1
|
Goforth KM, Lohmann CMF, Gavin A, Henning R, Harvey A, Hinton TL, Lim DS, Lohmann KJ. Learned magnetic map cues and two mechanisms of magnetoreception in turtles. Nature 2025; 638:1015-1022. [PMID: 39939776 DOI: 10.1038/s41586-024-08554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/19/2024] [Indexed: 02/14/2025]
Abstract
Growing evidence indicates that migratory animals exploit the magnetic field of the Earth for navigation, both as a compass to determine direction and as a map to determine geographical position1. It has long been proposed that, to navigate using a magnetic map, animals must learn the magnetic coordinates of the destination2,3, yet the pivotal hypothesis that animals can learn magnetic signatures of geographical areas has, to our knowledge, yet to be tested. Here we report that an iconic navigating species, the loggerhead turtle (Caretta caretta), can learn such information. When fed repeatedly in magnetic fields replicating those that exist in particular oceanic locations, juvenile turtles learned to distinguish magnetic fields in which they encountered food from magnetic fields that exist elsewhere, an ability that might underlie foraging site fidelity. Conditioned responses in this new magnetic map assay were unaffected by radiofrequency oscillating magnetic fields, a treatment expected to disrupt radical-pair-based chemical magnetoreception4-6, suggesting that the magnetic map sense of the turtle does not rely on this mechanism. By contrast, orientation behaviour that required use of the magnetic compass was disrupted by radiofrequency oscillating magnetic fields. The findings provide evidence that two different mechanisms of magnetoreception underlie the magnetic map and magnetic compass in sea turtles.
Collapse
Affiliation(s)
- Kayla M Goforth
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Gavin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reyco Henning
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Harvey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara L Hinton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana S Lim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Vella A, Vella N. Genetic Identity and Diversity of Loggerhead Sea Turtles in the Central Mediterranean Sea. Genes (Basel) 2024; 15:1565. [PMID: 39766832 PMCID: PMC11728243 DOI: 10.3390/genes15121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Background: The conservation of loggerhead sea turtles (Caretta caretta) in the central Mediterranean benefits from an in-depth understanding of its population genetic structure and diversity. Methods: This study, therefore, investigates C. caretta in Maltese waters by genetically analysing 63 specimens collected through strandings and in-water sampling, using mitochondrial DNA control region and microsatellites. Additionally, the two nests detected in Malta in 2023 were analysed for the same markers. Results: Mitochondrial data identified 10 haplotypes, with mixed stock analyses tracing 87.5% of the specimens to Mediterranean origins, primarily from Libyan rookeries, with contributions from Lebanon, Israel and Turkey. Three Atlantic haplotypes were identified in six specimens, with CC-A17.1 linking central Mediterranean foraging individuals to rookeries in Cape Verde. Five of these six Atlantic haplotype records were from recently sampled individuals (2022-2023), possibly indicating a recent eastward expansion of Atlantic haplotypes into the Mediterranean. Bayesian clustering (K = 2) of microsatellite data using haplotypes as priori revealed similar proportions for clusters across most specimens, except for three specimens with Atlantic haplotypes CC-A1.1 and CC-A1.3, which exhibited distinct patterns. The two nests examined here displayed Mediterranean haplotypes, with nuclear DNA matching the predominant Mediterranean profiles found in foraging individuals, suggesting that local clutches originated from Mediterranean parents. Conclusions: Increasing nesting activity on Maltese beaches and this archipelago's geographical position highlight the need for ongoing genetic monitoring to track changes in genetic diversity and develop conservation strategies that support the effective protection of this species and its habitats.
Collapse
Affiliation(s)
- Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, MSD2080 Msida, Malta;
| | | |
Collapse
|
3
|
Lohmann KJ, Putman NF, Johnsen S, Lohmann CMF. Animal magnetic sensitivity and magnetic displacement experiments. Commun Biol 2024; 7:650. [PMID: 38802463 PMCID: PMC11130290 DOI: 10.1038/s42003-024-06269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, USA
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Schneider WT, Wynn J, Packmor F, Lindecke O, Holland RA. Reply to: Animal magnetic sensitivity and magnetic displacement experiments. Commun Biol 2024; 7:651. [PMID: 38802583 PMCID: PMC11130198 DOI: 10.1038/s42003-024-06270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Will T Schneider
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Joe Wynn
- Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Florian Packmor
- Lower Saxon Wadden Sea National Park Authority, 26382, Wilhelmshaven, Germany
| | - Oliver Lindecke
- Institute of Biology and Environmental Sciences, University Oldenburg, 26111, Oldenburg, Germany
| | - Richard A Holland
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
5
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Gulson-Castillo ER, Van Doren BM, Bui MX, Horton KG, Li J, Moldwin MB, Shedden K, Welling DT, Winger BM. Space weather disrupts nocturnal bird migration. Proc Natl Acad Sci U S A 2023; 120:e2306317120. [PMID: 37812699 PMCID: PMC10589677 DOI: 10.1073/pnas.2306317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth's magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.
Collapse
Affiliation(s)
- Eric R. Gulson-Castillo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI48109
| | | | - Michelle X. Bui
- Department of Physics, University of Texas, Arlington, TX76019
| | - Kyle G. Horton
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO80523
| | - Jing Li
- Department of Statistics, University of Michigan, Ann Arbor, MI48109
| | - Mark B. Moldwin
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI48109
| | - Daniel T. Welling
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI48109
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
7
|
Lasala JA, Macksey MC, Mazzarella KT, Main KL, Foote JJ, Tucker AD. Forty years of monitoring increasing sea turtle relative abundance in the Gulf of Mexico. Sci Rep 2023; 13:17213. [PMID: 37821522 PMCID: PMC10567714 DOI: 10.1038/s41598-023-43651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Longitudinal data sets for population abundance are essential for studies of imperiled organisms with long life spans or migratory movements, such as marine turtles. Population status trends are crucial for conservation managers to assess recovery effectiveness. A direct assessment of population growth is the enumeration of nesting numbers and quantifying nesting attempts (successful nests/unsuccessful attempts) and emergence success (number of hatchlings leaving the nest) because of the substantial annual variations due to nest placement, predation, and storm activity. We documented over 133,000 sea turtle crawls for 50.9 km of Florida Gulf of Mexico coastline from 1982 to 2021 for a large loggerhead turtle nesting aggregation and a recovering remnant population of green sea turtles. Over time both species have emerged to nest significantly earlier in the year and green sea turtle nesting seasons have extended. Nest counts and hatchling production for both species have significantly increased, but the rate of emergence success of hatchlings leaving nests has not changed for loggerheads and has declined for green sea turtles. Sea level rise and coastal developments undoubtedly influence coastal habitats in the long-term, impacting nest site selection and potential recruitment from the loss of emerged hatchlings. However, the present indications for steady Gulf of Mexico recovery of loggerhead and green sea turtles counter findings of the Florida Atlantic coasts. This study indicates that effective conservation practices can be detected within time scales of 1-2 turtle generations.
