1
|
Kriete A. Cognitive control and consciousness in open biological systems. Biosystems 2025; 251:105457. [PMID: 40188859 DOI: 10.1016/j.biosystems.2025.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
Thermodynamically open biological systems not only sustain a life-supporting mutual relationship with their environment by exchanging matter and energy but also constantly seek information to navigate probabilistic changes in their surroundings. This work argues that cognition and conscious thought should not be viewed in isolation but rather as parts of an integral control of biological systems to identify and act upon meaningful, semantic information to sustain viability. Under this framework, the development of key cognitive control capacities in centralized nervous systems and the resulting behavior are categorized into distinct Markov decision processes: decision-making with partially observable sensory exteroceptive and interoceptive information, learning and memory, and symbolic communication. It is proposed that the state of conscious thought arises from a control mechanism for speech production resembling actuator control in engineered systems. Also known as the phonological loop, this feedback from the motor to the sensory cortex provides a third type of information flowing into the sensory cortex. The continuous, dissipative loop updates the fleeting working memory and provides humans with an advanced layer of control through a sense of self, agency and perception of flow in time. These capacities define distinct degrees of information fitness in the evolution of information-powered organisms.
Collapse
Affiliation(s)
- Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone Research Enterprise Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Solé R, Kempes CP, Corominas-Murtra B, De Domenico M, Kolchinsky A, Lachmann M, Libby E, Saavedra S, Smith E, Wolpert D. Fundamental constraints to the logic of living systems. Interface Focus 2024; 14:20240010. [PMID: 39464646 PMCID: PMC11503024 DOI: 10.1098/rsfs.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024] Open
Abstract
It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona08003, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, Venezia VE30123, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| | | | | | - Manlio De Domenico
- Complex Multilayer Networks Lab, Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Via Marzolo 8, Padova35131, Italy
- Padua Center for Network Medicine, University of Padua, Via Marzolo 8, Padova35131, Italy
| | - Artemy Kolchinsky
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | | | - Eric Libby
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
| | - Serguei Saavedra
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Smith
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Biology, Georgia Institute of Technology, Atlanta, GA30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
| | - David Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
3
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
4
|
Sachkova MY. Evolutionary origin of the nervous system from Ctenophora prospective. Evol Dev 2024; 26:e12472. [PMID: 38390763 DOI: 10.1111/ede.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Nervous system is one of the key adaptations underlying the evolutionary success of the majority of animal groups. Ctenophores (or comb jellies) are gelatinous marine invertebrates that were probably the first lineage to diverge from the rest of animals. Due to the key phylogenetic position and multiple unique adaptations, the noncentralized nervous system of comb jellies has been in the center of the debate around the origin of the nervous system in the animal kingdom and whether it happened only once or twice. Here, we discuss the latest findings in ctenophore neuroscience and multiple challenges on the way to build a clear evolutionary picture of the origin of the nervous system.
Collapse
Affiliation(s)
- Maria Y Sachkova
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Torres G, Mourad M, Iqbal S, Moses-Fynn E, Pandita A, Siddhartha SS, Sood RA, Srinivasan K, Subbaiah RT, Tiwari A, Leheste JR. Conceptualizing Epigenetics and the Environmental Landscape of Autism Spectrum Disorders. Genes (Basel) 2023; 14:1734. [PMID: 37761876 PMCID: PMC10531442 DOI: 10.3390/genes14091734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Complex interactions between gene variants and environmental risk factors underlie the pathophysiological pathways in major psychiatric disorders. Autism Spectrum Disorder is a neuropsychiatric condition in which susceptible alleles along with epigenetic states contribute to the mutational landscape of the ailing brain. The present work reviews recent evolutionary, molecular, and epigenetic mechanisms potentially linked to the etiology of autism. First, we present a clinical vignette to describe clusters of maladaptive behaviors frequently diagnosed in autistic patients. Next, we microdissect brain regions pertinent to the nosology of autism, as well as cell networks from the bilateral body plan. Lastly, we catalog a number of pathogenic environments associated with disease risk factors. This set of perspectives provides emerging insights into the dynamic interplay between epigenetic and environmental variation in the development of Autism Spectrum Disorders.
