1
|
Jacobs RV, Wang CX, Nguyen L, Pruitt TJ, Wang P, Lozada-Perdomo FV, Deere JU, Liphart HA, Devineni AV. Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Cell Rep 2024; 43:114782. [PMID: 39306846 DOI: 10.1016/j.celrep.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
How do neural circuits coordinate multiple behavioral responses to a single sensory cue? Here, we investigate how sweet taste drives appetitive behaviors in Drosophila, including feeding, locomotor suppression, spatial preference, and associative learning. We find that neural circuits mediating different innate responses to sugar are partially overlapping and diverge at the second and third layers. Connectomic analyses reveal distinct subcircuits that mediate different behaviors. Connectome-based simulations of neuronal activity predict that second-order sugar neurons act synergistically to promote downstream activity and that bitter input overrides the sugar circuit through multiple pathways acting at third- and fourth-order neurons. Consistent with the latter prediction, optogenetic experiments suggest that bitter input inhibits third- and fourth-order sugar neurons to override the sugar pathway, whereas hunger and diet act earlier in the circuit to modulate behavior. Together, these studies provide insight into how circuits are organized to drive diverse behavioral responses to a single stimulus.
Collapse
Affiliation(s)
- Ruby V Jacobs
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Crystal X Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Lam Nguyen
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Trinity J Pruitt
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Panxi Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hannah A Liphart
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA 30322, USA; Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
4
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Petelski I, Günzel Y, Sayin S, Kraus S, Couzin-Fuchs E. Synergistic olfactory processing for social plasticity in desert locusts. Nat Commun 2024; 15:5476. [PMID: 38942759 PMCID: PMC11213921 DOI: 10.1038/s41467-024-49719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
Desert locust plagues threaten the food security of millions. Central to their formation is crowding-induced plasticity, with social phenotypes changing from cryptic (solitarious) to swarming (gregarious). Here, we elucidate the implications of this transition on foraging decisions and corresponding neural circuits. We use behavioral experiments and Bayesian modeling to decompose the multi-modal facets of foraging, revealing olfactory social cues as critical. To this end, we investigate how corresponding odors are encoded in the locust olfactory system using in-vivo calcium imaging. We discover crowding-dependent synergistic interactions between food-related and social odors distributed across stable combinatorial response maps. The observed synergy was specific to the gregarious phase and manifested in distinct odor response motifs. Our results suggest a crowding-induced modulation of the locust olfactory system that enhances food detection in swarms. Overall, we demonstrate how linking sensory adaptations to behaviorally relevant tasks can improve our understanding of social modulation in non-model organisms.
Collapse
Affiliation(s)
- Inga Petelski
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution from lab to field, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany
| | - Yannick Günzel
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution from lab to field, 78464, Konstanz, Germany.
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| | - Sercan Sayin
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Susanne Kraus
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
6
|
Gowda SBM, Banu A, Hussain S, Mohammad F. Neuronal mechanisms regulating locomotion in adult Drosophila. J Neurosci Res 2024; 102:e25332. [PMID: 38646942 DOI: 10.1002/jnr.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.
Collapse
Affiliation(s)
- Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
7
|
Lin S. Internal-state-dependent modulation of olfactory responses: a tale of dopamine neurons in the adult Drosophila mushroom body. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101104. [PMID: 37611806 DOI: 10.1016/j.cois.2023.101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Olfaction is a vital sense that insects use to forage and interact with each other. When an insect smells an odor, its nervous system processes the odor information and transforms it into an appropriate behavioral decision. Olfactory processing and transformation are not label-lined, but instead are modulated by internal states. The vinegar fly, Drosophila melanogaster, has become a primary model organism for studying this modulation. It has been observed that internal state modulates olfactory behaviors in multiple sites of the fly brain. In this review article, I focus on the mushroom body, a computational center in the fly brain, and discuss how the dopamine system in this brain region mediates internal-state signals and shapes olfactory responses in adult flies.