Collapse
Affiliation(s)
- Jacob Andrew Lasala
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Melissa C Macksey
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Kristen T Mazzarella
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Kevan L Main
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Jerris J Foote
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Parks, Recreation and Natural Resources, Sarasota County, 1660 Ringling Boulevard, Sarasota, FL, 34236, USA
| | - Anton D Tucker
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| |
Collapse
|
8
|
Vilaça ST, Maroso F, Lara P, de Thoisy B, Chevallier D, Arantes LS, Santos FR, Bertorelle G, Mazzoni CJ. Evidence of backcross inviability and mitochondrial DNA paternal leakage in sea turtle hybrids. Mol Ecol 2023; 32:628-643. [PMID: 36336814 DOI: 10.1111/mec.16773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Maroso
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paulo Lara
- Fundação Projeto Tamar, Mata de São João, Bahia, Brazil
| | | | - Damien Chevallier
- BOREA, National Museum of Natural History (MNHN), CNRS 8067, SU, IRD 207, UCN, UA, Martinique, France
| | - Larissa Souza Arantes
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Fabricio R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Camila J Mazzoni
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
9
|
Cassill DL, Watkins A. Nest-site choice by loggerhead sea turtles as a risk-management adaptation to offset hatching failure by unpredictable storms and predators. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionAlong the coasts of Florida, United States, the nesting season of the loggerhead sea turtle, Caretta caretta, overlaps with the hurricane season. Nesting loggerhead females do not extend parental protection beyond depositing eggs in sandy, excavated nests in locations that provide a viable range of temperatures, moisture, and respiratory gas exchange. Thereafter, a female’s clutches are subjected to the uncertainties of desiccation, predation, flooding, or beach erosion.MethodsHere, we used data from a 1996-2004 study of 94 tagged loggerhead females nesting on a small barrier island off the Gulf Coast of south Florida, United States. We tested the hypothesis that the distribution of nest sites by loggerhead females was a randomized response to unpredictable hatching failure.ResultsWe show that nest site choice accounted for 19.2% of variation in hatching success whereas breeding year and breeding month accounted for the remaining 81.8% of variation in hatching success. We show that the emergence site along the beach-length axis, nest site choice along the beach-width axis, and distances between nest locations did not fit a uniform-random distribution or a normal distribution. Instead, we show that loggerhead females employed a “Goldilocks” distribution in which nest sites were “neither too clustered nor too dispersed.” Moreover, loggerhead females selected nest sites with limited overlap with nest sites from previous breeding seasons.DiscussionWe propose that nest site choice by this population of loggerhead females constitutes a significant maternal risk-management adaptation that deserves thoughtful consideration as we continue to assess the impacts of climate change on the future of loggerhead sea turtles.
Collapse
|
10
|
Levitt BB, Lai HC, Manville AM. Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front Public Health 2022; 10:1000840. [PMID: 36505009 PMCID: PMC9732734 DOI: 10.3389/fpubh.2022.1000840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0 Hz to 300 GHz. The focus of this Perspective paper is on the unique physiology of non-human species, their extraordinary sensitivity to both natural and anthropogenic EMF, and the likelihood that artificial EMF in the static, extremely low frequency (ELF) and radiofrequency (RF) ranges of the non-ionizing electromagnetic spectrum are capable at very low intensities of adversely affecting both fauna and flora in all species studied. Any existing exposure standards are for humans only; wildlife is unprotected, including within the safety margins of existing guidelines, which are inappropriate for trans-species sensitivities and different non-human physiology. Mechanistic, genotoxic, and potential ecosystem effects are discussed.
Collapse
Affiliation(s)
- B. Blake Levitt
- National Association of Science Writers, Berkeley, CA, United States
| | - Henry C. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Albert M. Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington, DC, United States
| |
Collapse
|
11
|
The amphibian magnetic sense(s). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:723-742. [PMID: 36269404 DOI: 10.1007/s00359-022-01584-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Sensitivity to the earth's magnetic field is the least understood of the major sensory systems, despite being virtually ubiquitous in animals and of widespread interest to investigators in a wide range of fields from behavioral ecology to quantum physics. Although research on the use of magnetic cues by migratory birds, fish, and sea turtles is more widely known, much of our current understanding of the functional properties of vertebrate magnetoreception has come from research on amphibians. Studies of amphibians established the presence of a light-dependent magnetic compass, a second non-light-dependent mechanism involving particles of magnetite and/or maghemite, and an interaction between these two magnetoreception mechanisms that underlies the "map" component of homing. Simulated magnetic displacement experiments demonstrated the use of a high-resolution magnetic map for short-range homing to breeding ponds requiring a sampling strategy to detect weak spatial gradients in the magnetic field despite daily temporal variation at least an order of magnitude greater. Overall, reliance on a magnetic map for short-range homing places greater demands on the underlying sensory detection, processing, and memory mechanisms than comparable mechanisms used by long-distance migrants. Moreover, unlike sea turtles and migratory birds, amphibians are exceptionally well suited to serve as model organisms in which to characterize the molecular and biophysical mechanisms underlying the light-dependent 'quantum compass'.
Collapse
|
12
|
Phillips KF, Martin KR, Stahelin GD, Savage AE, Mansfield KL. Genetic variation among sea turtle life stages and species suggests connectivity among ocean basins. Ecol Evol 2022; 12:e9426. [PMID: 36329816 PMCID: PMC9618668 DOI: 10.1002/ece3.9426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Regional genetic differentiation of mitochondrial lineages occurs in migratory species with natal philopatry such as sea turtles. However, early juvenile dispersal represents a key opportunity for gene flow and colonization of new regions through founder events, making it an important yet under-studied life stage. To assess connectivity among sea turtle life stages and ocean basins, we sequenced mitochondrial DNA (mtDNA) fragments from 35 juveniles sampled in the Gulf of Mexico from the rarely observed dispersal stage across three species: green turtles (Chelonia mydas; n = 30), hawksbills (Eretmochelys imbricata; n = 3), and loggerheads (Caretta caretta; n = 2). We estimated green turtle rookery contributions using a many-to-many Bayesian mixed stock analysis that incorporated dispersal probabilities based on rookery size and transport via ocean currents. We assembled a gene tree including 709 distinct mtDNA control region haplotypes from the literature for all seven extant sea turtle species to assess gaps in life-stage data across ocean basins, as well as contextualize the lineages we sampled from dispersing juveniles. Our results indicate a high likelihood that green turtles sampled in the Gulf of Mexico originated from rookeries along the coast of Mexico, with smaller contributions from Costa Rica and Suriname. The gene tree analysis yielded species-level relationships consistent with those presented previously, while intra-species relationships between lineages and ocean basins differed, particularly within loggerhead and green turtle clades. Our results highlight the lack of genetic data from juvenile sea turtles, especially the early dispersal stage, and the potential for these data to answer broader questions of connectivity and diversification across species and lineages.
