1
|
Zhang Y, Cheng J, Guo Y, Hu Y, Zhao Z, Liu W, Zhou L, Wu P, Cheng C, Yang C, Yang J, Du E, Li Y. Highly pathogenic bovine viral diarrhea virus BJ-11 unveils genetic evolution related to virulence in calves. Front Microbiol 2025; 15:1540358. [PMID: 39877754 PMCID: PMC11772275 DOI: 10.3389/fmicb.2024.1540358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea, which causes significant economic loss to the global livestock industry. Despite the widespread use of inactivated BVDV vaccines, highly pathogenic strains continue to emerge. In China, regional variations in BVDV subtypes, morbidities, and symptoms, however, only the BVDV 1a subtype vaccine is currently approved. Therefore, this study is to gain insight into the biological characteristics and genetic variation of BVDV strains prevalent in Beijing. Meanwhile, this will provide a theoretical foundation and technical support for the prevention and control of BVDV, as well as raise awareness of the potential for virulence enhancement caused by the unregulated use of BVDV vaccines. In this study, A BVDV strain, BJ-11, was isolated from calves that died of diarrhea and vaccinated of BVDV. To evaluate its virulence, newborn calves were experimentally infected with the BJ-11. Clinical signs included fever, diarrhea, bloody stools, anorexia, and death in some cases. A marked reduction in leukocyte and lymphocyte counts were observed, accompanied by an increase in neutrophil counts. Histopathological changes manifested as severe lung lesions. Phylogenetic analysis indicated that BJ-11 belongs to the BVDV 1b subtype, genetically closest to the JL-1 strain. Analysis of the E2 glycosylation site disappeared (298SYT) in one of the four common glycosylation sites in the BVDV-1, which has been reported to affect the ability of the virus to infect and an additional glycosylation site (122NGS). These results indicate that BJ-11 is a highly pathogenic strain evolved from a low-virulence ancestor and should be served as a challenge strain. Simultaneously, these results contribute to a broader understanding of BVDV and whether imperfect vaccination strategies lead to reversal of immunosuppressive virulence.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu Guo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yibin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Zhuo Zhao
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Peize Wu
- Beijing Centrebio Biological Co., Ltd., Beijing, China
| | - Chunjie Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jing Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Dewar AE, Belcher LJ, West SA. A phylogenetic approach to comparative genomics. Nat Rev Genet 2025:10.1038/s41576-024-00803-0. [PMID: 39779997 PMCID: PMC7617348 DOI: 10.1038/s41576-024-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Comparative genomics, whereby the genomes of different species are compared, has the potential to address broad and fundamental questions at the intersection of genetics and evolution. However, species, genomes and genes cannot be considered as independent data points within statistical tests. Closely related species tend to be similar because they share genes by common descent, which must be accounted for in analyses. This problem of non-independence may be exacerbated when examining genomes or genes but can be addressed by applying phylogeny-based methods to comparative genomic analyses. Here, we review how controlling for phylogeny can change the conclusions of comparative genomics studies. We address common questions on how to apply these methods and illustrate how they can be used to test causal hypotheses. The combination of rapidly expanding genomic datasets and phylogenetic comparative methods is set to revolutionize the biological insights possible from comparative genomic studies.
Collapse
Affiliation(s)
- Anna E Dewar
- Department of Biology, University of Oxford, Oxford, UK.
- St John's College, Oxford, UK.
| | | | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Roa Lozano J, Duncan M, McKenna DD, Castoe TA, DeGiorgio M, Adams R. TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution. BIOINFORMATICS ADVANCES 2024; 5:vbae196. [PMID: 39758830 PMCID: PMC11696700 DOI: 10.1093/bioadv/vbae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Motivation The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature. Results We introduce TraitTrainR, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. TraitTrainR employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, TraitTrainR permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of TraitTrainR, and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying TraitTrainR to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology. Availability and implementation TraitTrainR is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.
Collapse
Affiliation(s)
- Jenniffer Roa Lozano
- Center for Agricultural Data Analytics, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mataya Duncan
- Center for Agricultural Data Analytics, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, United States
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Richard Adams
- Center for Agricultural Data Analytics, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
4
|
Balanoff AM. Dinosaur palaeoneurology: an evolving science. Biol Lett 2024; 20:20240472. [PMID: 39689851 DOI: 10.1098/rsbl.2024.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024] Open
Abstract
Our fascination with dinosaur brains and their capabilities essentially began with the first dinosaur discovery. The history of this study is a useful reflection of palaeoneurology as a whole and its relationship to a more inclusive evolutionary neuroscience. I argue that this relationship is imbued with high heuristic potential, but one whose realization requires overcoming certain constraints. These constraints include the need for a stable phylogenetic framework, methods for efficient and precise endocast construction, and fossil researchers who are steeped in a neuroscience perspective. The progress that has already been made in these areas sets the stage for a more mature palaeoneurology-not only one capable of being informed by neuroscience discoveries but one that drives such discoveries. I draw from work on the size, shape, behavioural correlates and developmental role of the dinosaur brain to outline current advances in dinosaur palaeoneurology. My examples largely are taken from theropods and centre on questions related to the origin of birds and their unique locomotory capabilities. The hope, however, is that these exemplify the potential for study in other dinosaur groups, and for utilizing the dinosaur-bird lineage as a parallel model on a par with mammals for studying encephalization.
Collapse
Affiliation(s)
- Amy M Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Osmond M, Coop G. Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies. eLife 2024; 13:e72177. [PMID: 39589398 DOI: 10.7554/elife.72177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.