Collapse
Affiliation(s)
- Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Asuncion JD, Eamani A, Rohrbach EW, Knapp EM, Deshpande SA, Bonanno SL, Murphy JE, Lawal HO, Krantz DE. Precise CRISPR-Cas9-mediated mutation of a membrane trafficking domain in the Drosophila vesicular monoamine transporter gene. Curr Res Physiol 2023; 6:100101. [PMID: 37409154 PMCID: PMC10318446 DOI: 10.1016/j.crphys.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Monoamine neurotransmitters such as noradrenalin are released from both synaptic vesicles (SVs) and large dense-core vesicles (LDCVs), the latter mediating extrasynaptic signaling. The contribution of synaptic versus extrasynaptic signaling to circuit function and behavior remains poorly understood. To address this question, we have previously used transgenes encoding a mutation in the Drosophila Vesicular Monoamine Transporter (dVMAT) that shifts amine release from SVs to LDCVs. To circumvent the use of transgenes with non-endogenous patterns of expression, we have now used CRISPR-Cas9 to generate a trafficking mutant in the endogenous dVMAT gene. To minimize disruption of the dVMAT coding sequence and a nearby RNA splice site, we precisely introduced a point mutation using single-stranded oligonucleotide repair. A predicted decrease in fertility was used as a phenotypic screen to identify founders in lieu of a visible marker. Phenotypic analysis revealed a defect in the ovulation of mature follicles and egg retention in the ovaries. We did not detect defects in the contraction of lateral oviducts following optogenetic stimulation of octopaminergic neurons. Our findings suggest that release of mature eggs from the ovary is disrupted by changing the balance of VMAT trafficking between SVs and LDCVs. Further experiments using this model will help determine the mechanisms that sensitize specific circuits to changes in synaptic versus extrasynaptic signaling.
Collapse
Affiliation(s)
- James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- UCLA Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ethan W. Rohrbach
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- UCLA Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M. Knapp
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Shivan L. Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jeremy E. Murphy
- Department of Biological Sciences, Delaware State University, Dover, DE, USA, 19901, USA
| | - Hakeem O. Lawal
- Department of Biological Sciences, Delaware State University, Dover, DE, USA, 19901, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Zhuravlev AV, Zalomaeva ES, Egozova ES, Sokurova VV, Nikitina EA, Savvateeva-Popova EV. LIM-kinase 1 effects on memory abilities and male courtship song in Drosophila depend on the neuronal type. Vavilovskii Zhurnal Genet Selektsii 2023; 27:250-263. [PMID: 37293442 PMCID: PMC10244584 DOI: 10.18699/vjgb-23-31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/10/2023] Open
Abstract
The signal pathway of actin remodeling, including LIM-kinase 1 (LIMK1) and its substrate cofilin, regulates multiple processes in neurons of vertebrates and invertebrates. Drosophila melanogaster is widely used as a model object for studying mechanisms of memory formation, storage, retrieval and forgetting. Previously, active forgetting in Drosophila was investigated in the standard Pavlovian olfactory conditioning paradigm. The role of specific dopaminergic neurons (DAN) and components of the actin remodeling pathway in different forms of forgetting was shown. In our research, we investigated the role of LIMK1 in Drosophila memory and forgetting in the conditioned courtship suppression paradigm (CCSP). In the Drosophila brain, LIMK1 and p-cofilin levels appeared to be low in specific neuropil structures, including the mushroom body (MB) lobes and the central complex. At the same time, LIMK1 was observed in cell bodies, such as DAN clusters regulating memory formation in CCSP. We applied GAL4 × UAS binary system to induce limk1 RNA interference in different types of neurons. The hybrid strain with limk1 interference in MB lobes and glia showed an increase in 3-h short-term memory (STM), without significant effects on long-term memory. limk1 interference in cholinergic neurons (CHN) impaired STM, while its interference in DAN and serotoninergic neurons (SRN) also dramatically impaired the flies' learning ability. By contrast, limk1 interference in fruitless neurons (FRN) resulted in increased 15-60 min STM, indicating a possible LIMK1 role in active forgetting. Males with limk1 interference in CHN and FRN also showed the opposite trends of courtship song parameters changes. Thus, LIMK1 effects on the Drosophila male memory and courtship song appeared to depend on the neuronal type or brain structure.