Collapse
Affiliation(s)
- German Torres
- Department of Counseling and Clinical Psychology, Medaille College, Buffalo, NY 14214, USA;
| | - Mervat Mourad
- Department of Clinical Specialties, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Saba Iqbal
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Emmanuel Moses-Fynn
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Ashani Pandita
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Shriya S. Siddhartha
- Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| | - Riya A. Sood
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Kavya Srinivasan
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Riya T. Subbaiah
- Department of Arts and Sciences, Georgetown University, Washington, DC 20057, USA;
| | - Alisha Tiwari
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Joerg R. Leheste
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| |
Collapse
|
6
|
DiFrisco J, Love AC, Wagner GP. The hierarchical basis of serial homology and evolutionary novelty. J Morphol 2023; 284:e21531. [PMID: 36317664 DOI: 10.1002/jmor.21531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as "partial" homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of "theoretical articulation" that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages.
Collapse
Affiliation(s)
| | - Alan C Love
- Department of Philosophy, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Center for Philosophy of Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Hagen EH. The Biological Roots of Music and Dance : Extending the Credible Signaling Hypothesis to Predator Deterrence. HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:261-279. [PMID: 35986877 DOI: 10.1007/s12110-022-09429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
After they diverged from panins, hominins evolved an increasingly committed terrestrial lifestyle in open habitats that exposed them to increased predation pressure from Africa's formidable predator guild. In the Pleistocene, Homo transitioned to a more carnivorous lifestyle that would have further increased predation pressure. An effective defense against predators would have required a high degree of cooperation by the smaller and slower hominins. It is in the interest of predator and potential prey to avoid encounters that will be costly for both. A wide variety of species, including carnivores and apes and other primates, have therefore evolved visual and auditory signals that deter predators by credibly signaling detection and/or the ability to effectively defend themselves. In some cooperative species, these predator deterrent signals involve highly synchronized visual and auditory displays among group members. Hagen and Bryant (Human Nature, 14(1), 21-51, 2003) proposed that synchronized visual and auditory displays credibly signal coalition quality. Here, this hypothesis is extended to include credible signals to predators that they have been detected and would be met with a highly coordinated defensive response, thereby deterring an attack. Within-group signaling functions are also proposed. The evolved cognitive abilities underlying these behaviors were foundations for the evolution of fully human music and dance.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA.
| |
Collapse
|
8
|
Tournière O, Gahan JM, Busengdal H, Bartsch N, Rentzsch F. Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. SCIENCE ADVANCES 2022; 8:eabi7109. [PMID: 35442742 PMCID: PMC9020782 DOI: 10.1126/sciadv.abi7109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/02/2022] [Indexed: 06/01/2023]
Abstract
Neurons are highly specialized cells present in nearly all animals, but their evolutionary origin and relationship to other cell types are not well understood. We use here the sea anemone Nematostella vectensis as a model system for early-branching animals to gain fresh insights into the evolutionary history of neurons. We generated a transgenic reporter line to show that the transcription factor NvInsm1 is expressed in postmitotic cells that give rise to various types of neurons and secretory cells. Expression analyses, double transgenics, and gene knockdown experiments show that the NvInsm1-expressing neurons and secretory cells derive from a common pool of NvSoxB(2)-positive progenitor cells. These findings, together with the requirement for Insm1 for the development of neurons and endocrine cells in vertebrates, support a close evolutionary relationship of neurons and secretory cells.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - James M. Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Natascha Bartsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| |
Collapse
|
9
|