Collapse
Affiliation(s)
- Matthew Osmond
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Graham Coop
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, Davis, United States
| |
Collapse
|
6
|
Campelo F, de Oliveira ALG, Reis-Cunha J, Fraga VG, Bastos PH, Ashford J, Ekárt A, Adelino TER, Silva MVF, de Melo Iani FC, de Jesus ACP, Bartholomeu DC, de Souza Trindade G, Fujiwara RT, Bueno LL, Lobo FP. Phylogeny-aware linear B-cell epitope predictor detects targets associated with immune response to orthopoxviruses. Brief Bioinform 2024; 25:bbae527. [PMID: 39503522 PMCID: PMC11538998 DOI: 10.1093/bib/bbae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Indexed: 11/08/2024] Open
Abstract
We introduce a phylogeny-aware framework for predicting linear B-cell epitope (LBCE)-containing regions within proteins. Our approach leverages evolutionary information by using a taxonomic scaffold to build models trained on hierarchically structured data. The resulting models present performance equivalent or superior to generalist methods, despite using simpler features and a fraction of the data volume required by current state-of-the-art predictors. This allows the utilization of available data for major pathogen lineages to facilitate the prediction of LBCEs for emerging infectious agents. We demonstrate the efficacy of our approach by predicting new LBCEs in the monkeypox (MPXV) and vaccinia viruses. Experimental validation of selected targets using sera from infected patients confirms the presence of LBCEs, including candidates for the differential serodiagnosis of recent MPXV infections. These results point to the use of phylogeny-aware predictors as a useful strategy to facilitate the targeted development of immunodiagnostic tools.
Collapse
Affiliation(s)
- Felipe Campelo
- School of Engineering Mathematics and Technology, University of Bristol, Ada Lovelace Building, Tankard's Close BS8 1TW, Bristol, United Kingdom
| | - Ana Laura Grossi de Oliveira
- Post-Graduate Program in Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena 190, 30130-100, Belo Horizonte, Brazil
| | - João Reis-Cunha
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way YO10 5NG, York, United Kingdom
| | - Vanessa Gomes Fraga
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Pedro Henrique Bastos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Jodie Ashford
- Immigrant and Global Health, Global Tuberculosis Program, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, United States
- Aston Centre for Artificial Intelligence Research and Application, Aston University, Aston Triangle B4 7ET, Birmingham, United Kingdom
| | - Anikó Ekárt
- Aston Centre for Artificial Intelligence Research and Application, Aston University, Aston Triangle B4 7ET, Birmingham, United Kingdom
| | - Talita Emile Ribeiro Adelino
- Central Public Health Laboratory, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Brazil
| | - Marcos Vinicius Ferreira Silva
- Central Public Health Laboratory, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Brazil
| | - Felipe Campos de Melo Iani
- Central Public Health Laboratory, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Brazil
| | - Augusto César Parreiras de Jesus
- Post-Graduate Program in Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena 190, 30130-100, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Giliane de Souza Trindade
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Babbitt GA, Rajendran M, Lynch ML, Asare-Bediako R, Mouli LT, Ryan CJ, Srivastava H, Rynkiewicz P, Phadke K, Reed ML, Moore N, Ferran MC, Fokoue EP. ATOMDANCE: Kernel-based denoising and choreographic analysis for protein dynamic comparison. Biophys J 2024; 123:2705-2715. [PMID: 38515299 PMCID: PMC11393699 DOI: 10.1016/j.bpj.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Comparative methods in molecular evolution and structural biology rely heavily upon the site-wise analysis of DNA sequence and protein structure, both static forms of information. However, it is widely accepted that protein function results from nanoscale nonrandom machine-like motions induced by evolutionarily conserved molecular interactions. Comparisons of molecular dynamics (MD) simulations conducted between homologous sites representative of different functional or mutational states can potentially identify local effects on binding interaction and protein evolution. In addition, comparisons of different (i.e., nonhomologous) sites within MD simulations could be employed to identify functional shifts in local time-coordinated dynamics indicative of logic gating within proteins. However, comparative MD analysis is challenged by the large fraction of protein motion caused by random thermal noise in the surrounding solvent. Therefore, properly denoised MD comparisons could reveal functional sites involving these machine-like dynamics with good accuracy. Here, we introduce ATOMDANCE, a user-interfaced suite of comparative machine learning-based denoising tools designed for identifying functional sites and the patterns of coordinated motion they can create within MD simulations. ATOMDANCE-maxDemon4.0 employs Gaussian kernel functions to compute site-wise maximum mean discrepancy between learned features of motion, thereby assessing denoised differences in the nonrandom motions between functional or evolutionary states (e.g., ligand bound versus unbound, wild-type versus mutant). ATOMDANCE-maxDemon4.0 also employs maximum mean discrepancy to analyze potential random amino acid replacements allowing for a site-wise test of neutral versus nonneutral evolution on the divergence of dynamic function in protein homologs. Finally, ATOMDANCE-Choreograph2.0 employs mixed-model analysis of variance and graph network to detect regions where time-synchronized shifts in dynamics occur. Here, we demonstrate ATOMDANCE's utility for identifying key sites involved in dynamic responses during functional binding interactions involving DNA, small-molecule drugs, and virus-host recognition, as well as understanding shifts in global and local site coordination occurring during allosteric activation of a pathogenic protease.
Collapse
Affiliation(s)
- Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York.
| | - Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Miranda L Lynch
- Hauptmann Woodward Medical Research Institute, Buffalo, New York
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Leora T Mouli
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Cameron J Ryan
- McQuaid Jesuit High School Computer Club, Rochester, New York
| | | | - Patrick Rynkiewicz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Kavya Phadke
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Makayla L Reed
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Nadia Moore
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Maureen C Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Ernest P Fokoue
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York.
| |
Collapse
|
8
|
Barros-Leite A, Francisco MR. Nest site correlates with nest type and body size in Troglodytidae passerines. Biol Lett 2024; 20:20240053. [PMID: 39191286 DOI: 10.1098/rsbl.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Nest characteristics are highly variable in the Passeriformes, but the macroevolutionary patterns observable for birds in general are not necessarily valid for specific families, suggesting that both global and within-family studies are needed. Here, we used phylogenetic comparative methods to address the evolutionary patterns of nest type, nest site and habitat in the Troglodytidae, a passerine group with diversified nest and habitat characteristics. The common ancestor of the Troglodytidae likely constructed enclosed nests within sheltered sites (cavity or crevice), but the radiation of the group was characterized by (i) shifts to exposed nest sites (vegetation) with retention of enclosed nests or (ii) retention of sheltered sites with nest simplification (cup nests). Nest site and nest type presented strong phylogenetic conservatism and evolved interdependently, while habitat was poorly correlated with nest evolution. A phylogenetic mixed modelling approach showed that sheltered nest sites were associated with small body size, likely to avoid competition with other animals for these places. With these results, we improve the understanding of nest character evolution in the Troglodytidae and reveal evolutionary aspects not observed so far for passerine birds.