Collapse
Affiliation(s)
| | | | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
13
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
14
|
Wynn J, Padget O, Morford J, Jaggers P, Davies K, Borsier E, Guilford T. How might magnetic secular variation impact avian philopatry? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:145-154. [PMID: 35152316 PMCID: PMC8918480 DOI: 10.1007/s00359-021-01533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
A tendency to return to the natal/breeding site, 'philopatry', is widespread amongst migratory birds. It has been suggested that a magnetic 'map' could underpin such movements, though it is unclear how a magnetic map might be impacted by gradual drift in the Earth's magnetic field ('secular variation'). Here, using the International Geomagnetic Reference Field, we quantified how secular variation translates to movement in the implied positions at which combinations of different magnetic cues (inclination, declination and intensity) intersect, noting that the magnitude of such movements is determined by the magnitude of the movements of each of the two isolines, and the angle between their movement vectors. We propose that magnetic parameters varying in a near-parallel arrangement are unlikely to be used as a bi-coordinate map during philopatry, but that birds could use near-orthogonal magnetic gradient cues as a bi-coordinate map if augmented with navigation using more local cues. We further suggest that uni-coordinate magnetic information could also provide a philopatry mechanism that is substantially less impacted by secular variation than a bi-coordinate 'map'. We propose that between-year shifts in the position of magnetic coordinates might provide a priori predictions for changes in the breeding sites of migratory birds.
Collapse
Affiliation(s)
- Joe Wynn
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK.
| | - Oliver Padget
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Joe Morford
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Paris Jaggers
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Katrina Davies
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Emma Borsier
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Tim Guilford
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK.
| |
Collapse
|
15
|
Wynn J, Padget O, Mouritsen H, Morford J, Jaggers P, Guilford T. Magnetic stop signs signal a European songbird's arrival at the breeding site after migration. Science 2022; 375:446-449. [PMID: 35084979 DOI: 10.1126/science.abj4210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although it is known that birds can return to their breeding grounds with exceptional precision, it has remained a mystery how they know when and where to stop migrating. Using nearly a century's worth of Eurasian reed warbler (Acrocephalus scirpaceus) ringing recoveries, we investigated whether fluctuations in Earth's magnetic field predict variation in the sites to which birds return. Ringing recoveries suggest that magnetic inclination is learned before departure and is subsequently used as a uni-coordinate "stop sign" when relocating the natal or breeding site. However, many locations have the same inclination angle. Data from populations with different migratory directions indicate that birds solve this ambiguity by stopping at the first place where the right inclination is encountered on an inherited return vector.
Collapse
Affiliation(s)
- Joe Wynn
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Oliver Padget
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Henrik Mouritsen
- AG "Neurosensorik/(Animal Navigation)," Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Joe Morford
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Paris Jaggers
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Tim Guilford
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| |
Collapse
|
16
|
Naisbett-Jones LC, Lohmann KJ. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:19-40. [PMID: 35031832 DOI: 10.1007/s00359-021-01527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth's magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth's magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Collapse
Affiliation(s)
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
17
|
Magnetic maps in animal navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:41-67. [PMID: 34999936 PMCID: PMC8918461 DOI: 10.1007/s00359-021-01529-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022]
Abstract
In addition to providing animals with a source of directional or ‘compass’ information, Earth’s magnetic field also provides a potential source of positional or ‘map’ information that animals might exploit to assess location. In less than a generation, the idea that animals use Earth’s magnetic field as a kind of map has gone from a contentious hypothesis to a well-established tenet of animal navigation. Diverse animals ranging from lobsters to birds are now known to use magnetic positional information for a variety of purposes, including staying on track along migratory pathways, adjusting food intake at appropriate points in a migration, remaining within a suitable oceanic region, and navigating toward specific goals. Recent findings also indicate that sea turtles, salmon, and at least some birds imprint on the magnetic field of their natal area when young and use this information to facilitate return as adults, a process that may underlie long-distance natal homing (a.k.a. natal philopatry) in many species. Despite recent progress, much remains to be learned about the organization of magnetic maps, how they develop, and how animals use them in navigation.
Collapse
|
18
|
Abstract
Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia;
| |
Collapse
|
19
|
Erdmann W, Kmita H, Kosicki JZ, Kaczmarek Ł. How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology. ORIGINS LIFE EVOL B 2021; 51:231-257. [PMID: 34363564 DOI: 10.1007/s11084-021-09612-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
20
|
Taylor BK, Bernish MK, Pizzuti SA, Kehl CE. A bioinspired navigation strategy that uses magnetic signatures to navigate without GPS in a linearized northern Atlantic ocean: a simulation study. BIOINSPIRATION & BIOMIMETICS 2021; 16:046006. [PMID: 33601358 DOI: 10.1088/1748-3190/abe7cd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Certain animal species use the Earth's magnetic field (i.e. magnetoreception) in conjunction with other sensory modalities to navigate long distances. It is hypothesized that several animals use combinations of magnetic inclination and intensity as unique signatures for localization, enabling migration without a pre-surveyed map. However, it is unknown how animals use magnetic signatures to generate guidance commands, and the extent to which species-specific capabilities and environmental factors affect a given strategy's efficacy or deterioration. Understanding animal magnetoreception can aid in developing better engineered navigation systems that are less reliant on satellites, which are expensive and can become unreliable or unavailable under a variety of circumstances. Building on previous studies, we implement an agent-based computer simulation that uses two variants of a magnetic signature-based navigation strategy. The strategy can successfully migrate to eight specified goal points in an environment that resembles the northern Atlantic ocean. In particular, one variant reaches all goal points with faster ocean current velocities, while the other variant reaches all goal points with slower ocean current velocities. We also employ dynamic systems tools to examine the stability of the strategy as a proxy for whether it is guaranteed to succeed. The findings demonstrate the efficacy of the strategy and can help in the development of new navigation technologies that are less reliant on satellites and pre-surveyed maps.
