1
|
La Fortezza M, Verwilt J, Cossey SM, Eisner SA, Velicer GJ, Yu YTN. Deletion of an sRNA primes development in a multicellular bacterium. iScience 2025; 28:111980. [PMID: 40124474 PMCID: PMC11928866 DOI: 10.1016/j.isci.2025.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Small non-coding RNAs (sRNAs) regulate gene expression of many biological processes. During growth, some myxobacteria produce an sRNA-Pxr-that blocks fruiting-body development, an aggregative multicellular process typically triggered by starvation. Deleting the pxr gene allows Myxococcus xanthus to develop despite nutrient availability, but Pxr binding targets and the genes regulated by Pxr remain unknown. Here, after showing that Pxr controls the temporal dynamics of development, we compare the transcriptomes of vegetative M. xanthus cells possessing vs. lacking pxr. Over half of the genes impacted by pxr deletion are linked to development, including known and previously undiscovered critical regulators. Pxr also positively regulates genes associated with general metabolic processes. Our study discovers phenotypic effects of Pxr regulation with ecological importance, identifies the suite of genes this sRNA controls during vegetative growth and reveals a previously unknown developmental regulator. These findings provide insights into the molecular mechanism controlling myxobacterial development.
Collapse
Affiliation(s)
| | - Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Sarah M. Cossey
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| | | | | | - Yuen-Tsu N. Yu
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| |
Collapse
|
2
|
Blake C, Barber JN, Connallon T, McDonald MJ. Evolutionary shift of a tipping point can precipitate, or forestall, collapse in a microbial community. Nat Ecol Evol 2024; 8:2325-2335. [PMID: 39294402 DOI: 10.1038/s41559-024-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system's tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker's yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points-and other geometric properties of ecological communities-can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community's tipping point, potentially promoting ecological stability or accelerating collapse.
Collapse
Affiliation(s)
- Christopher Blake
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jake N Barber
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Gómez-Llano M, Bassar RD, Svensson EI, Tye SP, Siepielski AM. Meta-analytical evidence for frequency-dependent selection across the tree of life. Ecol Lett 2024; 27:e14477. [PMID: 39096013 DOI: 10.1111/ele.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
Explaining the maintenance of genetic variation in fitness-related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency-dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta-analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non-significant in mesocosms and field-based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long-standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Science, Karlstad University, Karlstad, Sweden
| | - Ronald D Bassar
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Wielgoss S, Van Dyken JD, Velicer GJ. Mutation Rate and Effective Population Size of the Model Cooperative Bacterium Myxococcus xanthus. Genome Biol Evol 2024; 16:evae066. [PMID: 38526062 PMCID: PMC11069108 DOI: 10.1093/gbe/evae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Intrinsic rates of genetic mutation have diverged greatly across taxa and exhibit statistical associations with several other parameters and features. These include effective population size (Ne), genome size, and gametic multicellularity, with the latter being associated with both increased mutation rates and decreased effective population sizes. However, data sufficient to test for possible relationships between microbial multicellularity and mutation rate (µ) are lacking. Here, we report estimates of two key population-genetic parameters, Ne and µ, for Myxococcus xanthus, a bacterial model organism for the study of aggregative multicellular development, predation, and social swarming. To estimate µ, we conducted an ∼400-day mutation accumulation experiment with 46 lineages subjected to regular single colony bottlenecks prior to clonal regrowth. Upon conclusion, we sequenced one clonal-isolate genome per lineage. Given collective evolution for 85,323 generations across all lines, we calculate a per base-pair mutation rate of ∼5.5 × 10-10 per site per generation, one of the highest mutation rates among free-living eubacteria. Given our estimate of µ, we derived Ne at ∼107 from neutral diversity at four-fold degenerate sites across two dozen M. xanthus natural isolates. This estimate is below average for eubacteria and strengthens an already clear negative correlation between µ and Ne in prokaryotes. The higher and lower than average mutation rate and Ne for M. xanthus, respectively, amplify the question of whether any features of its multicellular life cycle-such as group-size reduction during fruiting-body development-or its highly structured spatial distribution have significantly influenced how these parameters have evolved.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - James David Van Dyken
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Gregory J Velicer
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Vasse M, Fiegna F, Kriesel B, Velicer GJ. Killer prey: Ecology reverses bacterial predation. PLoS Biol 2024; 22:e3002454. [PMID: 38261596 PMCID: PMC10805292 DOI: 10.1371/journal.pbio.3002454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024] Open
Abstract
Ecological variation influences the character of many biotic interactions, but examples of predator-prey reversal mediated by abiotic context are few. We show that the temperature at which prey grow before interacting with a bacterial predator can determine the very direction of predation, reversing predator and prey identities. While Pseudomonas fluorescens reared at 32°C was extensively killed by the generalist predator Myxococcus xanthus, P. fluorescens reared at 22°C became the predator, slaughtering M. xanthus to extinction and growing on its remains. Beyond M. xanthus, diffusible molecules in P. fluorescens supernatant also killed 2 other phylogenetically distant species among several examined. Our results suggest that the sign of lethal microbial antagonisms may often change across abiotic gradients in natural microbial communities, with important ecological and evolutionary implications. They also suggest that a larger proportion of microbial warfare results in predation-the killing and consumption of organisms-than is generally recognized.