Collapse
Affiliation(s)
- Abraão Barros-Leite
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz km 235 , São Carlos, SP 13565-905, Brazil
| | - Mercival R Francisco
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, campus de Sorocaba. Rodovia João Leme dos Santos km 110 , Sorocaba, SP 18052-780, Brazil
| |
Collapse
|
9
|
Goloboff PA, De Laet J. Farewell to the requirement for character independence: phylogenetic methods to incorporate different types of dependence between characters. Cladistics 2024; 40:209-241. [PMID: 38014464 DOI: 10.1111/cla.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
This paper discusses methods to take into account interactions between characters, in the context of parsimony analysis. These interactions can be in the form of some characters becoming inapplicable given certain states of other, primary characters; in the form of only certain states being allowed in some characters when a given state or set of states occurs for other characters; or in the form of transformation costs in some character being higher or lower when other characters have certain states or transformations between states. Character-state reconstructions and evaluation of trees under the assumption of independence may easily lead to ancestral assignments that violate elementary rules of biomechanics, well-established theories relating form and function or ideas about character co-variation. An obvious example is reconstructing an ancestral bird as wingless and flying at the same time; another is reconstructing a protein-coding gene as having a stop codon in some ancestors. If the characters are optimized independently, such chimeric ancestral reconstructions can occur even when no terminal displays the impossible combination of states. A set of conventions (implemented via new TNT commands and options) allows the definition of complex rules of interaction. By recoding groups of characters with proper step-matrix costs (and excluding impossible combinations from the set of permissible states), it is possible to find the ancestral reconstructions that maximize homology (and thus the degree to which similarities can be explained by common ancestry), within the constraints imposed by the rules specified by the user. We expect that considerations of biomechanics, functional morphology and natural history will be a source of many theories on possible character dependences, and that the present implementation will encourage users to take the possibility of character dependences into account in their phylogenetic analyses.
Collapse
Affiliation(s)
- Pablo A Goloboff
- Unidad Ejecutora Lillo, UEL (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, 4000, S.M. de Tucumán, Argentina
| | - Jan De Laet
- Meise Botanic Garden, Nieuwelaan 38, Meise, Belgium
| |
Collapse
|
10
|
Church SH, Mah JL, Dunn CW. Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells. PLoS Biol 2024; 22:e3002633. [PMID: 38787797 PMCID: PMC11125556 DOI: 10.1371/journal.pbio.3002633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Comparisons of single-cell RNA sequencing (scRNA-seq) data across species can reveal links between cellular gene expression and the evolution of cell functions, features, and phenotypes. These comparisons evoke evolutionary histories, as depicted by phylogenetic trees, that define relationships between species, genes, and cells. This Essay considers each of these in turn, laying out challenges and solutions derived from a phylogenetic comparative approach and relating these solutions to previously proposed methods for the pairwise alignment of cellular dimensional maps. This Essay contends that species trees, gene trees, cell phylogenies, and cell lineages can all be reconciled as descriptions of the same concept-the tree of cellular life. By integrating phylogenetic approaches into scRNA-seq analyses, challenges for building informed comparisons across species can be overcome, and hypotheses about gene and cell evolution can be robustly tested.
Collapse
Affiliation(s)
- Samuel H. Church
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jasmine L. Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Casey W. Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
Silva FLD, de Medeiros BAS, Farrell BD. Once upon a fly: The biogeographical odyssey of Labrundinia (Chironomidae, Tanypodinae), an aquatic non-biting midge towards diversification. Mol Phylogenet Evol 2024; 194:108025. [PMID: 38342160 DOI: 10.1016/j.ympev.2024.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Labrundinia is a highly recognizable lineage in the Pentaneurini tribe (Diptera, Chironomidae). The distinct predatory free-swimming larvae of this genus are typically present in unpolluted aquatic environments, such as small streams, ponds, lakes, and bays. They can be found on the bottom mud, clinging to rocks and wood, and dwelling among aquatic vegetation. Labrundinia has been extensively studied in ecological research and comprises 39 species, all but one of which has been described from regions outside the Palearctic. Earlier phylogenetic studies have suggested that the initial diversification of the genus likely occurred in the Neotropical Region, with its current presence in the Nearctic Region and southern South America being the result of subsequent dispersal events. Through the integration of molecular and morphological data in a calibrated phylogeny, we reveal a complex and nuanced evolutionary history for Labrundinia, providing insights into its biogeographical and diversification patterns. In this comprehensive study, we analyze a dataset containing 46 Labrundinia species, totaling 10,662 characters, consisting of 10,616 nucleotide sites and 46 morphological characters. The molecular data was generated mainly by anchored enrichment hybrid methods. Using this comprehensive dataset, we inferred the phylogeny of the group based on a total evidence matrix. Subsequently, we employed the generated tree for time calibration and further analysis of biogeography and diversification patterns. Our findings reveal multiple dispersal events out of the Neotropics, where the group originated in the late Cretaceous approximately 72 million years ago (69-78 Ma). We further reveal that the genus experienced an early burst of diversification rates during the Paleocene, which gradually decelerated towards the present-day. We also find that the Neotropics have played a pivotal role in the evolution of Labrundinia by serving as both a cradle and a museum. By "cradle," we mean that the region has been a hotspot for the origin and diversification of new Labrundinia lineages, while "museum" refers to the region's ability to preserve ancestral lineages over extended periods. In summary, our findings indicate that the Neotropics have been a key source of genetic diversity for Labrundinia, resulting in the development of distinctive adaptations and characteristics within the genus. This evidence highlights the crucial role that these regions have played in shaping the evolutionary trajectory of Labrundinia.