Collapse
Affiliation(s)
- A V Zhuravlev
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E S Zalomaeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, RussiaHerzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E S Egozova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - V V Sokurova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E A Nikitina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E V Savvateeva-Popova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 2023; 380:625-632. [PMID: 37167393 PMCID: PMC11837410 DOI: 10.1126/science.ade1662] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Collapse
Affiliation(s)
- KJ Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - RA Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - E Henry
- Program in Cellular and Molecular Biology, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - Y Lyu
- Department of Molecular Biology & Biochemistry, Rutgers University; Piscataway, NJ 08855, U.S.A
| | - SD Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
11
|
Lv M, Xu X, Zhang X, Yuwen B, Zhang L. Serotonin/GABA receptors modulate odor input to olfactory receptor neuron in locusts. Front Cell Neurosci 2023; 17:1156144. [PMID: 37187607 PMCID: PMC10175586 DOI: 10.3389/fncel.2023.1156144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Serotonin (5-hydroxytryptamine; 5-HT) and GABA (γ-aminobutyric acid) are involved in the regulation of behaviors in the central nervous system. However, it remains unclear whether they modulate olfaction in the peripheral nervous system, and how they modulate olfaction. Methods and results One 5-HT receptor sequence (Lmig5-HT2) and one GABA receptor sequence (LmigGABAb) were identified in locust antennae by transcriptome analysis and polymerase chain reaction experiments. In situ hybridization localized Lmig5-HT2 to accessory cells, while LmigGABAb was localized to olfactory receptor neurons (ORNs) in locust chemosensilla. Single-unit electrophysiological recordings combined with RNA interference (RNAi) experiments indicated ORNs of locusts with knockdown of Lmig5-HT2 (ds-Lmig5-HT2) and LmigGABAb (ds-LmigGABAb) to some odors had significantly higher responses than wild-type and control locusts in the dose-dependent responses. Moreover, the gaps between the responses of ORNs of RNAi ones and those of wild-type and ds-GFP enlarged with an increase in concentrations of odors. Discussion Taken together, our findings suggest that 5-HT, GABA, and their receptors exist in the insect peripheral nervous system and that they may function as negative feedback to ORNs and contribute to a fine-tuning mechanism for olfaction in the peripheral nervous system.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xiao Xu
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Bo Yuwen
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
- Plant Protection Institute, Shandong Provincial Engineering Technology Research Center on Biocontrol for Pests, Jinan, China
| |
Collapse
|
12
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
13
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|
14
|
Banu A, Gowda SBM, Salim S, Mohammad F. Serotonergic control of feeding microstructure in Drosophila. Front Behav Neurosci 2023; 16:1105579. [PMID: 36733453 PMCID: PMC9887136 DOI: 10.3389/fnbeh.2022.1105579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
To survive, animals maintain energy homeostasis by seeking out food. Compared to freely feeding animals, food-deprived animals may choose different strategies to balance both energy and nutrition demands, per the metabolic state of the animal. Serotonin mediates internal states, modifies existing neural circuits, and regulates animal feeding behavior, including in humans and fruit flies. However, an in-depth study on the neuromodulatory effects of serotonin on feeding microstructure has been held back for several technical reasons. Firstly, most feeding assays lack the precision of manipulating neuronal activity only when animals start feeding, which does not separate neuronal effects on feeding from foraging and locomotion. Secondly, despite the availability of optogenetic tools, feeding in adult fruit flies has primarily been studied using thermogenetic systems, which are confounded with heat. Thirdly, most feeding assays have used food intake as a measurement, which has a low temporal resolution to dissect feeding at the microstructure level. To circumvent these problems, we utilized OptoPAD assay, which provides the precision of optogenetics to control neural activity contingent on the ongoing feeding behavior. We show that manipulating the serotonin circuit optogenetically affects multiple feeding parameters state-dependently. Food-deprived flies with optogenetically activated and suppressed serotonin systems feed with shorter and longer sip durations and longer and shorter inter-sip intervals, respectively. We further show that serotonin suppresses and enhances feeding via 5-HT1B and 5-HT7 receptors, respectively.