Dai W, Su X, Zhang B, Wu K, Zhao P, Yan Z. An Alternative Class of Targets for microRNAs Containing CG Dinucleotide. BIOLOGY 2022; 11:biology11030478. [PMID: 35336851 PMCID: PMC8945436 DOI: 10.3390/biology11030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary MicroRNAs are ~23 nt, highly conserved non-coding RNA molecules involved in the regulation of target gene expression. Most of the microRNA-target prediction algorithms rely heavily on seed rules and evolutionary conservation. However, such strategies suffer from missing the non-canonical target sites. The aim of this study is to identify the general features of non-canonical targets and their interactions with microRNAs. We found that the bulge-targets were preferentially associated with the microRNAs containing CG dinucleotides in their seed region. This finding indicates that non-canonical targets could be rich due to high mutation frequency of CG within the target mRNAs. Multi-step validation, which included evolutionary, overexpression, correlation, and CLASH data analysis, supports the interactome between the microRNAs with CG dinucleotides in the seed region and their bugle targets. Thus, a major novelty of this work is the identification of a sequence motif, CG dinucleotides, in the seed region of microRNAs, is strongly correlated to bulge targeting patterns. Abstract MicroRNAs (miRNAs) are endogenous ~23 nt RNAs which regulate message RNA (mRNA) targets mainly through perfect pairing with their seed region (positions 2–7). Several instances of UTR sequence with an additional nucleotide that might form a bulge within the pairing region, can also be recognized by miRNA as their target (bugle-target). But the prevalence of such imperfect base pairings in human and their roles in the evolution are incompletely understood. We found that human miRNAs with the CG dinucleotides (CG dimer) in their seed region have a significant low mutation rate than their putative binding sites in mRNA targets. Interspecific comparation shows that these miRNAs had very few conservative targets with the perfect seed-pairing, while potentially having a subclass of bulge-targets. Compared with the canonical target (perfect seed-pairing), these bulge-targets had a lower negative correlation with the miRNA expression, and either were down-regulated in the miRNA overexpression experiment or up-regulated in the miRNA knock-down experiment. Our results show that the bulge-targets are widespread in the miRNAs with CG dinucleotide within their seed regions, which could in part explain the rare conserved targets of these miRNAs based on seed rule. Incorporating these bulge-targets, together with conservation information, could more accurately predict the entire targets of these miRNAs.
Collapse
Affiliation(s)
- Wennan Dai
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Xin Su
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Kejing Wu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (P.Z.); (Z.Y.)
| | - Zheng Yan
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
- Correspondence: (P.Z.); (Z.Y.)
| |
Collapse
|
10
|
A critique on the theory of homeostasis. Physiol Behav 2022; 247:113712. [DOI: 10.1016/j.physbeh.2022.113712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
|
11
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
12
|
Winlow W, Johnson AS. Nerve Impulses Have Three Interdependent Functions: Communication, Modulation, and Computation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
| |
Collapse
|
13
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 52127 Bonn, Germany
| |
Collapse
|
14
|
Kuznetsov AV, Vainer VI, Volkova YM, Kartashov LE. Motility disorders and disintegration into separate cells of Trichoplax sp. H2 in the presence of Zn 2+ ions and L-cysteine molecules: A systems approach. Biosystems 2021; 206:104444. [PMID: 34023485 DOI: 10.1016/j.biosystems.2021.104444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/01/2023]
Abstract
Placozoa remain an ancient multicellular system with a dynamic body structure where calcium ions carry out a primary role in maintaining the integrity of the entire animal. Zinc ions can compete with calcium ions adsorption. We studied the effect of zinc ions and l-cysteine molecules on the interaction of Trichoplax sp. H2 cells. The regularity of formless motion was diminished in the presence of 20-25 μM of Zn2+ ions leading to the formation of branching animal forms. Locomotor ciliated cells moved chaotically and independently of each other leaving the Trichoplax body and opening a network of fiber cells. Application of 100 μM cysteine resulted in dissociation of the plate into separate cells. The combined chemical treatment shifted the effect in a random sample of animals toward disintegration, i.e. initially leading to disorder of collective cell movement and then to total body fragmentation. Two dissociation patterns of Trichoplax plate as "expanding ring" and "bicycle wheel" were revealed. Analysis of the interaction of Ca2+ and Zn2+ ions with cadherin showed that more than half (54%) of the amino acid residues with which Ca2+ and Zn2+ ions bind are common. The contact interaction of cells covered by the cadherin molecules is important for the coordinated movements of Trichoplax organism, while zinc ions are capable to break junctions between the cells. The involvement of other players, for example, l-cysteine in the regulation of Ca2+-dependent adhesion may be critical leading to the typical dissociation of Trichoplax body like in a calcium-free environment. A hypothesis about the essential role of calcium ions in the emergence of Metazoa ancestor is proposed.