Collapse
Affiliation(s)
- Fabio Laurindo da Silva
- Laboratory of Aquatic Insect Biodiversity and Ecology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA.
| | - Bruno A S de Medeiros
- Field Museum of Natural History, Negaunee Integrative Research Center, Chicago, USA; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
12
|
Singleton MD, Eisen MB. Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. PLoS Comput Biol 2024; 20:e1012028. [PMID: 38662765 PMCID: PMC11075841 DOI: 10.1371/journal.pcbi.1012028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimensional structures. As this flexibility allows them to interact with diverse binding partners, IDRs play key roles in cell signaling and gene expression. Despite the prevalence and importance of IDRs in eukaryotic proteomes and various biological processes, associating them with specific molecular functions remains a significant challenge due to their high rates of sequence evolution. However, by comparing the observed values of various IDR-associated properties against those generated under a simulated model of evolution, a recent study found most IDRs across the entire yeast proteome contain conserved features. Furthermore, it showed clusters of IDRs with common "evolutionary signatures," i.e. patterns of conserved features, were associated with specific biological functions. To determine if similar patterns of conservation are found in the IDRs of other systems, in this work we applied a series of phylogenetic models to over 7,500 orthologous IDRs identified in the Drosophila genome to dissect the forces driving their evolution. By comparing models of constrained and unconstrained continuous trait evolution using the Brownian motion and Ornstein-Uhlenbeck models, respectively, we identified signals of widespread constraint, indicating conservation of distributed features is mechanism of IDR evolution common to multiple biological systems. In contrast to the previous study in yeast, however, we observed limited evidence of IDR clusters with specific biological functions, which suggests a more complex relationship between evolutionary constraints and function in the IDRs of multicellular organisms.
Collapse
Affiliation(s)
- Marc D. Singleton
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
| | - Michael B. Eisen
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
| |
Collapse
|
13
|
Vecchi M, Stec D, Rebecchi L, Michalczyk Ł, Calhim S. Ecology explains anhydrobiotic performance across tardigrades, but the shared evolutionary history matters more. J Anim Ecol 2024; 93:307-318. [PMID: 37994566 DOI: 10.1111/1365-2656.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
Desiccation stress is lethal to most animals. However, some microinvertebrate groups have evolved coping strategies, such as the ability to undergo anhydrobiosis (i.e. survival despite the loss of almost all body water). Tardigrades are one such group, where the molecular mechanisms of anhydrobiosis have been more thoroughly studied. Despite the ecological, evolutionary and biotechnological importance of anhydrobiosis, little is known about its inter- and intra-specific variability nor its relationship with natural habitat conditions or phylogenetic history. We developed a new index-anhydrobiotic recovery index (ARI)-to evaluate the anhydrobiotic performance of tardigrade populations from the family Macrobiotidae. Moreover, we compared the explanatory role of habitat humidity and phylogenetic history on this trait using a variance partitioning approach. We found that ARI is correlated with both microhabitat humidity and yearly rainfall, but it is mostly driven by phylogenetic niche conservatism (i.e. a high portion of ARI variation is explained by phylogeny alone). Finally, we showed that anhydrobiotic performance is highly variable, even between closely related species, and that their response to local ecological conditions is tightly linked to their phylogenetic history. This study not only presents key insights into an emerging model system, but also provides a new methodological approach for wider scale studies of the ecological and evolutionary implications of anhydrobiosis.
Collapse
Affiliation(s)
- M Vecchi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - D Stec
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - L Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Ł Michalczyk
- Department of Invertebrate Evolution, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - S Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
14
|
Scanlan JL, Robin C. Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification. Genome Biol Evol 2024; 16:evae019. [PMID: 38291829 PMCID: PMC10859841 DOI: 10.1093/gbe/evae019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
The evolutionary dynamics of large gene families can offer important insights into the functions of their individual members. While the ecdysteroid kinase-like (EcKL) gene family has previously been linked to the metabolism of both steroid molting hormones and xenobiotic toxins, the functions of nearly all EcKL genes are unknown, and there is little information on their evolution across all insects. Here, we perform comprehensive phylogenetic analyses on a manually annotated set of EcKL genes from 140 insect genomes, revealing the gene family is comprised of at least 13 subfamilies that differ in retention and stability. Our results show the only two genes known to encode ecdysteroid kinases belong to different subfamilies and therefore ecdysteroid metabolism functions must be spread throughout the EcKL family. We provide comparative phylogenomic evidence that EcKLs are involved in detoxification across insects, with positive associations between family size and dietary chemical complexity, and we also find similar evidence for the cytochrome P450 and glutathione S-transferase gene families. Unexpectedly, we find that the size of the clade containing a known ecdysteroid kinase is positively associated with host plant taxonomic diversity in Lepidoptera, possibly suggesting multiple functional shifts between hormone and xenobiotic metabolism. Our evolutionary analyses provide hypotheses of function and a robust framework for future experimental studies of the EcKL gene family. They also open promising new avenues for exploring the genomic basis of dietary adaptation in insects, including the classically studied coevolution of butterflies with their host plants.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
15
|
Rummel AD, Sheehy ET, Schachner ER, Hedrick BP. Sample Size and Geometric Morphometrics Methodology Impact the Evaluation of Morphological Variation. Integr Org Biol 2024; 6:obae002. [PMID: 38313409 PMCID: PMC10833145 DOI: 10.1093/iob/obae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Geometric morphometrics has had a profound impact on our understanding of morphological evolution. However, factors such as sample size and the views and elements selected for two-dimensional geometric morphometric (2DGM) analyses, which are often dictated by specimen availability and time rather than study design, may affect the outcomes of those analyses. Leveraging large intraspecific sample sizes (n > 70) for two bat species, Lasiurus borealis and Nycticeius humeralis, we evaluate the impact of sample size on calculations of mean shape, shape variance, and centroid size. Additionally, we assessed the concordance of multiple skull 2D views with one another and characterized morphological variation in skull shape in L. borealis and N. humeralis, as well as a closely related species, Lasiurus seminolus. Given that L. seminolus is a morphologically cryptic species with L. borealis, we assessed whether differences in skull shape and in 2DGM approach would allow species discrimination. We found that reducing sample size impacted mean shape and increased shape variance, that shape differences were not consistent across views or skull elements, and that trends shown by the views and elements were not all strongly associated with one another. Further, we found that L. borealis and L. seminolus were statistically different in shape using 2DGM in all views and elements. These results underscore the importance of selecting appropriate sample sizes, 2D views, and elements based on the hypothesis being tested. While there is likely not a generalizable sample size or 2D view that can be employed given the wide variety of research questions and systems evaluated using 2DGM, a generalizable solution to issues with 2DGM presented here is to run preliminary analyses using multiple views, elements, and sample sizes, thus ensuring robust conclusions.