Collapse
|
15
|
Gowda SB, Banu A, Salim S, Peker KA, Mohammad F. Serotonin distinctly controls behavioral states in restrained and freely moving Drosophila. iScience 2022; 26:105886. [PMID: 36654863 PMCID: PMC9840979 DOI: 10.1016/j.isci.2022.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
When trapped in a physical restraint, animals must select an escape strategy to increase their chances of survival. After falling into an inescapable trap, they react with stereotypical behaviors that differ from those displayed in escapable situations. Such behaviors involve either a wriggling response to unlock the trap or feigning death to fend off a predator attack. The neural mechanisms that regulate animal behaviors have been well characterized for escapable situations but not for inescapable traps. We report that restrained vinegar flies exhibit alternating flailing and immobility to free themselves from the trap. We used optogenetics and intersectional genetic approaches to show that, while broader serotonin activation promotes immobility, serotonergic cells in the ventral nerve cord (VNC) regulate immobility states majorly via 5-HT7 receptors. Restrained and freely moving locomotor states are controlled by distinct mechanisms. Taken together, our study has identified serotonergic switches of the VNC that promote environment-specific adaptive behaviors.
Collapse
Affiliation(s)
- Swetha B.M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar,Corresponding author
| |
Collapse
|
16
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Mohandasan R, Thakare M, Sunke S, Iqbal FM, Sridharan M, Das G. Enhanced olfactory memory detection in trap-design Y-mazes allows the study of imperceptible memory traces in Drosophila. Learn Mem 2022; 29:355-366. [PMID: 36180129 PMCID: PMC9536757 DOI: 10.1101/lm.053545.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The neural basis of behavior is identified by systematically manipulating the activity of specific neurons and screening for loss or gain of phenotype. Therefore, robust, high-scoring behavioral assays are necessary for determining the neural circuits of novel behaviors. We report a simple Y-maze design for Drosophila olfactory learning and memory assay. Memory scores in our Y-mazes are considerably better and longer-lasting than scores obtained with commonly used T-mazes. Our results suggest that trapping flies to an odor choice in a Y-maze could improve scores. We postulated that the improved scores could reveal previously undetectable memory traces, enabling the study of underlying neural mechanisms. Indeed, we identified unreported protein synthesis-dependent long-term memories (LTMs), reinforced by ingestion of (1) an aversive compound and (2) a sweet but nonnutritious sugar, both 24 h after training. We also used Y-mazes to probe how using a greater reward may change memory dynamics. Our findings predict that a greater sugar reward may extend existing memory traces or reinforce additional novel ones.
Collapse
Affiliation(s)
- Radhika Mohandasan
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
- Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manikrao Thakare
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
- Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Suhas Sunke
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Fathima Mukthar Iqbal
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Madhav Sridharan
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Gaurav Das
- Brain and Feeding Behavior Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
18
|
Ma B, Wang R, Liu Y, Deng B, Wang T, Wu F, Zhou C. Serotonin Signaling Modulates Sexual Receptivity of Virgin Female Drosophila. Neurosci Bull 2022; 38:1277-1291. [PMID: 35788510 PMCID: PMC9672162 DOI: 10.1007/s12264-022-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.
Collapse
Affiliation(s)
- Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaohua Liu
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, 30801, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Zhongguancun Life Sciences Park, Beijing, 102206, China
| | - Tao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
19
|
Wang T, Pool AH, Oka Y. Serotonergic fast lane from taste detection to preparatory digestive actions. Neuron 2022; 110:907-909. [PMID: 35298914 DOI: 10.1016/j.neuron.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nutrient detection through the taste system triggers various physiological changes in the body. In this issue of Neuron, Yao and Scott (2022) identify two distinct classes of serotonergic neurons in Drosophila that transform sweet and bitter taste signals into endocrine and digestive responses.