Collapse
Affiliation(s)
- Marie Vasse
- MIVEGEC (UMR 5290 CNRS, IRD, UM), CNRS 34394 Montpellier, France
| | - Francesca Fiegna
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Ben Kriesel
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
6
|
Booth SC, Smith WPJ, Foster KR. The evolution of short- and long-range weapons for bacterial competition. Nat Ecol Evol 2023; 7:2080-2091. [PMID: 38036633 PMCID: PMC10697841 DOI: 10.1038/s41559-023-02234-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Bacteria possess a diverse range of mechanisms for inhibiting competitors, including bacteriocins, tailocins, type VI secretion systems and contact-dependent inhibition (CDI). Why bacteria have evolved such a wide array of weapon systems remains a mystery. Here we develop an agent-based model to compare short-range weapons that require cell-cell contact, with long-range weapons that rely on diffusion. Our model predicts that contact weapons are useful when an attacking strain is outnumbered, facilitating invasion and establishment. By contrast, ranged weapons tend to be effective only when attackers are abundant. We test our predictions with the opportunistic pathogen Pseudomonas aeruginosa, which naturally carries multiple weapons, including CDI and diffusing tailocins. As predicted, short-range CDI can function at low and high frequencies, while long-range tailocins require high frequency and cell density to function effectively. Head-to-head competition experiments with the two weapon types further support our predictions: a tailocin attacker defeats CDI only when it is numerically dominant, but then we find it can be devastating. Finally, we show that the two weapons work well together when one strain employs both. We conclude that short- and long-range weapons serve different functions and allow bacteria to fight both as individuals and as a group.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Fischer MS, Patel NJ, de Lorimier PJ, Traxler MF. Prescribed fire selects for a pyrophilous soil sub-community in a northern California mixed conifer forest. Environ Microbiol 2023; 25:2498-2515. [PMID: 37553729 DOI: 10.1111/1462-2920.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Prescribed fire is a critical strategy for mitigating the effects of catastrophic wildfires. While the above-ground response to fire has been well-documented, fewer studies have addressed the effect of prescribed fire on soil microorganisms. To understand how soil microbial communities respond to prescribed fire, we sampled four plots at a high temporal resolution (two burned, two controls), for 17 months, in a mixed conifer forest in northern California, USA. Using amplicon sequencing, we found that prescribed fire significantly altered both fungal and bacterial community structure. We found that most differentially abundant fungal taxa had a positive fold-change, while differentially abundant bacterial taxa generally had a negative fold-change. We tested the null hypothesis that these communities assembled due to neutral processes (i.e., drift and/or dispersal), finding that >90% of taxa fit this neutral prediction. However, a dynamic sub-community composed of burn-associated indicator taxa that were positively differentially abundant was enriched for non-neutral amplicon sequence variants, suggesting assembly via deterministic processes. In synthesizing these results, we identified 15 pyrophilous taxa with a significant and positive response to prescribed burns. Together, these results lay the foundation for building a process-driven understanding of microbial community assembly in the context of the classical disturbance regime of fire.
Collapse
Affiliation(s)
- Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Neem J Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Phillip J de Lorimier
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Nucci A, Janaszkiewicz J, Rocha EPC, Rendueles O. Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola. MICROLIFE 2023; 4:uqad038. [PMID: 37781688 PMCID: PMC10540941 DOI: 10.1093/femsml/uqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Klebsiella variicola is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (rough and dry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had a truncated mrkH gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Juliette Janaszkiewicz
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| |
Collapse
|
9
|
Fiegna F, Pande S, Peitz H, Velicer GJ. Widespread density dependence of bacterial growth under acid stress. iScience 2023; 26:106952. [PMID: 37332671 PMCID: PMC10275722 DOI: 10.1016/j.isci.2023.106952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.
Collapse
Affiliation(s)
- Francesca Fiegna
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Samay Pande
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Gregory J. Velicer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
10
|
Hsu P, Cheng Y, Liao C, Litan RRR, Jhou Y, Opoc FJG, Amine AAA, Leu J. Rapid evolutionary repair by secondary perturbation of a primary disrupted transcriptional network. EMBO Rep 2023; 24:e56019. [PMID: 37009824 PMCID: PMC10240213 DOI: 10.15252/embr.202256019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The discrete steps of transcriptional rewiring have been proposed to occur neutrally to ensure steady gene expression under stabilizing selection. A conflict-free switch of a regulon between regulators may require an immediate compensatory evolution to minimize deleterious effects. Here, we perform an evolutionary repair experiment on the Lachancea kluyveri yeast sef1Δ mutant using a suppressor development strategy. Complete loss of SEF1 forces cells to initiate a compensatory process for the pleiotropic defects arising from misexpression of TCA cycle genes. Using different selective conditions, we identify two adaptive loss-of-function mutations of IRA1 and AZF1. Subsequent analyses show that Azf1 is a weak transcriptional activator regulated by the Ras1-PKA pathway. Azf1 loss-of-function triggers extensive gene expression changes responsible for compensatory, beneficial, and trade-off phenotypes. The trade-offs can be alleviated by higher cell density. Our results not only indicate that secondary transcriptional perturbation provides rapid and adaptive mechanisms potentially stabilizing the initial stage of transcriptional rewiring but also suggest how genetic polymorphisms of pleiotropic mutations could be maintained in the population.