Collapse
Affiliation(s)
- A V Kuznetsov
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky Avenue 38, Moscow, 119991, Russia.
| | - V I Vainer
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| | - Yu M Volkova
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| | - L E Kartashov
- A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| |
Collapse
|
15
|
Gold AR, Glanzman DL. The central importance of nuclear mechanisms in the storage of memory. Biochem Biophys Res Commun 2021; 564:103-113. [PMID: 34020774 DOI: 10.1016/j.bbrc.2021.04.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
The neurobiological nature of the memory trace (engram) remains controversial. The most widely accepted hypothesis at present is that long-term memory is stored as stable, learning-induced changes in synaptic connections. This hypothesis, the synaptic plasticity hypothesis of memory, is supported by extensive experimental data gathered from over 50 years of research. Nonetheless, there are important mnemonic phenomena that the synaptic plasticity hypothesis cannot, or cannot readily, account for. Furthermore, recent work indicates that epigenetic and genomic mechanisms play heretofore underappreciated roles in memory. Here, we critically assess the evidence that supports the synaptic plasticity hypothesis and discuss alternative non-synaptic, nuclear mechanisms of memory storage, including DNA methylation and retrotransposition. We argue that long-term encoding of memory is mediated by nuclear processes; synaptic plasticity, by contrast, represents a means of relatively temporary memory storage. In addition, we propose that memories are evaluated for their mnemonic significance during an initial period of synaptic storage; if assessed as sufficiently important, the memories then undergo nuclear encoding.
Collapse
Affiliation(s)
- Adam R Gold
- Behavioral Neuroscience Program, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David L Glanzman
- Department of Integrative Biology & Physiology, UCLA College, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
A Review of Effects of Environment on Brain Size in Insects. INSECTS 2021; 12:insects12050461. [PMID: 34067515 PMCID: PMC8156428 DOI: 10.3390/insects12050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision. I also discussed this idea with studies that contradict this way of thinking.
Collapse
|
17
|
Jékely G. The chemical brain hypothesis for the origin of nervous systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190761. [PMID: 33550946 PMCID: PMC7935135 DOI: 10.1098/rstb.2019.0761] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In nervous systems, there are two main modes of transmission for the propagation of activity between cells. Synaptic transmission relies on close contact at chemical or electrical synapses while volume transmission is mediated by diffusible chemical signals and does not require direct contact. It is possible to wire complex neuronal networks by both chemical and synaptic transmission. Both types of networks are ubiquitous in nervous systems, leading to the question which of the two appeared first in evolution. This paper explores a scenario where chemically organized cellular networks appeared before synapses in evolution, a possibility supported by the presence of complex peptidergic signalling in all animals except sponges. Small peptides are ideally suited to link up cells into chemical networks. They have unlimited diversity, high diffusivity and high copy numbers derived from repetitive precursors. But chemical signalling is diffusion limited and becomes inefficient in larger bodies. To overcome this, peptidergic cells may have developed projections and formed synaptically connected networks tiling body surfaces and displaying synchronized activity with pulsatile peptide release. The advent of circulatory systems and neurohemal organs further reduced the constraint imposed on chemical signalling by diffusion. This could have contributed to the explosive radiation of peptidergic signalling systems in stem bilaterians. Neurosecretory centres in extant nervous systems are still predominantly chemically wired and coexist with the synaptic brain. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Klein C, Barron AB. How experimental neuroscientists can fix the hard problem of consciousness. Neurosci Conscious 2020; 2020:niaa009. [PMID: 32695476 PMCID: PMC7362610 DOI: 10.1093/nc/niaa009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 01/06/2023] Open
Abstract
For the materialist, the hard problem is fundamentally an explanatory problem. Solving it requires explaining why the relationship between brain and experience is the way it is and not some other way. We use the tools of the interventionist theory of explanation to show how a systematic experimental project could help move beyond the hard problem. Key to this project is the development of second-order interventions and invariant generalizations. Such interventions played a crucial scientific role in untangling other scientific mysteries, and we suggest that the same will be true of consciousness. We further suggest that the capacity for safe and reliable self-intervention will play a key role in overcoming both the hard and meta-problems of consciousness. Finally, we evaluate current strategies for intervention, with an eye to how they might be improved.