Collapse
Affiliation(s)
- Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Allan-Hermann Pool
- Department of Neuroscience, Department of Anesthesiology and Pain Management, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
20
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Zhang JJ, Sun LL, Wang YN, Xie GY, An SH, Chen WB, Tang QB, Zhao XC. Serotonergic Neurons in the Brain and Gnathal Ganglion of Larval Spodoptera frugiperda. Front Neuroanat 2022; 16:844171. [PMID: 35360650 PMCID: PMC8960143 DOI: 10.3389/fnana.2022.844171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (S. frugiperda) (Lepidoptera: Noctuidae) is a worldwide, disruptive, agricultural pest species. The larvae of S. frugiperda feed on seedling, leave, and kernel of crops with chewing mouthparts, resulting in reduced crop yields. Serotonin is an important biogenic amine acting as a neural circuit modulator known to mediate lots of behaviors including feeding in insects. In order to explore the serotonergic neural network in the nervous system of larval S. frugiperda, we performed immunohistochemical experiments to examine the neuropil structure of the brain and the gnathal ganglion with antisynapsin and to examine their serotonergic neurons with antiserotonin serum. Our data show that the brain of larval S. frugiperda contains three neuromeres: the tritocerebrum, the deutocerebrum, and the protocerebrum. The gnathal ganglion also contains three neuromeres: the mandibular neuromere, the maxillary neuromere, and the labial neuromere. There are about 40 serotonergic neurons in the brain and about 24 serotonergic neurons in the gnathal ganglion. Most of these neurons are wide-field neurons giving off processes in several neuropils of the brain and the gnathal ganglion. Serotonergic neuron processes are mainly present in the protocerebrum. A pair of serotonergic neurons associated with the deutocerebrum has arborizations in the contralateral antennal lobe and bilateral superior lateral protocerebra. In the gnathal ganglion, the serotonergic neuron processes are also widespread throughout the neuropil and some process projections extend to the tritocerebrum. These findings on the serotonergic neuron network in larval S. frugiperda allow us to explore the important roles of serotonin in feeding and find a potential approach to modulate the feeding behavior of the gluttonous pest and reduce its damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen-Bo Chen
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing-Bo Tang
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | | |
Collapse
|
22
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
24
|
Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021; 44:946-960. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.
Collapse
Affiliation(s)
- Varun M Bhave
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
25
|
Lyu Y, Promislow DEL, Pletcher SD. Serotonin signaling modulates aging-associated metabolic network integrity in response to nutrient choice in Drosophila melanogaster. Commun Biol 2021; 4:740. [PMID: 34131274 PMCID: PMC8206115 DOI: 10.1038/s42003-021-02260-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
27
|
Scaplen KM, Petruccelli E. Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila. Neurosci Insights 2021; 16:26331055211007441. [PMID: 33870197 PMCID: PMC8020223 DOI: 10.1177/26331055211007441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a debilitating disorder that manifests as problematic patterns of alcohol use. At the core of AUD's behavioral manifestations are the profound structural, physiological, cellular, and molecular effects of alcohol on the brain. While the field has made considerable progress in understanding the neuromolecular targets of alcohol we still lack a comprehensive understanding of alcohol's actions and effective treatment strategies. Drosophila melanogaster is a powerful model for investigating the neuromolecular targets of alcohol because flies model many of the core behavioral elements of AUD and offer a rich genetic toolkit to precisely reveal the in vivo molecular actions of alcohol. In this review, we focus on receptors and channels that are often targeted by alcohol within the brain. We discuss the general roles of these proteins, their role in alcohol-associated behaviors across species, and propose ways in which Drosophila models can help advance the field.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, USA
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
28
|
Mahishi D, Triphan T, Hesse R, Huetteroth W. The Panopticon-Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference. Front Behav Neurosci 2021; 15:640146. [PMID: 33841109 PMCID: PMC8026880 DOI: 10.3389/fnbeh.2021.640146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup—the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ricarda Hesse
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Min S, Oh Y, Verma P, Whitehead SC, Yapici N, Van Vactor D, Suh GS, Liberles S. Control of feeding by Piezo-mediated gut mechanosensation in Drosophila. eLife 2021; 10:63049. [PMID: 33599608 PMCID: PMC7920550 DOI: 10.7554/elife.63049] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns and identify a key role for Drosophila Piezo in internal organ mechanosensation.
Collapse
Affiliation(s)
- Soohong Min
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Yangkyun Oh
- Skirball Institute, NYU School of Medicine, New York, United States
| | - Pushpa Verma
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | | | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Greg Sb Suh
- Skirball Institute, NYU School of Medicine, New York, United States.,KAIST, Department of Biological Sciences, Daejeon, Republic of Korea
| | - Stephen Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| |
Collapse
|
30
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Vogt K, Zimmerman DM, Schlichting M, Hernandez-Nunez L, Qin S, Malacon K, Rosbash M, Pehlevan C, Cardona A, Samuel ADT. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. SCIENCE ADVANCES 2021; 7:7/1/eabd6900. [PMID: 33523854 PMCID: PMC7775770 DOI: 10.1126/sciadv.abd6900] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/04/2020] [Indexed: 05/07/2023]
Abstract
Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in Drosophila larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.