Collapse
Affiliation(s)
- Po‐Chen Hsu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | - Yu‐Hsuan Cheng
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Present address:
Morgridge Institute for ResearchMadisonWIUSA
- Present address:
Howard Hughes Medical InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chia‐Wei Liao
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ting Jhou
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | | | - Jun‐Yi Leu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
11
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Strugariu A, Martin RA. Factor in Fear: Interference Competition in Polymorphic Spadefoot Toad Tadpoles and Its Potential Role in Disruptive Selection. Animals (Basel) 2023; 13:ani13071264. [PMID: 37048520 PMCID: PMC10093105 DOI: 10.3390/ani13071264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Disruptive selection arises when extreme phenotypes have a fitness advantage compared to more-intermediate phenotypes. Theory and evidence suggest that intraspecific resource competition is a key driver of disruptive selection. However, while competition can be indirect (exploitative) or direct (interference), the role of interference competition in disruptive selection has not been tested, and most models of disruptive selection assume exploitative competition. We experimentally investigated whether the type of competition affects the outcome of competitive interactions using a system where disruptive selection is common: Mexican spadefoot toads (Spea multiplicata). Spea tadpoles develop into alternative resource-use phenotypes: carnivores, which consume fairy shrimp and other tadpoles, and omnivores, which feed on algae and detritus. Tadpoles intermediate in phenotype have low fitness when competition is intense, as they are outcompeted by the specialized tadpoles. Our experiments revealed that the presence of carnivores significantly decreased foraging behavior in intermediate tadpoles, and that intermediate tadpoles had significantly lower growth rates in interference competition treatments with carnivores but not with omnivores. Interference competition may therefore be important in driving disruptive selection. As carnivore tadpoles are also cannibalistic, the ‘fear’ effect may have a greater impact on intermediate tadpoles than exploitative competition alone, similarly to non-consumptive effects in predator–prey or intraguild relationships.
Collapse
Affiliation(s)
- Alexandru Strugariu
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, 700057 Iași, Romania
| | - Ryan Andrew Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Schaal KA, Yu YTN, Vasse M, Velicer GJ. Allopatric divergence of cooperators confers cheating resistance and limits effects of a defector mutation. BMC Ecol Evol 2022; 22:141. [PMID: 36510120 PMCID: PMC9746145 DOI: 10.1186/s12862-022-02094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.
Collapse
Affiliation(s)
- Kaitlin A. Schaal
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Marie Vasse
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland ,grid.121334.60000 0001 2097 0141Institute MIVEGEC (UMR 5290 CNRS, IRD, UM), 34394 Montpellier, France
| | - Gregory J. Velicer
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
La Fortezza M, Rendueles O, Keller H, Velicer GJ. Hidden paths to endless forms most wonderful: ecology latently shapes evolution of multicellular development in predatory bacteria. Commun Biol 2022; 5:977. [PMID: 36114258 PMCID: PMC9481553 DOI: 10.1038/s42003-022-03912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractEcological causes of developmental evolution, for example from predation, remain much investigated, but the potential importance of latent phenotypes in eco-evo-devo has received little attention. Using the predatory bacterium Myxococcus xanthus, which undergoes aggregative fruiting body development upon starvation, we tested whether adaptation to distinct growth environments that do not induce development latently alters developmental phenotypes under starvation conditions that do induce development. In an evolution experiment named MyxoEE-3, growing M. xanthus populations swarmed across agar surfaces while adapting to conditions varying at factors such as surface stiffness or prey identity. Such ecological variation during growth was found to greatly impact the latent evolution of development, including fruiting body morphology, the degree of morphological trait correlation, reaction norms, degrees of developmental plasticity and stochastic diversification. For example, some prey environments promoted retention of developmental proficiency whereas others led to its systematic loss. Our results have implications for understanding evolutionary interactions among predation, development and motility in myxobacterial life cycles, and, more broadly, how ecology can profoundly shape the evolution of developmental systems latently rather than by direct selection on developmental features.
Collapse
|
15
|
Kraigher B, Butolen M, Stefanic P, Mandic Mulec I. Kin discrimination drives territorial exclusion during Bacillus subtilis swarming and restrains exploitation of surfactin. THE ISME JOURNAL 2022; 16:833-841. [PMID: 34650232 PMCID: PMC8857193 DOI: 10.1038/s41396-021-01124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Swarming is the collective movement of bacteria across a surface. It requires the production of surfactants (public goods) to overcome surface tension and provides an excellent model to investigate bacterial cooperation. Previously, we correlated swarm interaction phenotypes with kin discrimination between B. subtilis soil isolates, by showing that less related strains form boundaries between swarms and highly related strains merge. However, how kin discrimination affects cooperation and territoriality in swarming bacteria remains little explored. Here we show that the pattern of surface colonization by swarming mixtures is influenced by kin types. Closely related strain mixtures colonize the surface in a mixed swarm, while mixtures of less related strains show competitive exclusion as only one strain colonizes the surface. The outcome of nonkin swarm expansion depends on the initial ratio of the competing strains, indicating positive frequency-dependent competition. We find that addition of surfactin (a public good excreted from cells) can complement the swarming defect of nonkin mutants, whereas close encounters in nonkin mixtures lead to territorial exclusion, which limits the exploitation of surfactin by nonkin nonproducers. The work suggests that kin discrimination driven competitive territorial exclusion may be an important determinant for the success of cooperative surface colonization.
Collapse
Affiliation(s)
- Barbara Kraigher
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Monika Butolen
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic Mulec
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia ,grid.8954.00000 0001 0721 6013Chair of Micro Process Engineering and Technology COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
La Fortezza M, Velicer GJ. Social selection within aggregative multicellular development drives morphological evolution. Proc Biol Sci 2021; 288:20211522. [PMID: 34814750 PMCID: PMC8611335 DOI: 10.1098/rspb.2021.1522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners-a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.