Collapse
Affiliation(s)
- Colin Klein
- School of Philosophy, The Australian National University, Canberra, ACT 0200, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
19
|
McCoy MJ, Fire AZ. Intron and gene size expansion during nervous system evolution. BMC Genomics 2020; 21:360. [PMID: 32410625 PMCID: PMC7222433 DOI: 10.1186/s12864-020-6760-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
Background The evolutionary radiation of animals was accompanied by extensive expansion of gene and genome sizes, increased isoform diversity, and complexity of regulation. Results Here we show that the longest genes are enriched for expression in neuronal tissues of diverse vertebrates and of invertebrates. Additionally, we show that neuronal gene size expansion occurred predominantly through net gains in intron size, with a positional bias toward the 5′ end of each gene. Conclusions We find that intron and gene size expansion is a feature of many genes whose expression is enriched in nervous systems. We speculate that unique attributes of neurons may subject neuronal genes to evolutionary forces favoring net size expansion. This process could be associated with tissue-specific constraints on gene function and/or the evolution of increasingly complex gene regulation in nervous systems.
Collapse
Affiliation(s)
- Matthew J McCoy
- Grass Fellowship Program, Marine Biological Laboratory, Woods Hole, MA, 02543, USA. .,Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Jeffery KJ, Rovelli C. Transitions in Brain Evolution: Space, Time and Entropy. Trends Neurosci 2020; 43:467-474. [PMID: 32414530 PMCID: PMC7183980 DOI: 10.1016/j.tins.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
How did brains evolve to become so complex, and what is their future? Brains pose an explanatory challenge because entropy, which inexorably increases over time, is commonly associated with disorder and simplicity. Recently we showed how evolution is an entropic process, building structures – organisms – which themselves facilitate entropy growth. Here we suggest that key transitional points in evolution extended organisms’ reach into space and time, opening channels into new regions of a complex multidimensional state space that also allow entropy to increase. Brain evolution enabled representation of space and time, which vastly enhances this process. Some of these channels lead to tiny, dead-ends in the state space: the persistence of complex life is thus not thermodynamically guaranteed. Evolution of brain complexity is (counterintuitively) an entropy-enhancing process leading organisms to new regions of a space of states, which in turn allow access through channels to additional new spaces, and thus entropy to continue growing. Step transitions in evolution have occurred as organisms acquired new abilities to reach out in space and time, vastly increasing the visitable space of states, and thereby access to new channels. The ability of brains to represent space and time, culminating in human language and hence human technological civilisation, was an important set of transitions that magnified this process. Continued evolution of biological complexity is not assured, because some newly accessible regions of the state space may be small and have no exits, resulting in extinction.
Collapse
Affiliation(s)
- Kate J Jeffery
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK.
| | - Carlo Rovelli
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, 13288 Marseille, France; Perimeter Institute, 31 Caroline Street North, Waterloo N2L 2Y5, Canada; The Rotman Institute of Philosophy, 1151 Richmond St. N, London N6A 5B7, Canada
| |
Collapse
|
21
|
Robertson RM, Dawson-Scully KD, Andrew RD. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J Neurophysiol 2020; 123:885-895. [PMID: 32023142 PMCID: PMC7099469 DOI: 10.1152/jn.00724.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- R Meldrum Robertson
- Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ken D Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - R David Andrew
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Paulin MG, Cahill‐Lane J. Events in Early Nervous System Evolution. Top Cogn Sci 2019; 13:25-44. [DOI: 10.1111/tops.12461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
23
|
Taiz L, Alkon D, Draguhn A, Murphy A, Blatt M, Hawes C, Thiel G, Robinson DG. Plants Neither Possess nor Require Consciousness. TRENDS IN PLANT SCIENCE 2019; 24:677-687. [PMID: 31279732 DOI: 10.1016/j.tplants.2019.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 05/07/2023]
Abstract
In claiming that plants have consciousness, 'plant neurobiologists' have consistently glossed over the remarkable degree of structural and functional complexity that the brain had to evolve for consciousness to emerge. Here, we outline a new hypothesis proposed by Feinberg and Mallat for the evolution of consciousness in animals. Based on a survey of the brain anatomy, functional complexity, and behaviors of a broad spectrum of animals, criteria were established for the emergence of consciousness. The only animals that satisfied these criteria were the vertebrates (including fish), arthropods (e.g., insects, crabs), and cephalopods (e.g., octopuses, squids). In light of Feinberg and Mallat's analysis, we consider the likelihood that plants, with their relative organizational simplicity and lack of neurons and brains, have consciousness to be effectively nil.