Collapse
Affiliation(s)
- Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - David M Zimmerman
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Matthias Schlichting
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Karen Malacon
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Albert Cardona
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP 3Rs in dopaminergic neurons. eLife 2020; 9:e62297. [PMID: 33155978 PMCID: PMC7647402 DOI: 10.7554/elife.62297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.
Collapse
Affiliation(s)
- Anamika Sharma
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
34
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Abstract
The serotonergic modulation of feeding behaviour has been intensively studied in several invertebrate groups, including Arthropoda, Annelida, Nematoda and Mollusca. These studies offer comparative information on feeding regulation across divergent phyla and also provide general insights into the neural control of feeding. Specifically, model invertebrates are ideal for parsing feeding behaviour into component parts and examining the underlying mechanisms at the levels of biochemical pathways, single cells and identified neural circuitry. Research has found that serotonin is crucial during certain phases of feeding behaviour, especially movements directly underlying food intake, but inessential during other phases. In addition, while the serotonin system can be manipulated systemically in many animals, invertebrate model organisms also allow manipulations at the level of single cells and molecules, revealing limited and precise serotonergic actions. The latter highlight the importance of local versus global modulatory effects of serotonin, a potentially significant consideration for drug and pesticide design.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| |
Collapse
|
36
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
37
|
Abstract
Hunger is a motivational state that drives eating and food-seeking behaviour. In a psychological sense, hunger sets the goal that guides an animal in the pursuit of food. The biological basis underlying this purposive, goal-directed nature of hunger has been under intense investigation. With its rich behavioural repertoire and genetically tractable nervous system, the fruit fly Drosophila melanogaster has emerged as an excellent model system for studying the neural basis of hunger and hunger-driven behaviour. Here, we review our current understanding of how hunger is sensed, encoded and translated into foraging and feeding behaviours in the fruit fly.
Collapse
Affiliation(s)
- Suewei Lin
- 1 Institute of Molecular Biology, Academia Sinica , Taipei , Taiwan, Republic of China.,2 Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center , Taipei , Taiwan, Republic of China
| | - Bhagyashree Senapati
- 1 Institute of Molecular Biology, Academia Sinica , Taipei , Taiwan, Republic of China.,2 Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center , Taipei , Taiwan, Republic of China
| | - Chang-Hui Tsao
- 1 Institute of Molecular Biology, Academia Sinica , Taipei , Taiwan, Republic of China
| |
Collapse
|
38
|
Qi YX, Wang JL, Xu G, Song QS, Stanley D, Fang Q, Ye GY. Biogenic amine biosynthetic and transduction genes in the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21632. [PMID: 31621105 DOI: 10.1002/arch.21632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Biogenic amines (BAs), such as octopamine, tyramine, dopamine, serotonin, and acetylcholine regulate various behaviors and physiological functions in insects. Here, we identified seven genes encoding BA biosynthetic enzymes and 16 genes encoding BA G protein-coupled receptors in the genome of the endoparasitoid wasp, Pteromalus puparum. We compared the genes with their orthologs in its host Pieris rapae and the related ectoparasitic wasp Nasonia vitripennis. All the genes show high (>90%) identity to orthologs in N. vitripennis. P. puparum and N. vitripennis have the smallest number of BA receptor genes among the insect species we investigated. We then analyzed the expression profiles of the genes, finding those acting in BA biosynthesis were highly expressed in adults and larvae and those encoding BA receptors are highly expressed in adults than immatures. Octα1R and 5-HT7 genes were highly expressed in salivary glands, and a high messenger RNA level of 5-HT1A was found in venom apparatuses. We infer that BA signaling is a fundamental component of the organismal organization, homeostasis and operation in parasitoids, some of the smallest insects.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia-Le Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Serotonin transporter dependent modulation of food-seeking behavior. PLoS One 2020; 15:e0227554. [PMID: 31978073 PMCID: PMC6980608 DOI: 10.1371/journal.pone.0227554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022] Open
Abstract
The olfactory pathway integrates the odor information required to generate correct behavioral responses. To address how changes of serotonin signaling in two contralaterally projecting, serotonin-immunoreactive deutocerebral neurons impacts key odorant attraction in Drosophila melanogaster, we selectively alter serotonin signaling using the serotonin transporter with mutated serotonin binding sites in these neurons and analyzed the consequence on odorant-guided food seeking. The expression of the mutated serotonin transporter selectively changed the odorant attraction in an odorant-specific manner. The shift in attraction was not influenced by more up-stream serotonergic mechanisms mediating behavioral inhibition. The expression of the mutated serotonin transporter in CSD neurons did not influence other behaviors associated with food seeking such as olfactory learning and memory or food consumption. We provide evidence that the change in the attraction by serotonin transporter function might be achieved by increased serotonin signaling and by different serotonin receptors. The 5-HT1B receptor positively regulated the attraction to low and negatively regulated the attraction to high concentrations of acetic acid. In contrast, 5-HT1A and 5-HT2A receptors negatively regulated the attraction in projection neurons to high acetic acid concentrations. These results provide insights into how serotonin signaling in two serotonergic neurons selectively regulates the behavioral response to key odorants during food seeking.