Collapse
Affiliation(s)
- Marco La Fortezza
- Institute for Integrative Biology, ETH Zürich, Zürich 8092, Switzerland
| | | |
Collapse
|
17
|
Smith J, Inglis RF. Evaluating kin and group selection as tools for quantitative analysis of microbial data. Proc Biol Sci 2021; 288:20201657. [PMID: 34004128 PMCID: PMC8131122 DOI: 10.1098/rspb.2020.1657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
Kin selection and multilevel selection theory are often used to interpret experiments about the evolution of cooperation and social behaviour among microbes. But while these experiments provide rich, detailed fitness data, theory is mostly used as a conceptual heuristic. Here, we evaluate how kin and multilevel selection theory perform as quantitative analysis tools. We reanalyse published microbial datasets and show that the canonical fitness models of both theories are almost always poor fits because they use statistical regressions misspecified for the strong selection and non-additive effects we show are widespread in microbial systems. We identify analytical practices in empirical research that suggest how theory might be improved, and show that analysing both individual and group fitness outcomes helps clarify the biology of selection. A data-driven approach to theory thus shows how kin and multilevel selection both have untapped potential as tools for quantitative understanding of social evolution in all branches of life.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, University of Missouri–St Louis, St Louis MO 63121, USA
| | - R. Fredrik Inglis
- Department of Biology, University of Missouri–St Louis, St Louis MO 63121, USA
| |
Collapse
|
18
|
Gorter FA, Tabares-Mafla C, Kassen R, Schoustra SE. Experimental Evolution of Interference Competition. Front Microbiol 2021; 12:613450. [PMID: 33841345 PMCID: PMC8027309 DOI: 10.3389/fmicb.2021.613450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/21/2023] Open
Abstract
The importance of interference competition, where individuals compete through antagonistic traits such as the production of toxins, has long been recognized by ecologists, yet understanding how these types of interactions evolve remains limited. Toxin production is thought to be beneficial when competing with a competitor. Here, we explore if antagonism can evolve by long-term selection of the toxin (pyocin) producing strain Pseudomonas aeruginosa PAO1 in the presence (or absence) of one of three clinical isolates of the same species (Recipient) over ten serial transfers. We find that inhibition decreases in the absence of a recipient. In the presence of a recipient, antagonism evolved to be different depending on the recipient used. Our study shows that the evolution of interference competition by toxins can decrease or increase, experimentally demonstrating the importance of this type of interaction for the evolution of species interactions.
Collapse
Affiliation(s)
- Florien A Gorter
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands.,Department of Environmental Systems Science, Eidgenössische Technische Hochschule, Zurich, Switzerland.,Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Droplet printing reveals the importance of micron-scale structure for bacterial ecology. Nat Commun 2021; 12:857. [PMID: 33558498 PMCID: PMC7870943 DOI: 10.1038/s41467-021-20996-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Bacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing method to arrange bacterial genotypes across a sub-millimetre array. We print strains of the gut bacterium Escherichia coli that naturally compete with one another using protein toxins. Our experiments reveal that toxin-producing strains largely eliminate susceptible non-producers when genotypes are well-mixed. However, printing strains side-by-side creates an ecological refuge where susceptible strains can persist in large numbers. Moving to competitions between toxin producers reveals that spatial structure can make the difference between one strain winning and mutual destruction. Finally, we print different potential barriers between competing strains to understand how ecological refuges form, which shows that cells closest to a toxin producer mop up the toxin and protect their clonemates. Our work provides a method to generate customised bacterial communities with defined spatial distributions, and reveals that micron-scale changes in these distributions can drive major shifts in ecology. The spatial arrangement of bacterial strains and species within microbial communities is considered crucial for their ecology. Here, Krishna Kumar et al. use a droplet-based printing method to arrange different bacterial genotypes across a sub-millimetre array, and show that micron-scale changes in spatial distributions can drive major shifts in ecology.
Collapse
|
20
|
Pande S, Pérez Escriva P, Yu YTN, Sauer U, Velicer GJ. Cooperation and Cheating among Germinating Spores. Curr Biol 2020; 30:4745-4752.e4. [PMID: 32976811 DOI: 10.1016/j.cub.2020.08.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 11/27/2022]
Abstract
Many microbes produce stress-resistant spores to survive unfavorable conditions [1-4] and enhance dispersal [1, 5]. Cooperative behavior is integral to the process of spore formation in some species [3, 6], but the degree to which germination of spore populations involves social interactions remains little explored. Myxococcus xanthus is a predatory soil bacterium that upon starvation forms spore-filled multicellular fruiting bodies that often harbor substantial diversity of endemic origin [7, 8]. Here we demonstrate that germination of M. xanthus spores formed during fruiting-body development is a social process involving at least two functionally distinct social molecules. Using pairs of natural isolates each derived from a single fruiting body that emerged on soil, we first show that spore germination exhibits positive density dependence due to a secreted "public-good" germination factor. Further, we find that a germination defect of one strain under saline stress in pure culture is complemented by addition of another strain that germinates well in saline environments and mediates cheating by the defective strain. Glycine betaine, an osmo-protectant utilized in all domains of life, is found to mediate saline-specific density dependence and cheating. Density dependence in non-saline conditions is mediated by a distinct factor, revealing socially complex spore germination involving multiple social molecules.