Collapse
Affiliation(s)
- Brian K Taylor
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Margaret K Bernish
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Susan A Pizzuti
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Catherine E Kehl
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
21
|
Bo TB, Kohl KD. Stabilization and optimization of host-microbe-environment interactions as a potential reason for the behavior of natal philopatry. Anim Microbiome 2021; 3:26. [PMID: 33785073 PMCID: PMC8011129 DOI: 10.1186/s42523-021-00087-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Many animals engage in a behavior known as natal philopatry, where after sexual maturity they return to their own birthplaces for subsequent reproduction. There are many proposed ultimate factors that may underlie the evolution of natal philopatry, such as genetic optimization, suitable living conditions, and friendly neighbors, which can improve the survival rates of offspring. However, here we propose that a key factor that has been overlooked could be the colonization of gut microbiota during early life and the effects these microorganisms have on host performance and fitness. In addition to the bacteria transmitted from the mother to offspring, microbes from the surrounding environment also account for a large proportion of the developing gut microbiome. While it was long believed that microbial species all have global distributions, we now know that there are substantial geographic differences and dispersal limitations to environmental microbes. The establishment of gut microbiota during early life has enormous impacts on animal development, including energy metabolism, training of the immune system, and cognitive development. Moreover, these microbial effects scale to influence animal performance and fitness, raising the possibility for natural selection to act on the integrated combination of gut microbial communities and host genetics (i.e. the holobiont). Therefore, in this paper, we propose a hypothesis: that optimization of host-microbe-environment interactions represents a potentially important yet overlooked reason for natal philopatry. Microbiota obtained by natal philopatry could help animals adapt to the environment and improve the survival rates of their young. We propose future directions to test these ideas, and the implications that this hypothesis has for our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Ting-Bei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G. Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS One 2021; 16:e0248141. [PMID: 33667278 PMCID: PMC7935302 DOI: 10.1371/journal.pone.0248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic field direction and location.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan C. Ashbaugh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Mark Reimers
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriela Saldana De Jimenez
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Moore
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Synthetic Biology Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Erdmann W, Idzikowski B, Kowalski W, Kosicki JZ, Kaczmarek Ł. Tolerance of two anhydrobiotic tardigrades Echiniscus testudo and Milnesium inceptum to hypomagnetic conditions. PeerJ 2021; 9:e10630. [PMID: 33604170 PMCID: PMC7863786 DOI: 10.7717/peerj.10630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
The open space is a hostile environment for all lifeforms not only due to vacuum, high radiation, low atmospheric pressure, and extremely low temperature, but also the absence of the geomagnetic field. The geomagnetic field protects Earth mainly from corpuscular radiation, that is, solar wind and cosmic radiation, but above all it influences organisms, including their cells, tissues and organs. Moreover, numerous studies conducted on plants and animals confirmed that hypomagnetic conditions (the term referring to all situations when the magnetic field is weaker than the typical geomagnetic field) have significant influence on the metabolism of living organisms. Although many studies dealt with a variety of aspects related mainly to the influence of hypomagnetic conditions on human health. Very few studies have considered the influence of hypomagnetic conditions on extremophiles. Astrobiologists have long been testing different extremofiles to find out if any multicellular organisms are able to survive in extreme conditions of open space. Among all multicellular extremophiles fit for such research, water bears (Tardigrada) are the most interesting. Not only are they one of the most resistant organisms on Earth, but results obtained from studies on these invertebrates can be extrapolated or applied to vertebrates (including humans). Despite this, studies on the influence of hypomagnetic conditions on tardigrades are rare, so far. In the present study, to test the influence of hypomagnetic conditions on the process of anhydrobiosis while entering and returning from anhydrobiosis, we used two terrestrial anhydrobiotic species that are Echiniscus testudo and Milnesium inceptum. To exclude the ambient magnetic field, experiments were carried out in a special magnetic field shielding chamber. In total, three experiments were conducted: (a) tardigrades in anhydrobiosis, (b) tardigrades entering anhydrobiosis and (c) tardigrades returning to active life. The obtained results clearly showed that even partial isolation from the geomagnetic field, that is, hypomagnetic conditions, has negative influence on anhydrobiotic abilities of both tested tardigrade species. In both species we observed lower survivability rate while entering anhydrobiosis, in anhydrobiotic state and returning to the active state. What is more, we observed a higher mortality rate in Ech. testudo than Mil. inceptum which suggest that different species response to the hypomagnetic conditions in different way. In conclusion, while current knowledge on the influence of hypomagnetic conditions on mortality of invertebrates is very limited, our results suggest that the presence of the magnetic field is a very important factor which should be considered in further research focused on potential survival of Earth organisms in outer space, spacecrafts or different planets and moons.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| | - Bogdan Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Kowalski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Jakub Z. Kosicki
- Department of Avian Biology and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology/Faculty of Biology, Adam Mickiewicz University of Poznan, Poznań, Poland
| |
Collapse
|
24
|
Kappeler PM. Orientation in Time and Space. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Levasseur KE, Stapleton SP, Quattro JM. Precise natal homing and an estimate of age at sexual maturity in hawksbill turtles. Anim Conserv 2020. [DOI: 10.1111/acv.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K. E. Levasseur
- Department of Biological Sciences University of South Carolina Columbia SC USA
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
| | - S. P. Stapleton
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota St. Paul MN USA
| | - J. M. Quattro
- Department of Biological Sciences University of South Carolina Columbia SC USA
| |
Collapse
|
26
|
Distribution of genetic diversity reveals colonization patterns and philopatry of the loggerhead sea turtles across geographic scales. Sci Rep 2020; 10:18001. [PMID: 33093463 PMCID: PMC7583243 DOI: 10.1038/s41598-020-74141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding the processes that underlie the current distribution of genetic diversity in endangered species is a goal of modern conservation biology. Specifically, the role of colonization and dispersal events throughout a species' evolutionary history often remains elusive. The loggerhead sea turtle (Caretta caretta) faces multiple conservation challenges due to its migratory nature and philopatric behaviour. Here, using 4207 mtDNA sequences, we analysed the colonisation patterns and distribution of genetic diversity within a major ocean basin (the Atlantic), a regional rookery (Cabo Verde Archipelago) and a local island (Island of Boa Vista, Cabo Verde). Data analysis using hypothesis-driven population genetic models suggests the colonization of the Atlantic has occurred in two distinct waves, each corresponding to a major mtDNA lineage. We propose the oldest lineage entered the basin via the isthmus of Panama and sequentially established aggregations in Brazil, Cabo Verde and in the area of USA and Mexico. The second lineage entered the Atlantic via the Cape of Good Hope, establishing colonies in the Mediterranean Sea, and from then on, re-colonized the already existing rookeries of the Atlantic. At the Cabo Verde level, we reveal an asymmetric gene flow maintaining links across island-specific nesting groups, despite significant genetic structure. This structure stems from female philopatric behaviours, which could further be detected by weak but significant differentiation amongst beaches separated by only a few kilometres on the island of Boa Vista. Exploring biogeographic processes at diverse geographic scales improves our understanding of the complex evolutionary history of highly migratory philopatric species. Unveiling the past facilitates the design of conservation programmes targeting the right management scale to maintain a species' evolutionary potential.