Collapse
|
40
|
Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. Serotonergic Modulation of Walking in Drosophila. Curr Biol 2019; 29:4218-4230.e8. [PMID: 31786064 PMCID: PMC6935052 DOI: 10.1016/j.cub.2019.10.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.
Collapse
Affiliation(s)
- Clare E Howard
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| | - Chin-Lin Chen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tanya Tabachnik
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rick Hormigo
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Pavan Ramdya
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
41
|
Senapati B, Tsao CH, Juan YA, Chiu TH, Wu CL, Waddell S, Lin S. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nat Neurosci 2019; 22:2029-2039. [PMID: 31659341 PMCID: PMC6885014 DOI: 10.1038/s41593-019-0515-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
Motivational states modulate how animals value sensory stimuli and engage in goal-directed behaviors. The motivational states of thirst and hunger are represented in the brain by shared and unique neuromodulatory systems. However, it is unclear how such systems interact to coordinate the expression of appropriate state-specific behavior. We show that the activity of two brain neurons expressing leucokinin neuropeptide is elevated in thirsty and hungry flies, and that leucokinin release is necessary for state-dependent expression of water- and sugar-seeking memories. Leucokinin inhibits two types of mushroom-body-innervating dopaminergic neurons (DANs) to promote thirst-specific water memory expression, whereas it activates other mushroom-body-innervating DANs to facilitate hunger-dependent sugar memory expression. Selection of hunger- or thirst-appropriate memory emerges from competition between leucokinin and other neuromodulatory hunger signals at the level of the DANs. Therefore, coordinated modulation of the dopaminergic system allows flies to prioritize the expression of the relevant state-dependent motivated behavior.
Collapse
Affiliation(s)
- Bhagyashree Senapati
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Hui Tsao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-An Juan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Tai-Hsiang Chiu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Suewei Lin
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
42
|
Newsom KD, Moczek AP, Schwab DB. Serotonin differentially affects morph-specific behavior in divergent populations of a horned beetle. Behav Ecol 2019. [DOI: 10.1093/beheco/arz192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Associations between animal weapons and corresponding aggressive behaviors are among the most characteristic features of species, yet at the same time their co-expression is itself often strongly dependent on context, such as male condition or population ecology. Yet the mechanisms that modulate associations between aggression, morphology, and biological context remain poorly understood. The biogenic amine serotonin has been shown to regulate a wide range of aggressive and morph-specific behaviors in diverse insect species. However, the extent to which serotonin may coordinate the expression of behavior with morphology across biological contexts remains unclear. In this study, we pharmacologically increased serotonin biosynthesis in males of the polyphenic beetle, Onthophagus taurus, and assessed how this manipulation affects both aggressive and non-aggressive behaviors in alternative fighter and sneaker morphs, as well as in males derived from two rapidly diverging populations characterized by disparate levels of competition for mates. We find (i) that enhancing serotonin biosynthesis increases most measures of aggressive behaviors, but influences only a subset of nonaggressive behaviors, (ii) that similar serotonin-mediated behavioral changes manifest in both morphs within populations more often than just a single morph, and (iii) that males derived from the two focal populations have diverged in their behavioral responsiveness to serotonin up-regulation. Collectively, our study suggests that serotonin signaling plays a critical role in the regulation of male behavior and its evolution, including in the context of rapid, short-term population divergence.