Collapse
Affiliation(s)
- A D Rummel
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - E T Sheehy
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - E R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32603, USA
| | - B P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Sha N, Li Z, Sun Q, Han Y, Tian L, Wu Y, Li X, Shi Y, Zhang J, Peng J, Wang L, Dang Z, Liang C. Elucidation of the evolutionary history of Stipa in China using comparative transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1275018. [PMID: 38148860 PMCID: PMC10751131 DOI: 10.3389/fpls.2023.1275018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Phylogenetic analysis provides crucial insights into the evolutionary relationships and diversification patterns within specific taxonomic groups. In this study, we aimed to identify the phylogenetic relationships and explore the evolutionary history of Stipa using transcriptomic data. Samples of 12 Stipa species were collected from the Qinghai-Tibet Plateau and Mongolian Plateau, where they are widely distributed, and transcriptome sequencing was performed using their fresh spikelet tissues. Using bidirectional best BLAST analysis, we identified two sets of one-to-one orthologous genes shared between Brachypodium distachyon and the 12 Stipa species (9397 and 2300 sequences, respectively), as well as 62 single-copy orthologous genes. Concatenation methods were used to construct a robust phylogenetic tree for Stipa, and molecular dating was used to estimate divergence times. Our results indicated that Stipa originated during the Pliocene. In approximately 0.8 million years, it diverged into two major clades each consisting of native species from the Mongolian Plateau and the Qinghai-Tibet Plateau, respectively. The evolution of Stipa was closely associated with the development of northern grassland landscapes. Important external factors such as global cooling during the Pleistocene, changes in monsoonal circulation, and tectonic movements contributed to the diversification of Stipa. This study provided a highly supported phylogenetic framework for understanding the evolution of the Stipa genus in China and insights into its diversification patterns.
Collapse
Affiliation(s)
- Na Sha
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiyong Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qiang Sun
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ying Han
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Li Tian
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yantao Wu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xing Li
- Institute of Landscape and Environment, Inner Mongolia Academy of Forestry Science, Hohhot, Inner Mongolia, China
| | - Yabo Shi
- School of Resources and Environment, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | - Jinghui Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiangtao Peng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lixin Wang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhenhua Dang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cunzhu Liang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
17
|
Ullah N, Yang N, Guan Z, Xiang K, Wang Y, Diaby M, Chen C, Gao B, Song C. Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea. Genes (Basel) 2023; 14:1911. [PMID: 37895260 PMCID: PMC10606334 DOI: 10.3390/genes14101911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.U.); (N.Y.); (Z.G.); (K.X.); (Y.W.); (M.D.); (C.C.); (B.G.)
| |
Collapse
|
18
|
Hongo JA, de Castro GM, Albuquerque Menezes AP, Rios Picorelli AC, Martins da Silva TT, Imada EL, Marchionni L, Del-Bem LE, Vieira Chaves A, Almeida GMDF, Campelo F, Lobo FP. CALANGO: A phylogeny-aware comparative genomics tool for discovering quantitative genotype-phenotype associations across species. PATTERNS (NEW YORK, N.Y.) 2023; 4:100728. [PMID: 37409050 PMCID: PMC10318336 DOI: 10.1016/j.patter.2023.100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 07/07/2023]
Abstract
Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding genotype-phenotype associations across species is challenging due to the non-independence of species data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homologous regions and biological roles associated with quantitative phenotypes across species. In two case studies, CALANGO identified both known and previously unidentified genotype-phenotype associations. The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its integrated bacteriophages, and the pathogenicity phenotype. The second identified an association between maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding and increases genetic diversity, with implications for conservation biology and agriculture.
Collapse
Affiliation(s)
- Jorge Augusto Hongo
- Instituto de Computação, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-872, Brazil
| | - Giovanni Marques de Castro
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alison Pelri Albuquerque Menezes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Agnello César Rios Picorelli
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thieres Tayroni Martins da Silva
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Anderson Vieira Chaves
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Magno de Freitas Almeida
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Felipe Campelo
- Department of Computer Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
19
|
Jantzen JR, Laliberté E, Carteron A, Beauchamp-Rioux R, Blanchard F, Crofts AL, Girard A, Hacker PW, Pardo J, Schweiger AK, Demers-Thibeault S, Coops NC, Kalacska M, Vellend M, Bruneau A. Evolutionary history explains foliar spectral differences between arbuscular and ectomycorrhizal plant species. THE NEW PHYTOLOGIST 2023; 238:2651-2667. [PMID: 36960543 DOI: 10.1111/nph.18902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history. We conduct partial least squares discriminant analysis to assess the ability of spectra to predict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species and use phylogenetic comparative methods to assess differences in spectral properties between arbuscular mycorrhizal and ectomycorrhizal plant species. Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90% (arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components identified multiple spectral optima corresponding with mycorrhizal type due to the close relationship between mycorrhizal type and phylogeny. Importantly, we found that spectra of arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other after accounting for phylogeny. While mycorrhizal type can be predicted from spectra, enabling the use of spectra to identify belowground traits using remote sensing, this is due to evolutionary history and not because of fundamental differences in leaf spectra due to mycorrhizal type.
Collapse
Affiliation(s)
- Johanna R Jantzen
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Etienne Laliberté
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Rosalie Beauchamp-Rioux
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Florence Blanchard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna L Crofts
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Alizée Girard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Paul W Hacker
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Juliana Pardo
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna K Schweiger
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sabrina Demers-Thibeault
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Nicholas C Coops
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Margaret Kalacska
- Department of Geography, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Anne Bruneau
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
20
|
Hedrick BP. Dots on a screen: The past, present, and future of morphometrics in the study of nonavian dinosaurs. Anat Rec (Hoboken) 2023. [PMID: 36922704 DOI: 10.1002/ar.25183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023]
Abstract
Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word "dinosaur." By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra- and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a "virtual paleobiology" framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three-dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.