Collapse
|
27
|
Natal imprinting to the Earth’s magnetic field in a pelagic seabird. Curr Biol 2020; 30:2869-2873.e2. [DOI: 10.1016/j.cub.2020.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
|
28
|
Okuyama J, Ishii H, Tanizaki S, Suzuki T, Abe O, Nishizawa H, Yano A, Tsujimura M, Ishigaki T, Ishigaki T, Kobayashi M, Yanagida H. Quarter-Century (1993–2018) Nesting Trends in the Peripheral Populations of Three Sea Turtle Species at Ishigakijima Island, Japan. CHELONIAN CONSERVATION AND BIOLOGY 2020. [DOI: 10.2744/ccb-1428.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junichi Okuyama
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Hisakazu Ishii
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Shigeo Tanizaki
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Tomoko Suzuki
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Osamu Abe
- Ishigaki Tropical Station, Seikai National Fisheries Research Institute, Ishigaki, Okinawa, 907-0451, Japan []
| | - Hideaki Nishizawa
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto, 606-8501, Japan []
| | - Aya Yano
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Masako Tsujimura
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Takakazu Ishigaki
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Takashi Ishigaki
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Masahiro Kobayashi
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| | - Hiroyuki Yanagida
- Ishigaki Island Sea Turtle Research Group, Arakawa 2357-11, Ishigaki, Okinawa, 907-0024, Japan [; ; ; ; ; bloodymoon_rise@yahoo
| |
Collapse
|
29
|
Fey DP, Greszkiewicz M, Jakubowska M, Lejk AM, Otremba Z, Andrulewicz E, Urban-Malinga B. Otolith fluctuating asymmetry in larval trout, Oncorhynchus mykiss Walbaum, as an indication of organism bilateral instability affected by static and alternating magnetic fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135489. [PMID: 31771843 DOI: 10.1016/j.scitotenv.2019.135489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The possible effects of disruptions in the geomagnetic field caused by different man-made constructions have been increasing considerably in recent years. These include, among others, the development of wind farms located in the sea and increased numbers of underwater cables. The objective of this study was to determine whether a magnetic field (MF) of 10 mT or a 50 Hz electromagnetic field (EMF) of 1 mT affected the developmental instability of the inner ear organ, which is responsible in fish for hearing and balance, in rainbow trout (Oncorhynchus mykiss) reared in a laboratory for 37 days (13 days in egg stage and 24 days in larval stage). This was done by analyzing the fluctuating asymmetry (FA) of otolith size. The MF and EMF values applied in this study are those recorded in the vicinities of underwater alternating current (AC) and direct current (DC) cables, respectively. The influence of MF on otolith FA was found to be statistically significant, with the highest significance occurring in the group of youngest larvae of 5 dph (compared to larvae 15 and 23 dph). Otolith FA was also higher in larvae exposed to the EMF compared to control conditions, but the differences were not statistically significant. Thus, we can conclude that underwater constructions and cables which emit a MF of 10 mT or higher can affect living organisms that are within a distance of a few meters, especially those (as in the case of trout) in settled life stages.
Collapse
Affiliation(s)
- D P Fey
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland.
| | - M Greszkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - M Jakubowska
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - A M Lejk
- Department of Logistics and Monitoring, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Z Otremba
- Department of Physics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
| | - E Andrulewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - B Urban-Malinga
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| |
Collapse
|
30
|
Behavioral evidence for geomagnetic imprinting and transgenerational inheritance in fruit flies. Proc Natl Acad Sci U S A 2020; 117:1216-1222. [PMID: 31889001 DOI: 10.1073/pnas.1914106117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain long-distance migratory animals, such as salmon and sea turtles, are thought to imprint on the magnetic field of their natal area and to use this information to help them return as adults. Despite a growing body of indirect support for such imprinting, direct experimental evidence thereof remains elusive. Here, using the fruit fly as a magnetoreceptive model organism, we demonstrate that exposure to a specific geographic magnetic field during a critical period of early development affected responses to a matching magnetic field gradient later in life. Specifically, hungry flies that had imprinted on a specific magnetic field from 1 of 3 widely separated geographic locations responded to the imprinted field, but not other magnetic fields, by moving downward, a geotactic behavior associated with foraging. This same behavior occurred spontaneously in the progeny of the next generation: female progeny moved downward in response to the field on which their parents had imprinted, whereas male progeny did so only in the presence of these females. These results represent experimental evidence that organisms can learn and remember a magnetic field to which they were exposed during a critical period of development. Although the function of the behavior is not known, one possibility is that imprinting on the magnetic field of a natal area assists flies and their offspring in recognizing locations likely to be favorable for foraging and reproduction.
Collapse
|
31
|
Cresci A, Durif CM, Paris CB, Shema SD, Skiftesvik AB, Browman HI. Glass eels ( Anguilla anguilla) imprint the magnetic direction of tidal currents from their juvenile estuaries. Commun Biol 2019; 2:366. [PMID: 31602415 PMCID: PMC6783477 DOI: 10.1038/s42003-019-0619-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.
Collapse
Affiliation(s)
- Alessandro Cresci
- Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker, Causeway, FL 33149-1098 USA
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Caroline M. Durif
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Claire B. Paris
- Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker, Causeway, FL 33149-1098 USA
| | | | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| |
Collapse
|
32
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
33
|
Abstract
The geographic distribution of migratory species can span thousands of kilometers. Yet, traits that enable large-scale migrations are poorly understood. A recent study demonstrates that juvenile eels use the Earth's magnetism for their dispersal, with possible implications for their evolution.
Collapse
Affiliation(s)
- Miguel Baltazar-Soares
- Faculty of Science and Technology, Bournemouth University, Christchurch House, Talbot Campus, Poole, Dorset BH12 5BB, UK.
| | - Christophe Eizaguirre
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E14NS, London, UK
| |
Collapse
|
34
|
Fey DP, Jakubowska M, Greszkiewicz M, Andrulewicz E, Otremba Z, Urban-Malinga B. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:150-158. [PMID: 30780112 DOI: 10.1016/j.aquatox.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The number of underwater cables transferring electric current in sea and freshwater environments is constantly increasing. As a result, the risk of negative effects of magnetic fields generated in the vicinity of those cables on fish eggs and larvae is also growing. This is especially the case for species that settle on the bottom for certain periods of time during early development. To study those effects, eggs and larvae of rainbow trout, Oncorhynchus mykiss, were subjected under experimental conditions to a static magnetic field (MF) of 10 m T and a 50 Hz electromagnetic field (EMF) of 1 m T for a period of 36 days (i.e., from eyed egg stage to approximately 26 days post hatching, dph). Neither MF nor EMF had significant effect on embryonic or larval mortality, hatching time, larval growth, or the time of larvae swim-up from the bottom. However, both MF and EMF enhanced the yolk-sac absorption rate. Although it was not related directly to magnetic field effect, it was also shown that larvae with absorbed yolk-sacs by the time of swim-up were less efficient in taking advantage of available food at first feeding (i.e., obtained smaller weight at age). That indicates the importance of processes affecting yolk-sac absorption rate.