Collapse
Affiliation(s)
- Keeley D Newsom
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
43
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
44
|
Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational Neuroethology: A Call to Action. Neuron 2019; 104:11-24. [PMID: 31600508 PMCID: PMC6981239 DOI: 10.1016/j.neuron.2019.09.038] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The brain is worthy of study because it is in charge of behavior. A flurry of recent technical advances in measuring and quantifying naturalistic behaviors provide an important opportunity for advancing brain science. However, the problem of understanding unrestrained behavior in the context of neural recordings and manipulations remains unsolved, and developing approaches to addressing this challenge is critical. Here we discuss considerations in computational neuroethology-the science of quantifying naturalistic behaviors for understanding the brain-and propose strategies to evaluate progress. We point to open questions that require resolution and call upon the broader systems neuroscience community to further develop and leverage measures of naturalistic, unrestrained behavior, which will enable us to more effectively probe the richness and complexity of the brain.
Collapse
Affiliation(s)
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA, 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Pietro Perona
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew Leifer
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
45
|
Kaushik S, Kumar R, Kain P. Salt an Essential Nutrient: Advances in Understanding Salt Taste Detection Using Drosophila as a Model System. J Exp Neurosci 2018; 12:1179069518806894. [PMID: 30479487 PMCID: PMC6249657 DOI: 10.1177/1179069518806894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Taste modalities are conserved in insects and mammals. Sweet gustatory signals evoke attractive behaviors while bitter gustatory information drive aversive behaviors. Salt (NaCl) is an essential nutrient required for various physiological processes, including electrolyte homeostasis, neuronal activity, nutrient absorption, and muscle contraction. Not only mammals, even in Drosophila melanogaster, the detection of NaCl induces two different behaviors: Low concentrations of NaCl act as an attractant, whereas high concentrations act as repellant. The fruit fly is an excellent model system for studying the underlying mechanisms of salt taste due to its relatively simple neuroanatomical organization of the brain and peripheral taste system, the availability of powerful genetic tools and transgenic strains. In this review, we have revisited the literature and the information provided by various laboratories using invertebrate model system Drosophila that has helped us to understand NaCl salt taste so far. We hope that this compiled information from Drosophila will be of general significance and interest for forthcoming studies of the structure, function, and behavioral role of NaCl-sensitive (low and high concentrations) gustatory circuitry for understanding NaCl salt taste in all animals.
Collapse
Affiliation(s)
- Shivam Kaushik
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rahul Kumar
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pinky Kain
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
46
|
Kato N, Fujiyama N, Nagayama T. Enhancement of habituation during escape swimming in starved crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:999-1005. [DOI: 10.1007/s00359-018-1298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
|
47
|
Big Lessons from Tiny Flies: Drosophila melanogaster as a Model to Explore Dysfunction of Dopaminergic and Serotonergic Neurotransmitter Systems. Int J Mol Sci 2018; 19:ijms19061788. [PMID: 29914172 PMCID: PMC6032372 DOI: 10.3390/ijms19061788] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.
Collapse
|
48
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
49
|
Jiang L, Zhan Y, Zhu Y. Combining Quantitative Food-intake Assays and Forcibly Activating Neurons to Study Appetite in Drosophila. J Vis Exp 2018. [PMID: 29757269 DOI: 10.3791/56900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Food consumption is under the tight control of the brain, which integrates the physiological status, palatability, and nutritional contents of the food, and issues commands to start or stop feeding. Deciphering the processes underlying the decision-making of timely and moderate feeding carries major implications in our understanding of physiological and psychological disorders related to feeding control. Simple, quantitative, and robust methods are required to measure the food ingestion of animals after experimental manipulation, such as forcibly increasing the activities of certain target neurons. Here, we introduced dye-labeling-based feeding assays to facilitate the neurogenetic study of feeding control in adult fruit flies. We review available feeding assays, and then describe our methods step-by-step from setup to analysis, which combine thermogenetic and optogenetic manipulation of neurons controlling feeding motivation with dye-labeled food intake assay. We also discuss the advantages and limitations of our methods, compared with other feeding assays, to help readers choose an appropriate assay.
Collapse
Affiliation(s)
- Lifen Jiang
- School of Life Science, University of Science and Technology of China; State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences
| | - Yinpeng Zhan
- State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Yan Zhu
- State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences;
| |
Collapse
|
50
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|