Collapse
Affiliation(s)
- Samay Pande
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland; Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, 560012 Bangalore, India.
| | - Pau Pérez Escriva
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 2, 8093 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 2, 8093 Zurich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Strain Background, Species Frequency, and Environmental Conditions Are Important in Determining Pseudomonas aeruginosa and Staphylococcus aureus Population Dynamics and Species Coexistence. Appl Environ Microbiol 2020; 86:AEM.00962-20. [PMID: 32651205 DOI: 10.1128/aem.00962-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial communities in the environment and in infections are typically diverse, yet we know little about the factors that determine interspecies interactions. Here, we apply concepts from ecological theory to understand how biotic and abiotic factors affect interaction patterns between the two opportunistic human pathogens Pseudomonas aeruginosa and Staphylococcus aureus, which often cooccur in polymicrobial infections. Specifically, we conducted a series of short- and long-term competition experiments between P. aeruginosa PAO1 (as our reference strain) and three different S. aureus strains (Cowan I, 6850, and JE2) at three starting frequencies and under three environmental (culturing) conditions. We found that the competitive ability of P. aeruginosa strongly depended on the strain background of S. aureus, whereby P. aeruginosa dominated against Cowan I and 6850 but not against JE2. In the latter case, both species could end up as winners depending on conditions. Specifically, we observed strong frequency-dependent fitness patterns, including positive frequency dependence, where P. aeruginosa could dominate JE2 only when common (not when rare). Finally, changes in environmental (culturing) conditions fundamentally altered the competitive balance between the two species in a way that P. aeruginosa dominance increased when moving from shaken to static environments. Altogether, our results highlight that ecological details can have profound effects on the competitive dynamics between coinfecting pathogens and determine whether two species can coexist or invade each others' populations from a state of rare frequency. Moreover, our findings might parallel certain dynamics observed in chronic polymicrobial infections.IMPORTANCE Bacterial infections are frequently caused by more than one species, and such polymicrobial infections are often considered more virulent and more difficult to treat than the respective monospecies infections. Pseudomonas aeruginosa and Staphylococcus aureus are among the most important pathogens in polymicrobial infections, and their cooccurrence is linked to worse disease outcome. There is great interest in understanding how these two species interact and what the consequences for the host are. While previous studies have mainly looked at molecular mechanisms implicated in interactions between P. aeruginosa and S. aureus, here we show that ecological factors, such as strain background, species frequency, and environmental conditions, are important elements determining population dynamics and species coexistence patterns. We propose that the uncovered principles also play major roles in infections and, therefore, proclaim that an integrative approach combining molecular and ecological aspects is required to fully understand polymicrobial infections.
Collapse
|
22
|
Abstract
Bacteria have evolved a wide range of mechanisms to harm and kill their competitors, including chemical, mechanical and biological weapons. Here we review the incredible diversity of bacterial weapon systems, which comprise antibiotics, toxic proteins, mechanical weapons that stab and pierce, viruses, and more. The evolution of bacterial weapons is shaped by many factors, including cell density and nutrient abundance, and how strains are arranged in space. Bacteria also employ a diverse range of combat behaviours, including pre-emptive attacks, suicidal attacks, and reciprocation (tit-for-tat). However, why bacteria carry so many weapons, and why they are so often used, remains poorly understood. By comparison with animals, we argue that the way that bacteria live - often in dense and genetically diverse communities - is likely to be key to their aggression as it encourages them to dig in and fight alongside their clonemates. The intensity of bacterial aggression is such that it can strongly affect communities, via complex coevolutionary and eco-evolutionary dynamics, which influence species over space and time. Bacterial warfare is a fascinating topic for ecology and evolution, as well as one of increasing relevance. Understanding how bacteria win wars is important for the goal of manipulating the human microbiome and other important microbial systems.
Collapse
|
23
|
The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci U S A 2020; 117:15123-15131. [PMID: 32541056 DOI: 10.1073/pnas.1922076117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.
Collapse
|
24
|
Cossey SM, Yu YTN, Cossu L, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: Experimental analysis of a natural population. PLoS One 2019; 14:e0224817. [PMID: 31774841 PMCID: PMC6880969 DOI: 10.1371/journal.pone.0224817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
In some species of myxobacteria, adjacent cells sufficiently similar at the adhesin protein TraA can exchange components of their outer membranes. The primary benefits of such outer membrane exchange (OME) in natural populations are unclear, but in some OME interactions, transferred OM content can include SitA toxins that kill OME participants lacking an appropriate immunity gene. Such OME-dependent toxin transfer across Myxococcus xanthus strains that differ only in their sitBAI toxin/antitoxin cassette can mediate inter-strain killing and generate colony-merger incompatibilities (CMIs)-inter-colony border phenotypes between distinct genotypes that differ from respective self-self colony interfaces. Here we ask whether OME-dependent toxin transfer is a common cause of prevalent CMIs and antagonisms between M. xanthus natural isolates identical at TraA. We disrupted traA in eleven isolates from a cm-scale soil population and assayed whether traA disruption eliminated or reduced CMIs between swarming colonies or antagonisms between strains in mixed cultures. Among 33 isolate pairs identical at traA that form clear CMIs, in no case did functional disruption of traA in one partner detectably alter CMI phenotypes. Further, traA disruption did not alleviate strong antagonisms observed during starvation-induced fruiting-body development in seven pairs of strains identical at traA. Collectively, our results suggest that most mechanisms of interference competition and inter-colony kin discrimination in natural populations of myxobacteria do not require OME. Finally, our experiments also indicate that several closely related laboratory reference strains kill some natural isolates by toxins delivered by a shared, OME-independent type VI secretion system (T6SS), suggesting that some antagonisms between sympatric natural isolates may also involve T6SS toxins.