Collapse
Affiliation(s)
- Dariusz P Fey
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland.
| | - Magdalena Jakubowska
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Martyna Greszkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Eugeniusz Andrulewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Zbigniew Otremba
- Department of Physics, Gdynia Maritime University, Morska 81-87 Str., 81-225 Gdynia, Poland
| | - Barbara Urban-Malinga
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| |
Collapse
|
35
|
Lohmann KJ, Lohmann CMF. There and back again: natal homing by magnetic navigation in sea turtles and salmon. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb184077. [PMID: 30728225 DOI: 10.1242/jeb.184077] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diverse marine animals migrate across vast expanses of seemingly featureless ocean before returning as adults to reproduce in the area where they originated. How animals accomplish such feats of natal homing is an enduring mystery. Growing evidence suggests, however, that sea turtles and salmon imprint on the magnetic field of their home area when young and then use this information to return as adults. Both turtles and salmon have the sensory abilities needed to detect the unique 'magnetic signature' of a coastal area. Analyses have revealed that, for both groups of animals, subtle changes in the geomagnetic field of the home region are correlated with changes in natal homing behavior. In turtles, a relationship between population genetic structure and the magnetic fields that exist at nesting beaches has also been detected, consistent with the hypothesis that turtles recognize their natal areas on the basis of magnetic cues. Salmon likely use a biphasic navigational strategy in which magnetic cues guide fish through the open sea and into the proximity of the home river where chemical cues allow completion of the spawning migration. Similarly, turtles may also exploit local cues to help pinpoint nesting areas once they have arrived in the vicinity. Throughout most of the natal homing migration, however, magnetic navigation appears to be the primary mode of long-distance guidance in both sea turtles and salmon.
Collapse
Affiliation(s)
- Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
36
|
Fey DP, Greszkiewicz M, Otremba Z, Andrulewicz E. Effect of static magnetic field on the hatching success, growth, mortality, and yolk-sac absorption of larval Northern pike Esox lucius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1239-1244. [PMID: 30180332 DOI: 10.1016/j.scitotenv.2018.07.427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The effect of anthropogenic magnetic field on water ecosystems has been constantly growing as a result of an increasing number of underwater cables transferring electric current. Northern pike were subjected to a static magnetic field (emitted by DC cables) of 10 milliteslas (mT) during the embryonic phase and in the first six days post-hatching (DPH), in the period when larvae of this species in the natural environment are attached to artificial substrate. No statistically significant effect of a magnetic field was recorded on the hatching success (87.1% in the magnetic field and 83.3% in the control) or on larvae mortality (54.5% in magnetic field and 54.3% in control). The size of larvae at hatching (9.84 mm SL in a magnetic field and 9.86 mm SL in a control) and their growth rate during the first six days of life (0.52 mm·day-1 in a magnetic field and 0.53 mm·day-1 in a control) were also almost the same - no statistically significant differences. A significant effect of a magnetic field, however, was observed on the time of hatching (one day earlier in a magnetic field than in a control), yolk-sac size on 1 DPH (smaller in a magnetic field), and yolk-sac absorption time (faster in a magnetic field). Faster yolk-sac absorption time in a magnetic field was interpreted as an indication of increased metabolic rate. Even if some negative consequences may be expected as a result of shorter time until first feeding, the actual risk for increased Northern pike larvae mortality due to those factors seems to be negligible. Although it cannot be excluded that higher than 10 mT magnetic field values are hazardous for fish larvae, such values do not occur in the natural environment (e.g. along underwater cables).
Collapse
Affiliation(s)
- D P Fey
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland.
| | - M Greszkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Z Otremba
- Maritime University, ul. Morska 81-87, 81-332 Gdynia, Poland
| | - E Andrulewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| |
Collapse
|
37
|
Painter K, Plochocka A. Efficiency of island homing by sea turtles under multimodal navigating strategies. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Abstract
In the beginning there was great confusion about animal migration. Aristotle, noting that the types of birds around him changed with the seasons, concluded that summer redstarts turned into robins at the onset of winter, and that garden warblers became blackcaps [1]. Others thought that birds disappear in winter because they hibernate submerged in mud. In a case of art decidedly not imitating life, a 16th century illustration accompanying the writings of Swedish Archbishop Olaus Magnus showed a fishing net filled with hibernating swallows being pulled from a lake [1]. Gradually, over centuries, these fanciful early explanations gave way to an understanding that migration is a widespread phenomenon and that Earth is alive with itinerant animals traversing continents, seas, and skies (Figure 1).
Collapse
Affiliation(s)
- Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Long-distance navigation and magnetoreception in migratory animals. Nature 2018; 558:50-59. [PMID: 29875486 DOI: 10.1038/s41586-018-0176-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
For centuries, humans have been fascinated by how migratory animals find their way over thousands of kilometres. Here, I review the mechanisms used in animal orientation and navigation with a particular focus on long-distance migrants and magnetoreception. I contend that any long-distance navigational task consists of three phases and that no single cue or mechanism will enable animals to navigate with pinpoint accuracy over thousands of kilometres. Multiscale and multisensory cue integration in the brain is needed. I conclude by raising twenty important mechanistic questions related to long-distance animal navigation that should be solved over the next twenty years.
Collapse
|
40
|
Taylor BK. Bioinspired magnetoreception and navigation using magnetic signatures as waypoints. BIOINSPIRATION & BIOMIMETICS 2018; 13:046003. [PMID: 29763413 DOI: 10.1088/1748-3190/aabbec] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field properties as rare or unique signatures that mark specific locations. Using a discrete number of these signatures as goal waypoints, the strategy navigates through a closed set of points several times in a variety of environmental conditions, and with various levels of sensor noise. The results from this engineering/quantitative biology approach support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provides insights into features and constraints that would enable navigational success or failure. The findings also offer insights into how autonomous engineered platforms might be designed to leverage the magnetic field as a navigational resource.