Collapse
Affiliation(s)
- Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Pestana C, de Sousa AA, Todorov OS, Beaudet A, Benoit J. Evolutionary history of hominin brain size and phylogenetic comparative methods. PROGRESS IN BRAIN RESEARCH 2023; 275:217-232. [PMID: 36841569 DOI: 10.1016/bs.pbr.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
Collapse
Affiliation(s)
- Christopher Pestana
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Benoit
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Snead AA, Clark RD. The Biological Hierarchy, Time, and Temporal 'Omics in Evolutionary Biology: A Perspective. Integr Comp Biol 2022; 62:1872-1886. [PMID: 36057775 DOI: 10.1093/icb/icac138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - René D Clark
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
23
|
Schwark RW, Fuxjager MJ, Schmidt MF. Proposing a neural framework for the evolution of elaborate courtship displays. eLife 2022; 11:e74860. [PMID: 35639093 PMCID: PMC9154748 DOI: 10.7554/elife.74860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals' neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled 'voice boxes' to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.
Collapse
Affiliation(s)
- Ryan W Schwark
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown UniversityProvidenceUnited States
| | - Marc F Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
24
|
|
25
|
Soma M. Behavioral and Evolutionary Perspectives on Visual Lateralization in Mating Birds: A Short Systematic Review. Front Physiol 2022; 12:801385. [PMID: 35173624 PMCID: PMC8841733 DOI: 10.3389/fphys.2021.801385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
The division of cognitive processing between the two hemispheres of the brain causes lateralized eye use in various behavioral contexts. Generally, visual lateralization is shared among vertebrates to a greater extent, with little interspecific variation. However, previous studies on the visual lateralization in mating birds have shown surprising heterogeneity. Therefore, this systematic review paper summarized and analyzed them using phylogenetic comparative methods. The review aimed to elucidate why some species used their left eye and others their right to fixate on individuals of the opposite sex, such as mating partners or prospective mates. It was found that passerine and non-passerine species showed opposite eye use for mating, which could have stemmed from the difference in altricial vs. precocial development. However, due to the limited availability of species data, it was impossible to determine whether the passerine group or altricial development was the primary factor. Additionally, unclear visual lateralization was found when studies looked at lek mating species and males who performed courtship. These findings are discussed from both evolutionary and behavioral perspectives. Possible directions for future research have been suggested.
Collapse
|
26
|
Anderson TK, Inderski B, Diel DG, Hause BM, Porter EG, Clement T, Nelson EA, Bai J, Christopher-Hennings J, Gauger PC, Zhang J, Harmon KM, Main R, Lager KM, Faaberg KS. The United States Swine Pathogen Database: integrating veterinary diagnostic laboratory sequence data to monitor emerging pathogens of swine. Database (Oxford) 2021; 2021:6462938. [PMID: 35165687 PMCID: PMC8903347 DOI: 10.1093/database/baab078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Veterinary diagnostic laboratories derive thousands of nucleotide sequences from clinical samples of swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A and swine enteric coronaviruses. In addition, next generation sequencing has resulted in the rapid production of full-length genomes. Presently, sequence data are released to diagnostic clients but are not publicly available as data may be associated with sensitive information. However, these data can be used for field-relevant vaccines; determining where and when pathogens are spreading; have relevance to research in molecular and comparative virology; and are a component in pandemic preparedness efforts. We have developed a centralized sequence database that integrates private clinical data using PRRSV data as an exemplar, alongside publicly available genomic information. We implemented the Tripal toolkit, a collection of Drupal modules that are used to manage, visualize and disseminate biological data stored within the Chado database schema. New sequences sourced from diagnostic laboratories contain: genomic information; date of collection; collection location; and a unique identifier. Users can download annotated genomic sequences using a customized search interface that incorporates data mined from published literature; search for similar sequences using BLAST-based tools; and explore annotated reference genomes. Additionally, custom annotation pipelines have determined species, the location of open reading frames and nonstructural proteins and the occurrence of putative frame shifts. Eighteen swine pathogens have been curated. The database provides researchers access to sequences discovered by veterinary diagnosticians, allowing for epidemiological and comparative virology studies. The result will be a better understanding on the emergence of novel swine viruses and how these novel strains are disseminated in the USA and abroad. Database URLhttps://swinepathogendb.org.
Collapse
Affiliation(s)
- Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Blake Inderski
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Diego G Diel
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,Diego G. Diel, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Benjamin M Hause
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Elizabeth G Porter
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Travis Clement
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Eric A Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Jane Christopher-Hennings
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
27
|
Chang H, Guo X, Guo S, Yang N, Huang Y. Trade-off between flight capability and reproduction in Acridoidea (Insecta: Orthoptera). Ecol Evol 2021; 11:16849-16861. [PMID: 34938477 PMCID: PMC8668762 DOI: 10.1002/ece3.8317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
In many insect taxa, there is a well-established trade-off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade-off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long-winged species was significantly higher than that of short-winged and wingless species (p < .01), while GSI of wingless species was higher than that of long-winged and short-winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = -.2649 for male and -.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long-winged individuals are flight capable at the expense of reproduction, while short-winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade-off between flight and reproduction in Acridoidea.
Collapse
Affiliation(s)
- Huihui Chang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Xiaoqiang Guo
- College of Life SciencesShaanxi Normal UniversityXi’anChina
- Shimen Middle SchoolFoshanChina
| | - Shuli Guo
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Nan Yang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Yuan Huang
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| |
Collapse
|
28
|
Page ML, Nicholson CC, Brennan RM, Britzman AT, Greer J, Hemberger J, Kahl H, Müller U, Peng Y, Rosenberger NM, Stuligross C, Wang L, Yang LH, Williams NM. A meta-analysis of single visit pollination effectiveness comparing honeybees and other floral visitors. AMERICAN JOURNAL OF BOTANY 2021; 108:2196-2207. [PMID: 34622948 DOI: 10.1002/ajb2.1764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. METHODS We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? RESULTS Honeybees were significantly less effective than the most effective non-honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. CONCLUSIONS Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non-honeybee taxa.