Collapse
Affiliation(s)
- Sarah M. Cossey
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Laura Cossu
- Department of Environmental Microbiology, Eawag, Switzerland
| | - Gregory J. Velicer
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| |
Collapse
|
25
|
Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science 2019; 363:1342-1345. [PMID: 30898932 DOI: 10.1126/science.aar4416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The composition of cooperative systems, including animal societies, organismal bodies, and microbial groups, reflects their past and shapes their future evolution. However, genomic diversity within many multiunit systems remains uncharacterized, limiting our ability to understand and compare their evolutionary character. We have analyzed genomic and social-phenotype variation among 120 natural isolates of the cooperative bacterium Myxococcus xanthus derived from six multicellular fruiting bodies. Each fruiting body was composed of multiple lineages radiating from a unique recent ancestor. Genomic evolution was concentrated in selection hotspots associated with evolutionary change in social phenotypes. Synonymous mutations indicated that kin lineages within the same fruiting body often first diverged from a common ancestor more than 100 generations ago. Thus, selection appears to promote endemic diversification of kin lineages that remain together over long histories of local interaction, thereby potentiating social coevolution.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Rebekka Wolfensberger
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lei Sun
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Francesca Fiegna
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Gregory J Velicer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Anwar MN, Li ZF, Gong Y, Singh RP, Li YZ. Omics Studies Revealed the Factors Involved in the Formation of Colony Boundary in Myxococcus xanthus. Cells 2019; 8:E530. [PMID: 31163575 PMCID: PMC6627406 DOI: 10.3390/cells8060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Two unrecognizable strains of the same bacterial species form a distinct colony boundary. During growth as colonies, Myxococcus xanthus uses multiple factors to establish cooperation between recognized strains and prevent interactions with unrecognized strains of the same species. Here, ΔMXAN_0049 is a mutant strain deficient in immunity for the paired nuclease gene, MXAN_0050, that has a function in the colony-merger incompatibility of Myxococcus xanthus DK1622. With the aim to investigate the factors involved in boundary formation, a proteome and metabolome study was employed. Visualization of the boundary between DK1622 and ΔMXAN_0049 was done scanning electron microscope (SEM), which displayed the presence of many damaged cells in the boundary. Proteome analysis of the DK1622- boundary disclosed many possible proteins, such as cold shock proteins, cell shape-determining protein MreC, along with a few pathways, such as RNA degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and Type VI secretion system (T6SS), which may play major roles in the boundary formation. Metabolomics studies revealed various secondary metabolites that were significantly produced during boundary formation. Overall, the results concluded that multiple factors participated in the boundary formation in M. xanthus, leading to cellular damage that is helpful in solving the mystery of the boundary formation mechanism.
Collapse
Affiliation(s)
- Mian Nabeel Anwar
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhi Feng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
- Department of Research and Development, Uttaranchal University, Dehradun 248007, India.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
27
|
Nair RR, Fiegna F, Velicer GJ. Indirect evolution of social fitness inequalities and facultative social exploitation. Proc Biol Sci 2019; 285:rspb.2018.0054. [PMID: 29593113 PMCID: PMC5897644 DOI: 10.1098/rspb.2018.0054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Microbial genotypes with similarly high proficiency at a cooperative behaviour in genetically pure groups often exhibit fitness inequalities caused by social interaction in mixed groups. Winning competitors in this scenario have been referred to as 'cheaters' in some studies. Such interaction-specific fitness inequalities, as well as social exploitation (in which interaction between genotypes increases absolute fitness), might evolve due to selection for competitiveness at the focal behaviour or might arise non-adaptively due to pleiotropy, hitchhiking or genetic drift. The bacterium Myxococcus xanthus sporulates during cooperative development of multicellular fruiting bodies. Using M. xanthus lineages that underwent experimental evolution in allopatry without selection on sporulation, we demonstrate that interaction-specific fitness inequalities and facultative social exploitation during development readily evolved indirectly among descendant lineages. Fitness inequalities between evolved genotypes were not caused by divergence in developmental speed, as faster-developing strains were not over-represented among competition winners. In competitions between ancestors and several evolved strains, all evolved genotypes produced more spores than the ancestors, including losers of evolved-versus-evolved competitions, indicating that adaptation in non-developmental contexts pleiotropically increased competitiveness for spore production. Overall, our results suggest that fitness inequalities caused by social interaction during cooperative processes may often evolve non-adaptively in natural populations.
Collapse
Affiliation(s)
- Ramith R Nair
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland .,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Francesca Fiegna
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
28
|
Espinosa A, Paz-Y-Miño-C G. Discrimination Experiments in Entamoeba and Evidence from Other Protists Suggest Pathogenic Amebas Cooperate with Kin to Colonize Hosts and Deter Rivals. J Eukaryot Microbiol 2019; 66:354-368. [PMID: 30055104 PMCID: PMC6349510 DOI: 10.1111/jeu.12673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023]
Abstract
Entamoeba histolytica is one of the least understood protists in terms of taxa, clone, and kin discrimination/recognition ability. However, the capacity to tell apart same or self (clone/kin) from different or nonself (nonclone/nonkin) has long been demonstrated in pathogenic eukaryotes like Trypanosoma and Plasmodium, free-living social amebas (Dictyostelium, Polysphondylium), budding yeast (Saccharomyces), and in numerous bacteria and archaea (prokaryotes). Kin discrimination/recognition is explained under inclusive fitness theory; that is, the reproductive advantage that genetically closely related organisms (kin) can gain by cooperating preferably with one another (rather than with distantly related or unrelated individuals), minimizing antagonism and competition with kin, and excluding genetic strangers (or cheaters = noncooperators that benefit from others' investments in altruistic cooperation). In this review, we rely on the outcomes of in vitro pairwise discrimination/recognition encounters between seven Entamoeba lineages to discuss the biological significance of taxa, clone, and kin discrimination/recognition in a range of generalist and specialist species (close or distantly related phylogenetically). We then focus our discussion on the importance of these laboratory observations for E. histolytica's life cycle, host infestation, and implications of these features of the amebas' natural history for human health (including mitigation of amebiasis).