Collapse
Affiliation(s)
- Brian K Taylor
- Integrated Sensing and Processing Sciences, Air Force Research Laboratory-Munitions Directorate, Eglin Air Force Base, FL 32542, United States of America
| |
Collapse
|
41
|
Brothers JR, Lohmann KJ. Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles. Curr Biol 2018; 28:1325-1329.e2. [DOI: 10.1016/j.cub.2018.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
42
|
Ernst DA, Lohmann KJ. Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters. J Exp Biol 2018; 221:jeb.172205. [DOI: 10.1242/jeb.172205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/29/2017] [Indexed: 11/20/2022]
Abstract
On a global scale, the geomagnetic field varies predictably across Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus, is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice; lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment.
Collapse
Affiliation(s)
- David A. Ernst
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kenneth J. Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Omeyer LCM, Godley BJ, Broderick AC. Growth rates of adult sea turtles. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Chae KS, Kim YH. Potential Impact of Geomagnetic Field in Transcranial Magnetic Stimulation for the Treatment of Neurodegenerative Diseases. Front Hum Neurosci 2017; 11:478. [PMID: 29021752 PMCID: PMC5623677 DOI: 10.3389/fnhum.2017.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
Throughout the long history of various therapeutic trials of transcranial magnetic stimulation (TMS), some TMS protocols have been reported to be clearly effective in the treatment of neurodegenerative diseases. Despite promising results from repetitive TMS (rTMS) using low frequency electromagnetic fields (EMFs) for neurodegenerative diseases, the low reproducibility has hampered the clinical applications of rTMS. Here, based on the notion of radical pair mechanism explaining magnetoreception in living organisms, we propose a new perspective that rTMS with controlled geomagnetic field (rTMS-GMF) can be an efficient and reproducible therapeutic approach for neurodegenerative diseases. In addition, combined consideration of imprinted GMF and/or EMFs in patients’ earlier life may augment the potential efficacy of the rTMS-GMF. The investigation of this approach is intriguing and may have a high impact on the technical suitability and clinical application of the rTMS-GMF in the near future.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology Education, Kyungpook National University, Daegu, South Korea.,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences, Neuroscience Program, Delaware State University, Dover, DE, United States
| |
Collapse
|
45
|
Gaos AR, Lewison RL, Jensen MP, Liles MJ, Henriquez A, Chavarria S, Pacheco CM, Valle M, Melero D, Gadea V, Altamirano E, Torres P, Vallejo F, Miranda C, LeMarie C, Lucero J, Oceguera K, Chácon D, Fonseca L, Abrego M, Seminoff JA, Flores EE, Llamas I, Donadi R, Peña B, Muñoz JP, Ruales DA, Chaves JA, Otterstrom S, Zavala A, Hart CE, Brittain R, Alfaro-Shigueto J, Mangel J, Yañez IL, Dutton PH. Natal foraging philopatry in eastern Pacific hawksbill turtles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170153. [PMID: 28878969 PMCID: PMC5579084 DOI: 10.1098/rsos.170153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.
Collapse
Affiliation(s)
- Alexander R. Gaos
- Department of Biology, San Diego State University, San Diego, CA, USA
- Graduate Group in Ecology, University of California Davis, Davis, CA, USA
- Marine Mammal and Turtle Division, Ocean Associates Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | | | - Michael P. Jensen
- Marine Mammal and Turtle Division, Ocean Associates Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Michael J. Liles
- Department of Biology, University of Texas at El Paso, El Paso, TX, USA
- ProCosta, San Salvador, El Salvador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Ana Henriquez
- ProCosta, San Salvador, El Salvador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Sofia Chavarria
- ProCosta, San Salvador, El Salvador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Carlos Mario Pacheco
- ProCosta, San Salvador, El Salvador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Melissa Valle
- ProCosta, San Salvador, El Salvador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - David Melero
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Velkiss Gadea
- Marine Turtles Department, Fauna & Flora International, Managua, Nicaragua
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Eduardo Altamirano
- Marine Turtles Department, Fauna & Flora International, Managua, Nicaragua
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Perla Torres
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional de Mexico, Mazatlán, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Felipe Vallejo
- Equilibrio Azul, Quito, Ecuador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Cristina Miranda
- Equilibrio Azul, Quito, Ecuador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Carolina LeMarie
- Equilibrio Azul, Quito, Ecuador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Jesus Lucero
- Grupo Tortuguero de las Californias, A.C, La Paz, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Karen Oceguera
- Grupo Tortuguero de las Californias, A.C, La Paz, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Didiher Chácon
- Latin American Sea Turtles, Tibás, Costa Rica
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Luis Fonseca
- Latin American Sea Turtles, Tibás, Costa Rica
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Marino Abrego
- Conservación de Recursos Costeros y Marinos, Ministerio del Ambiente de Panamá, Panama City, Panama
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Jeffrey A. Seminoff
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Eric E. Flores
- Sistema Nacional de Investigación, Panama City, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panama City, Panama
| | - Israel Llamas
- Campamento Tortuguero Mayto, A.C., Mayto, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | | | - Bernardo Peña
- Conservación de Recursos Costeros y Marinos, Ministerio del Ambiente de Panamá, Panama City, Panama
| | - Juan Pablo Muñoz
- Marine Ecology Department, Universidad San Francisco de Quito/Galapagos Science Center, San Cristóbal, Galapagos Archipelago, Ecuador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Daniela Alarcòn Ruales
- Marine Ecology Department, Universidad San Francisco de Quito/Galapagos Science Center, San Cristóbal, Galapagos Archipelago, Ecuador
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Jaime A. Chaves
- Marine Ecology Department, Universidad San Francisco de Quito/Galapagos Science Center, San Cristóbal, Galapagos Archipelago, Ecuador
| | - Sarah Otterstrom
- Paso Pacifico, Managua, Nicaragua
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Alan Zavala
- Unidad Sinaloa, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Sinaloa, Mexico
- Instituto Politécnico Nacional, Sinaloa, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Catherine E. Hart
- Red Tortuguera, A.C, Guayabitos, Mexico
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Rachel Brittain
- Akazul, La Barrona, Guatemala
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Joanna Alfaro-Shigueto
- Marine Turtle Research Group, School of Biosciences, University of Exeter, Penryn, UK
- Marine Biology Department, Universidad Cientifica del Sur, Lima, Peru
- ProDelphinus, Lima, Peru
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | - Jeffrey Mangel
- Marine Turtle Research Group, School of Biosciences, University of Exeter, Penryn, UK
- Eastern Pacific Hawksbill Initiative, San Diego, CA, USA
| | | | - Peter H. Dutton
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| |
Collapse
|
46
|
Taylor BK. Bioinspired magnetic reception and multimodal sensing. BIOLOGICAL CYBERNETICS 2017; 111:287-308. [PMID: 28660347 DOI: 10.1007/s00422-017-0720-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Several animals use Earth's magnetic field in concert with other sensor modes to accomplish navigational tasks ranging from local homing to continental scale migration. However, despite extensive research, animal magnetic reception remains poorly understood. Similarly, the Earth's magnetic field offers a signal that engineered systems can leverage to navigate in environments where man-made positioning systems such as GPS are either unavailable or unreliable. This work uses a behavioral strategy inspired by the migratory behavior of sea turtles to locate a magnetic goal and respond to wind when it is present. Sensing is performed using a number of distributed sensors. Based on existing theoretical biology considerations, data processing is performed using combinations of circles and ellipses to exploit the distributed sensing paradigm. Agent-based simulation results indicate that this approach is capable of using two separate magnetic properties to locate a goal from a variety of initial conditions in both noiseless and noisy sensory environments. The system's ability to locate the goal appears robust to noise at the cost of overall path length.