Collapse
Affiliation(s)
- Maureen L Page
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Charlie C Nicholson
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Ross M Brennan
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
- Graduate Group in Ecology, University of California, Davis, Davis, California, 95616, USA
| | - Anna T Britzman
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Jessica Greer
- Graduate Group in Ecology, University of California, Davis, Davis, California, 95616, USA
- Department of Fish, Wildlife, and Conservation Biology, University of California, Davis, Davis, California, 95616, USA
| | - Jeremy Hemberger
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Hanna Kahl
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Uta Müller
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Youhong Peng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Nick M Rosenberger
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
- Graduate Group in Ecology, University of California, Davis, Davis, California, 95616, USA
| | - Clara Stuligross
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
- Graduate Group in Ecology, University of California, Davis, Davis, California, 95616, USA
| | - Li Wang
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| | - Neal M Williams
- Department of Entomology and Nematology, University of California, Davis, Davis, California, 95616, USA
| |
Collapse
|
29
|
Burki F, Sandin MM, Jamy M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol 2021; 31:R1267-R1280. [PMID: 34637739 DOI: 10.1016/j.cub.2021.07.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protists are the dominant eukaryotes in the biosphere where they play key functional roles. While protists have been studied for over a century, it is the high-throughput sequencing of molecular markers from environmental samples - the approach of metabarcoding - that has revealed just how diverse, and abundant, these small organisms are. Metabarcoding is now routine to survey environmental diversity, so data have rapidly accumulated from a multitude of environments and at different sampling scales. This mass of data has provided unprecedented opportunities to study the taxonomic and functional diversity of protists, and how this diversity is organised in space and time. Here, we use metabarcoding as a common thread to discuss the state of knowledge in protist diversity research, from technical considerations of the approach to important insights gained on diversity patterns and the processes that might have structured this diversity. In addition to these insights, we conclude that metabarcoding is on the verge of an exciting added dimension thanks to the maturation of high-throughput long-read sequencing, so that a robust eco-evolutionary framework of protist diversity is within reach.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden; Science For Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
| | - Miguel M Sandin
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| |
Collapse
|
30
|
Artuso S, Gamisch A, Staedler YM, Schönenberger J, Comes HP. Evidence for selectively constrained 3D flower shape evolution in a Late Miocene clade of Malagasy Bulbophyllum orchids. THE NEW PHYTOLOGIST 2021; 232:853-867. [PMID: 34309843 DOI: 10.1111/nph.17643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Questions concerning the evolution of complex biological structures are central to the field of evolutionary biology. Yet, still little information is known about the modes and temporal dynamics of three-dimensional (3D) flower shape evolution across the history of clades. Here, we combined high-resolution X-ray computed tomography with 3D geometric morphometrics and phylogenetic comparative methods to test models of whole-flower shape evolution in the orchid family, using an early Late Miocene clade (c. 50 spp.) of Malagasy Bulbophyllum as model system. Based on landmark data of 38 species, our high-dimensional model fitting decisively rejects a purely neutral mode of evolution, suggesting instead that flower shapes evolved towards a primary adaptive optimum. Only a small number of recently evolved species/lineages attained alternative shape optima, resulting in an increased rate of phenotypic evolution. Our findings provide evidence of constrained 3D flower shape evolution in a small-sized clade of tropical orchids, resulting in low rates of phenotypic evolution and uncoupled trait-diversification rates. We hypothesise that this deep imprint of evolutionary constraint on highly complex floral structures might reflect long-term (directional and/or stabilizing) selection exerted by the group's main pollinators (flies).
Collapse
Affiliation(s)
- Silvia Artuso
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| | - Alexander Gamisch
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| | - Yannick M Staedler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| |
Collapse
|
31
|
Giannini NP, Goloboff PA. DUALCOR: a phylogenetic comparative method to evaluate phylogenetic correlation between a character and a non-evolving external variable. Cladistics 2021; 37:586-595. [PMID: 34570936 DOI: 10.1111/cla.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 11/30/2022] Open
Abstract
A new phylogenetic comparative method called DUALCOR is presented to evaluate the evolutionary response of a character to non-evolving external factors, such as environmental variables. The method treats the character as a typical evolving feature of an organism that is reconstructed on a given tree, whereas the external factor is treated as unrelated to the phylogeny. DUALCOR first calculates the correlation/regression between the observed values of the character and the external factor; then it maps the character onto the phylogeny, shuffles the changes among branches, and re-evolves the character to yield new terminal values uncorrelated with the observed values of the external factor, allowing users to examine whether the observed degree of correlation can be attained at random. This is repeated n (say, 999) times, thereby using the dual nature of characters to construct a permutation test that is shown to satisfy requirements of Generalized Monte Carlo procedures. In addition, we provide an empirical example with a reverse test where the external variable (features determined largely by non-heritable factors) is the dependent variable.
Collapse
Affiliation(s)
- Norberto P Giannini
- Unidad Ejecutora Lillo, CONICET / Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, 4000, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, Tucumán, 4000, Argentina.,Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, CONICET / Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, 4000, Argentina.,Department of Entomology, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
32
|
Begum T, Robinson-Rechavi M. Special Care Is Needed in Applying Phylogenetic Comparative Methods to Gene Trees with Speciation and Duplication Nodes. Mol Biol Evol 2021; 38:1614-1626. [PMID: 33169790 PMCID: PMC8042747 DOI: 10.1093/molbev/msaa288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional genomics results between species and between genes. Most comparative studies of functional genomics have used pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenetically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assumptions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to test the “ortholog conjecture,” the hypothesis that functional evolution is faster in paralogs than in orthologs. Although pairwise comparisons of tissue specificity (τ) provided support for the ortholog conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic methods to study the evolution of gene function and provides some support for the ortholog conjecture using three different phylogenetic approaches.
Collapse
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
33
|
Perkovich C, Ward D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol Evol 2021; 11:5187-5203. [PMID: 34026000 PMCID: PMC8131805 DOI: 10.1002/ece3.7409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution of plant defenses is often constrained by phylogeny. Many of the differences between competing plant defense theories hinge upon the differences in the location of meristem damage (apical versus auxiliary) and the amount of tissue removed. We analyzed the growth and defense responses of 12 Quercus (oak) species from a well-resolved molecular phylogeny using phylogenetically independent contrasts. Access to light is paramount for forest-dwelling tree species, such as many members of the genus Quercus. We therefore predicted a greater investment in defense when apical meristem tissue was removed. We also predicted a greater investment in defense when large amounts of tissue were removed and a greater investment in growth when less tissues were removed. We conducted five simulated herbivory treatments including a control with no damage and alterations of the location of meristem damage (apical versus auxiliary shoots) and intensity (25% versus 75% tissue removal). We measured growth, defense, and nutrient re-allocation traits in response to simulated herbivory. Phylomorphospace models were used to demonstrate the phylogenetic nature of trade-offs between characteristics of growth, chemical defenses, and nutrient re-allocation. We found that growth-defense trade-offs in control treatments were under phylogenetic constraints, but phylogenetic constraints and growth-defense trade-offs were not common in the simulated herbivory treatments. Growth-defense constraints exist within the Quercus genus, although there are adaptations to herbivory that vary among species.