Collapse
Affiliation(s)
- Avelina Espinosa
- Department of Biology, Roger Williams University, Bristol, Rhode Island
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| | - Guillermo Paz-Y-Miño-C
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| |
Collapse
|
29
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
31
|
Cvijović I, Nguyen Ba AN, Desai MM. Experimental Studies of Evolutionary Dynamics in Microbes. Trends Genet 2018; 34:693-703. [PMID: 30025666 PMCID: PMC6467257 DOI: 10.1016/j.tig.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly complex. In the past two decades, observations of these dynamics have challenged simple models of adaptation and have shown that clonal interference, hitchhiking, ecological diversification, and contingency are widespread. In recent years, advances in high-throughput strain maintenance and phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented resolution. These new methods can now begin to provide detailed measurements of key aspects of fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can highlight challenges to existing theoretical models and guide new theoretical work towards the complications that are most widely important.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Wielgoss S, Fiegna F, Rendueles O, Yu YTN, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: A comparative analysis among natural isolates. Mol Ecol 2018; 27:3146-3158. [PMID: 29924883 DOI: 10.1111/mec.14773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
Abstract
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre-scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony-merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm-scale population. We find evidence of balancing selection on the highly variable PA14-portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME-mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.
Collapse
Affiliation(s)
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Olaya Rendueles
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Microbial Evolutionary Genomics Unit, Institut Pasteur, Paris, France
| | - Yuen-Tsu N Yu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
33
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
34
|
Chimeric Synergy in Natural Social Groups of a Cooperative Microbe. Curr Biol 2018; 28:262-267.e3. [PMID: 29337077 DOI: 10.1016/j.cub.2017.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Many cooperative species form internally diverse social groups in which individual fitness depends significantly on group-level productivity from cooperation [1-4]. For such species, selection is expected to often disfavor within-group diversity that reduces cooperative productivity [5, 6]. While diversity within social groups is known to enhance productivity in some animals [7-9], diversity within natural groups of social microbes is largely unexamined in this regard. Cells of the soil bacterium Myxococcus xanthus respond to starvation by constructing multicellular fruiting bodies within each of which a subpopulation of cells transforms into stress-resistant spores [10]. Fruiting bodies isolated from soil often harbor substantial endemic diversity [11] that is, nonetheless, lower than between-group diversity, which increases with distance from millimeter to global scales [12-14]. We show that M. xanthus clones isolated from the same fruiting body often collectively produce more viable spores in chimeric groups than expected from sporulation in genetically homogeneous groups. In contrast, chimerism among clones derived from different fruiting bodies tends to reduce group productivity, and it does so increasingly as a function of spatial distance between fruiting-body sample sites. For one fruiting body examined in detail, chimeric synergy-a positive quantitative effect of chimerism on group productivity-is distributed broadly across an interaction network rather than limited to a few interactions. We propose that these results strengthen the plausibility of the hypothesis that selection may operate not only within Myxococcus groups, but also between kin groups to disfavor within-group variation that reduces productivity while allowing some forms of diversity that generate chimeric synergy to persist.
Collapse
|
35
|
Patra P, Vassallo CN, Wall D, Igoshin OA. Mechanism of Kin-Discriminatory Demarcation Line Formation between Colonies of Swarming Bacteria. Biophys J 2018; 113:2477-2486. [PMID: 29212001 DOI: 10.1016/j.bpj.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/09/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022] Open
Abstract
Swarming bacteria use kin discrimination to preferentially associate with their clonemates for certain cooperative behaviors. Kin discrimination can manifest as an apparent demarcation line (a region lacking cells or with much lower cell density) between antagonist strains swarming toward each other. In contrast, two identical strains merge with no demarcation. Experimental studies suggest contact-dependent killing between different strains as a mechanism of kin discrimination, but it is not clear whether this killing is sufficient to explain the observed patterns. Here, we investigate the formation of demarcation line with a mathematical model. First, using data from competition experiments between kin discriminating strains of Myxococcus xanthus and Proteus mirabilis, we found the rates of killing between the strains to be highly asymmetric, i.e., one strain kills another at a much higher rate. Then, to investigate how such asymmetric interactions can lead to a stable demarcation line, we construct reaction-diffusion models for colony expansion of kin-discriminatory strains. Our results demonstrate that a stable demarcation line can form when both cell movement and cell growth cease at low nutrient levels. Further, our study suggests that, depending on the initial separation between the inoculated colonies, the demarcation line may move transiently before stabilizing. We validated these model predictions by observing dynamics of merger between two M. xanthus strains, where one strain expresses a toxin protein that kills a second strain lacking the corresponding antitoxin. Our study therefore provides a theoretical understanding of demarcation line formation between kin-discriminatory populations, and can be used for analyzing and designing future experiments.