Collapse
Affiliation(s)
- Brian K Taylor
- Air Force Research Laboratory - Munitions Directorate, 101 West Eglin Blvd Ste. 209, Bldg 13, Eglin AFB, FL, 32542, USA.
| |
Collapse
|
47
|
Kelly I, Leon JX, Gilby BL, Olds AD, Schlacher TA. Marine turtles are not fussy nesters: a novel test of small-scale nest site selection using structure from motion beach terrain information. PeerJ 2017; 5:e2770. [PMID: 28070454 PMCID: PMC5217528 DOI: 10.7717/peerj.2770] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nest selection is widely regarded as a key process determining the fitness of individuals and viability of animal populations. For marine turtles that nest on beaches, this is particularly pivotal as the nesting environment can significantly control reproductive success.The aim of this study was to identify the environmental attributes of beaches (i.e., morphology, vegetation, urbanisation) that may be associated with successful oviposition in green and loggerhead turtle nests. METHODS We quantified the proximity of turtle nests (and surrounding beach locations) to urban areas, measured their exposure to artificial light, and used ultra-high resolution (cm-scale) digital surface models derived from Structure-from-Motion (SfM) algorithms, to characterise geomorphic and vegetation features of beaches on the Sunshine Coast, eastern Australia. RESULTS At small spatial scales (i.e., <100 m), we found no evidence that turtles selected nest sites based on a particular suite of environmental attributes (i.e., the attributes of nest sites were not consistently different from those of surrounding beach locations). Nest sites were, however, typically characterised by occurring close to vegetation, on parts of the shore where the beach- and dune-face was concave and not highly rugged, and in areas with moderate exposure to artificial light. CONCLUSION This study used a novel empirical approach to identify the attributes of turtle nest sites from a broader 'envelope' of environmental nest traits, and is the first step towards optimizing conservation actions to mitigate, at the local scale, present and emerging human impacts on turtle nesting beaches.
Collapse
Affiliation(s)
- Ilana Kelly
- School of Science and Engineering, University of the Sunshine Coast , Maroochydore , Queensland , Australia
| | - Javier X Leon
- School of Science and Engineering, University of the Sunshine Coast , Maroochydore , Queensland , Australia
| | - Ben L Gilby
- School of Science and Engineering, University of the Sunshine Coast , Maroochydore , Queensland , Australia
| | - Andrew D Olds
- School of Science and Engineering, University of the Sunshine Coast , Maroochydore , Queensland , Australia
| | - Thomas A Schlacher
- School of Science and Engineering, University of the Sunshine Coast , Maroochydore , Queensland , Australia
| |
Collapse
|
48
|
Rees AF, Alfaro-Shigueto J, Barata PCR, Bjorndal KA, Bolten AB, Bourjea J, Broderick AC, Campbell LM, Cardona L, Carreras C, Casale P, Ceriani SA, Dutton PH, Eguchi T, Formia A, Fuentes MMPB, Fuller WJ, Girondot M, Godfrey MH, Hamann M, Hart KM, Hays GC, Hochscheid S, Kaska Y, Jensen MP, Mangel JC, Mortimer JA, Naro-Maciel E, Ng CKY, Nichols WJ, Phillott AD, Reina RD, Revuelta O, Schofield G, Seminoff JA, Shanker K, Tomás J, van de Merwe JP, Van Houtan KS, Vander Zanden HB, Wallace BP, Wedemeyer-Strombel KR, Work TM, Godley BJ. Are we working towards global research priorities for management and conservation of sea turtles? ENDANGER SPECIES RES 2016. [DOI: 10.3354/esr00801] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Shaver DJ, Lamont MM, Maxwell S, Walker JS, Dillingham T. Head-Started Kemp's Ridley Turtle (Lepidochelys kempii) Nest Recorded in Florida: Possible Implications. CHELONIAN CONSERVATION AND BIOLOGY 2016. [DOI: 10.2744/ccb-1192.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donna J. Shaver
- National Park Service, Padre Island National Seashore, PO Box 181300, Corpus Christi, Texas 78480-1300 USA [ ; ]
| | - Margaret M. Lamont
- US Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida 32653 USA [ ]
| | - Sharon Maxwell
- South Walton Turtle Watch Group, 74 Birch Street, Freeport, Florida 32439 USA [ ]
| | - Jennifer Shelby Walker
- National Park Service, Padre Island National Seashore, PO Box 181300, Corpus Christi, Texas 78480-1300 USA [ ; ]
| | - Ted Dillingham
- 130 Hickory Hill Road SE, Decatur, Alabama 35603 USA [ ]
| |
Collapse
|
50
|
Orchan Y, Ovaskainen O, Bouten W, Nathan R. Novel Insights into the Map Stage of True Navigation in Nonmigratory Wild Birds (Stone Curlews, Burhinus oedicnemus). Am Nat 2016; 187:E152-65. [PMID: 27172601 DOI: 10.1086/686054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the map-and-compass model of true navigation, animals at unfamiliar sites determine their position relative to a destination site (the map stage) before progressing toward it (the compass stage). A major challenge in animal navigation research is to understand the still cryptic map stage in general and the map stage for free-ranging wild animals in particular. To address this challenge, we experimentally translocated wild, nonmigratory birds (stone curlews [Burhinus oedicnemus]) far from their nests and GPS-tracked their subsequent movements at high resolution and for long durations. Homing success was high and cannot be explained by random chance or landmark navigation, implying true navigation. Although highly motivated to return home, the homing trajectories of translocated birds exhibited a distinct, two-phase pattern resembling the map and compass stages: a long, tortuous wandering phase without consistent approach home, followed by a short and direct return phase. Birds retranslocated to the same site initially repeated the original wandering path but switched to the return phase earlier and after covering a smaller area; they returned home via a different path but with similar movement properties. We thus propose the map learning hypothesis, asserting that birds resolve the map by acquiring, potentially through learning, the relevant navigation cues during the wandering phase.
Collapse
|