O Songco
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Jared F King
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| | - Yashar Ahmadian
- Department of Biology and Institute of Neuroscience, University of OregonEugeneUnited States
- Computational & Biological Learning Lab, University of CambridgeCambridgeUnited Kingdom
| | - Matthew C Smear
- Department of Psychology and Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|