1
|
Horard B, Terretaz K, Gosselin-Grenet AS, Sobry H, Sicard M, Landmann F, Loppin B. Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr Biol 2022; 32:1319-1331.e5. [DOI: 10.1016/j.cub.2022.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
|
2
|
Pontier SM, Schweisguth F. Response to "Does pupal communication influence Wolbachia-mediated cytoplasmic incompatibility?". Curr Biol 2019; 27:R55-R56. [PMID: 28118586 DOI: 10.1016/j.cub.2016.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In a recent Current Biology paper [1], we reported that pheromone communication occurred during metamorphosis in Drosophila melanogaster. Female pheromones appeared to influence various aspects of the physiology and development of adult males. In particular, we observed that this communication regulated testis development and had a positive impact on reproduction, as measured by a difference in the % of eggs developing into larvae in crosses involving adult male flies that had developed at metamorphosis with or without female pupae [1].
Collapse
Affiliation(s)
- Stephanie M Pontier
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; CNRS, UMR3738, F-75015 Paris, France.
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
3
|
Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H, Weill M, Sicard M, Charlat S. The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. Trends Genet 2019; 35:175-185. [PMID: 30685209 DOI: 10.1016/j.tig.2018.12.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.
Collapse
Affiliation(s)
- John F Beckmann
- Auburn University, Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn, AL 36849, USA; Equal contribution
| | - Manon Bonneau
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France; Equal contribution
| | - Hongli Chen
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Denis Poinsot
- Université Rennes 1, Institut de Génétique, Environnement, et Protection des Plantes (IGEPP), Campus Beaulieu, 35042 Rennes, France
| | - Hervé Merçot
- Sorbonne Université, Université Pierre et Marie Curie (UPMC) Université Paris 06, CNRS, Institut de Biologie Paris Seine, Evolution Paris Seine (IBPS, EPS), 7-9 Quai St-Bernard, 75005 Paris, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France.
| | - Sylvain Charlat
- CNRS, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, 16 rue Raphael Dubois, 69622 Villeurbanne, France.
| |
Collapse
|
4
|
Schneider DI, Ehrman L, Engl T, Kaltenpoth M, Hua-Van A, Le Rouzic A, Miller WJ. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behav Genet 2019; 49:83-98. [PMID: 30456532 PMCID: PMC6327003 DOI: 10.1007/s10519-018-9937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Lee Ehrman
- Natural Sciences, State University of New York, Purchase College, Purchase, NY, USA
| | - Tobias Engl
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Engl T, Michalkova V, Weiss BL, Uzel GD, Takac P, Miller WJ, Abd-Alla AMM, Aksoy S, Kaltenpoth M. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol 2018; 18:145. [PMID: 30470188 PMCID: PMC6251160 DOI: 10.1186/s12866-018-1292-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host's nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography - mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies. RESULTS All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays. CONCLUSIONS While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.
Collapse
Affiliation(s)
- Tobias Engl
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
- Present Address: Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Güler D Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Laboratories of Genome Dynamics, Department Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|