Collapse
Affiliation(s)
- Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Daniel Alkon
- Neurotrope, Inc., 1185 Avenue of the Americas, 3rd Floor, New York, NY 10036, USA
| | - Andreas Draguhn
- Institut für Physiologie und Pathophysiologie, Medizinische Fakultät Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Angus Murphy
- Department of Plant Science and Landscape Architecture, 2104 Plant Sciences Building, College Park, MD 20742, USA
| | - Michael Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287, Darmstadt, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Martinez-Corral R, Liu J, Prindle A, Süel GM, Garcia-Ojalvo J. Metabolic basis of brain-like electrical signalling in bacterial communities. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180382. [PMID: 31006362 PMCID: PMC6553584 DOI: 10.1098/rstb.2018.0382] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Information processing in the mammalian brain relies on a careful regulation of the membrane potential dynamics of its constituent neurons, which propagates across the neuronal tissue via electrical signalling. We recently reported the existence of electrical signalling in a much simpler organism, the bacterium Bacillus subtilis. In dense bacterial communities known as biofilms, nutrient-deprived B. subtilis cells in the interior of the colony use electrical communication to transmit stress signals to the periphery, which interfere with the growth of peripheral cells and reduce nutrient consumption, thereby relieving stress from the interior. Here, we explicitly address the interplay between metabolism and electrophysiology in bacterial biofilms, by introducing a spatially extended mathematical model that combines the metabolic and electrical components of the phenomenon in a discretized reaction-diffusion scheme. The model is experimentally validated by environmental and genetic perturbations, and confirms that metabolic stress is transmitted through the bacterial population via a potassium wave. Interestingly, this behaviour is reminiscent of cortical spreading depression in the brain, characterized by a wave of electrical activity mediated by potassium diffusion that has been linked to various neurological disorders, calling for future studies on the evolutionary link between the two phenomena. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Rosa Martinez-Corral
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Jintao Liu
- Center for Infectious Diseases Research and Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Gürol M. Süel
- Division of Biological Sciences, San Diego Center for Systems Biology and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| |
Collapse
|
25
|
Talukdar S, Shrivastava R, Ghosh S. Modeling activity-dependent reduction in after hyper-polarization with Hodgkin-Huxley equation of action potential. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1a1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Is “the brain” a helpful metaphor for neuroscience? Behav Brain Sci 2019; 42:e234. [DOI: 10.1017/s0140525x19001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Brette criticizes the notion of neural coding as used in neuroscience as a way to clarify the causal structure of the brain. This criticism will be positioned in a wider range of findings and ideas from other branches of neuroscience and biology. While supporting Brette's critique, these findings also suggest the need for more radical changes in neuroscience than Brette envisions.