Collapse
Affiliation(s)
- Pintu Patra
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, Texas
| | | | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
36
|
Kraemer SA, Soucy JPR, Kassen R. Antagonistic interactions of soil pseudomonads are structured in time. FEMS Microbiol Ecol 2017; 93:3106319. [DOI: 10.1093/femsec/fix046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
|
37
|
Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 2017; 26:2430-2448. [PMID: 28173627 DOI: 10.1111/mec.14051] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
Abstract
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005, Paris, France
| | - Annabel Whibley
- Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE), 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|
38
|
McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, Hammer BK, Yunker PJ, Ratcliff WC. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun 2017; 8:14371. [PMID: 28165005 PMCID: PMC5303878 DOI: 10.1038/ncomms14371] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the 'Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin.
Collapse
Affiliation(s)
- Luke McNally
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Eryn Bernardy
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Jacob Thomas
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Arben Kalziqi
- School of Physics, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Jennifer Pentz
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| |
Collapse
|
39
|
Kraemer SA, Wielgoss S, Fiegna F, Velicer GJ. The biogeography of kin discrimination across microbial neighbourhoods. Mol Ecol 2016; 25:4875-88. [PMID: 27540705 PMCID: PMC5054864 DOI: 10.1111/mec.13803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/27/2016] [Indexed: 01/04/2023]
Abstract
The spatial distribution of potential interactants is critical to social evolution in all cooperative organisms. Yet the biogeography of microbial kin discrimination at the scales most relevant to social interactions is poorly understood. Here we resolve the microbiogeography of social identity and genetic relatedness in local populations of the model cooperative bacterium Myxococcus xanthus at small spatial scales, across which the potential for dispersal is high. Using two criteria of relatedness—colony‐merger compatibility during cooperative motility and DNA‐sequence similarity at highly polymorphic loci—we find that relatedness decreases greatly with spatial distance even across the smallest scale transition. Both social relatedness and genetic relatedness are maximal within individual fruiting bodies at the micrometre scale but are much lower already across adjacent fruiting bodies at the millimetre scale. Genetic relatedness was found to be yet lower among centimetre‐scale samples, whereas social allotype relatedness decreased further only at the metre scale, at and beyond which the probability of social or genetic identity among randomly sampled isolates is effectively zero. Thus, in M. xanthus, high‐relatedness patches form a rich mosaic of diverse social allotypes across fruiting body neighbourhoods at the millimetre scale and beyond. Individuals that migrate even short distances across adjacent groups will frequently encounter allotypic conspecifics and territorial kin discrimination may profoundly influence the spatial dynamics of local migration. Finally, we also found that the phylogenetic scope of intraspecific biogeographic analysis can affect the detection of spatial structure, as some patterns evident in clade‐specific analysis were masked by simultaneous analysis of all strains.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FL, UK.
| | - Sébastien Wielgoss
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland.
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Gregory J Velicer
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
40
|
Velicer GJ, Plucain J. Evolution: Bacterial Territoriality as a Byproduct of Kin Discriminatory Warfare. Curr Biol 2016; 26:R364-6. [PMID: 27166695 DOI: 10.1016/j.cub.2016.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent work suggests that the inability of genetically distinct colonies of the bacterium Bacillus subtilis to freely merge is often a byproduct of microbial warfare mediated by divergent suites of chemical weaponry. Any effects of such kin-discriminatory antagonisms on levels of within-group cooperation at other traits remain unclear.
Collapse
Affiliation(s)
- Gregory J Velicer
- ETH Zurich, Institute of Integrative Biology, 8092 Zurich, Switzerland.
| | - Jessica Plucain
- ETH Zurich, Institute of Integrative Biology, 8092 Zurich, Switzerland
| |
Collapse
|
41
|
Pollak S, Omer-Bendori S, Even-Tov E, Lipsman V, Bareia T, Ben-Zion I, Eldar A. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc Natl Acad Sci U S A 2016; 113:2152-7. [PMID: 26787913 PMCID: PMC4776494 DOI: 10.1073/pnas.1520615113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.
Collapse
Affiliation(s)
- Shaul Pollak
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Omer-Bendori
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Even-Tov
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Valeria Lipsman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tasneem Bareia
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ishay Ben-Zion
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avigdor Eldar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Abstract
When two tribes of Myxococcus bacteria attack each other, the most numerous usually wins. Established colonies can therefore resist invaders by outnumbering them. This shows how positive frequency dependence can maintain diversity across spatially structured environments.
Collapse
Affiliation(s)
- Duncan Greig
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany; Department of Genetics, Evolution and Environment, University College London, London WC1N 6BT, UK.
| | - Matthew Goddard
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
43
|
Abstract
Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter. Here, we first use natural isolates of the highly social bacterium Myxococcus xanthus to show that colony-merger incompatibilities can be strong barriers to social interaction, particularly by reducing chimerism in multicellular fruiting bodies that develop near colony-territory borders. We then use experimental laboratory populations to test hypotheses regarding the evolutionary origins of kin discrimination. We show that the generic process of adaptation, irrespective of selective environment, is sufficient to repeatedly generate kin-discriminatory behaviors between evolved populations and their common ancestor. Further, we find that kin discrimination pervasively evolves indirectly between allopatric replicate populations that adapt to the same ecological habitat and that this occurs generically in many distinct habitats. Patterns of interpopulation discrimination imply that kin discrimination phenotypes evolved via many diverse genetic mechanisms and mutation-accumulation patterns support this inference. Strong incompatibility phenotypes emerged abruptly in some populations but strengthened gradually in others. The indirect evolution of kin discrimination in an asexual microbe is analogous to the indirect evolution of reproductive incompatibility in sexual eukaryotes and linguistic incompatibility among human cultures, the commonality being indirect, noncoordinated divergence of complex systems evolving in isolation.
Collapse
|