Collapse
|
27
|
Kölker S. Metabolism of amino acid neurotransmitters: the synaptic disorder underlying inherited metabolic diseases. J Inherit Metab Dis 2018; 41:1055-1063. [PMID: 29869166 DOI: 10.1007/s10545-018-0201-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Amino acids are involved in various metabolic pathways and some of them also act as neurotransmitters. Since biosynthesis of L-glutamate and γ-aminobutyric acid (GABA) requires 2-oxoglutarate while 3-phosphoglycerate is the precursor of L-glycine and D-serine, evolutionary selection of these amino acid neurotransmitters might have been driven by their capacity to provide important information about the glycolytic pathway and Krebs cycle. Synthesis and recycling of amino acid neurotransmitters as well as composition and function of their receptors are often compromised in inherited metabolic diseases. For instance, increased plasma L-phenylalanine concentrations impair cerebral biosynthesis of protein and bioamines in phenylketonuria, while elevated cerebral L-phenylalanine directly acts via ionotropic glutamate receptors. In succinic semialdehyde dehydrogenase deficiency, the neurotransmitter GABA and neuromodulatory γ-hydroxybutyric acid are elevated. Chronic hyperGABAergic state results in progressive downregulation of GABAA and GABAB receptors and impaired mitophagy. In glycine encephalopathy, the neurological phenotype is precipitated by L-glycine acting both via cortical NMDA receptors and glycine receptors in spinal cord and brain stem neurons. Serine deficiency syndromes are biochemically characterized by decreased biosynthesis of L-serine, an important neurotrophic factor, and the neurotransmitters D-serine and L-glycine. Supplementation with L-serine and L-glycine has a positive effect on seizure frequency and spasticity, while neurocognitive development can only be improved if treatment starts in utero or immediately postnatally. With novel techniques, the study of synaptic dysfunction in inherited metabolic diseases has become an emerging research field. More and better therapies are needed for these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
29
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
30
|
Mayorova TD, Smith CL, Hammar K, Winters CA, Pivovarova NB, Aronova MA, Leapman RD, Reese TS. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One 2018; 13:e0190905. [PMID: 29342202 PMCID: PMC5771587 DOI: 10.1371/journal.pone.0190905] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 11/23/2022] Open
Abstract
Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Developmental Neurobiology, Koltzov Institute of Developmental Biology, Russian Academy of Science, Moscow, Russia
| | - Carolyn L. Smith
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia B. Pivovarova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria A. Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Rockville Pike, Bethesda, Maryland, United States of America
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Rockville Pike, Bethesda, Maryland, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
Haen Whitmer KM. Model Systems for Exploring the Evolutionary Origins of the Nervous System. Results Probl Cell Differ 2018; 65:185-196. [PMID: 30083921 DOI: 10.1007/978-3-319-92486-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The development of nervous systems can be seen as one of the key transitions in animal evolution, allowing the efficient integration of sensory input and motor output and the expedient transmission of impulses over relatively long distances inside an organism. With the increased availability of genome sequences for animals at the base of the metazoan phylogenetic tree, two alternative hypotheses have been proposed regarding nervous system evolutionary origins, ultimately prompting a debate whether an enormously complicated system like the nervous system could have evolved more than once. This review summarizes what is currently known about nervous system origins, concentrating on the evolution of synapse components, with respect to phylogenetic knowledge of early diverging animal groups, comprising members of the Porifera, Ctenophora, Placozoa, and Cnidaria.
Collapse
Affiliation(s)
- Karri M Haen Whitmer
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
32
|
Abstract
In this Guest Editorial, Jeremy Niven and Lars Chittka introduce our special issue on the evolution of nervous systems.
Collapse
|
33
|
The Role of the Gustatory System in the Coordination of Feeding. eNeuro 2017; 4:eN-REV-0324-17. [PMID: 29159281 PMCID: PMC5694965 DOI: 10.1523/eneuro.0324-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
To survive, all animals must find, inspect, and ingest food. Behavioral coordination and control of feeding is therefore a challenge that animals must face. Here, we focus on how the gustatory system guides the precise execution of behavioral sequences that promote ingestion and suppresses competing behaviors. We summarize principles learnt from Drosophila, where underlying sensory neuronal mechanisms are illustrated in great detail. Moreover, we compare these principles with findings in other animals, where such coordination plays prominent roles. These examples suggest that the use of gustatory information for feeding coordination has an ancient origin and is prevalent throughout the animal kingdom.
Collapse
|
34
|
Senatore A, Reese TS, Smith CL. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 2017; 220:3381-3390. [PMID: 28931721 PMCID: PMC5612019 DOI: 10.1242/jeb.162396] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.
Collapse
Affiliation(s)
- Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6
| | | | | |
Collapse
|