Collapse
Affiliation(s)
| | - David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| |
Collapse
|
34
|
Almeida FC, Amador LI, Giannini NP. Explosive radiation at the origin of Old World fruit bats (Chiroptera, Pteropodidae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Jhwueng DC, Wang CP. Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution. ENTROPY (BASEL, SWITZERLAND) 2021; 23:218. [PMID: 33579023 PMCID: PMC7916804 DOI: 10.3390/e23020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Regression analysis using line equations has been broadly applied in studying the evolutionary relationship between the response trait and its covariates. However, the characteristics among closely related species in nature present abundant diversities where the nonlinear relationship between traits have been frequently observed. By treating the evolution of quantitative traits along a phylogenetic tree as a set of continuous stochastic variables, statistical models for describing the dynamics of the optimum of the response trait and its covariates are built herein. Analytical representations for the response trait variables, as well as their optima among a group of related species, are derived. Due to the models' lack of tractable likelihood, a procedure that implements the Approximate Bayesian Computation (ABC) technique is applied for statistical inference. Simulation results show that the new models perform well where the posterior means of the parameters are close to the true parameters. Empirical analysis supports the new models when analyzing the trait relationship among kangaroo species.
Collapse
|
36
|
Ibáñez A, Bletz MC, Quezada G, Geffers R, Jarek M, Vences M, Steinfartz S. No impact of a short-term climatic "El Niño" fluctuation on gut microbial diversity in populations of the Galápagos marine iguana (Amblyrhynchus cristatus). Naturwissenschaften 2021; 108:7. [PMID: 33528676 PMCID: PMC7854437 DOI: 10.1007/s00114-020-01714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 01/05/2023]
Abstract
Gut microorganisms are crucial for many biological functions playing a pivotal role in the host's well-being. We studied gut bacterial community structure of marine iguana populations across the Galápagos archipelago. Marine iguanas depend heavily on their specialized gut microbiome for the digestion of dietary algae, a resource whose growth was strongly reduced by severe "El Niño"-related climatic fluctuations in 2015/2016. As a consequence, marine iguana populations showed signs of starvation as expressed by a poor body condition. Body condition indices (BCI) varied between island populations indicating that food resources (i.e., algae) are affected differently across the archipelago during 'El Niño' events. Though this event impacted food availability for marine iguanas, we found that reductions in body condition due to "El Niño"-related starvation did not result in differences in bacterial gut community structure. Species richness of gut microorganisms was instead correlated with levels of neutral genetic diversity in the distinct host populations. Our data suggest that marine iguana populations with a higher level of gene diversity and allelic richness may harbor a more diverse gut microbiome than those populations with lower genetic diversity. Since low values of these diversity parameters usually correlate with small census and effective population sizes, we use our results to propose a novel hypothesis according to which small and genetically less diverse host populations might be characterized by less diverse microbiomes. Whether such genetically depauperate populations may experience additional threats from reduced dietary flexibility due to a limited intestinal microbiome is currently unclear and calls for further investigation.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany. .,Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387, Kraków, Poland.
| | - Molly C Bletz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Galo Quezada
- Dirección Parque Nacional Galápagos, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany. .,Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany.
| |
Collapse
|
37
|
Jones CT, Youssef N, Susko E, Bielawski JP. A Phenotype-Genotype Codon Model for Detecting Adaptive Evolution. Syst Biol 2021; 69:722-738. [PMID: 31730199 DOI: 10.1093/sysbio/syz075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023] Open
Abstract
A central objective in biology is to link adaptive evolution in a gene to structural and/or functional phenotypic novelties. Yet most analytic methods make inferences mainly from either phenotypic data or genetic data alone. A small number of models have been developed to infer correlations between the rate of molecular evolution and changes in a discrete or continuous life history trait. But such correlations are not necessarily evidence of adaptation. Here, we present a novel approach called the phenotype-genotype branch-site model (PG-BSM) designed to detect evidence of adaptive codon evolution associated with discrete-state phenotype evolution. An episode of adaptation is inferred under standard codon substitution models when there is evidence of positive selection in the form of an elevation in the nonsynonymous-to-synonymous rate ratio $\omega$ to a value $\omega > 1$. As it is becoming increasingly clear that $\omega > 1$ can occur without adaptation, the PG-BSM was formulated to infer an instance of adaptive evolution without appealing to evidence of positive selection. The null model makes use of a covarion-like component to account for general heterotachy (i.e., random changes in the evolutionary rate at a site over time). The alternative model employs samples of the phenotypic evolutionary history to test for phenomenological patterns of heterotachy consistent with specific mechanisms of molecular adaptation. These include 1) a persistent increase/decrease in $\omega$ at a site following a change in phenotype (the pattern) consistent with an increase/decrease in the functional importance of the site (the mechanism); and 2) a transient increase in $\omega$ at a site along a branch over which the phenotype changed (the pattern) consistent with a change in the site's optimal amino acid (the mechanism). Rejection of the null is followed by post hoc analyses to identify sites with strongest evidence for adaptation in association with changes in the phenotype as well as the most likely evolutionary history of the phenotype. Simulation studies based on a novel method for generating mechanistically realistic signatures of molecular adaptation show that the PG-BSM has good statistical properties. Analyses of real alignments show that site patterns identified post hoc are consistent with the specific mechanisms of adaptation included in the alternate model. Further simulation studies show that the covarion-like component of the PG-BSM plays a crucial role in mitigating recently discovered statistical pathologies associated with confounding by accounting for heterotachy-by-any-cause. [Adaptive evolution; branch-site model; confounding; mutation-selection; phenotype-genotype.].
Collapse
Affiliation(s)
- Christopher T Jones
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Noor Youssef
- Department of Biology, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Joseph P Bielawski
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Department of Biology, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| |
Collapse
|
38
|
Joffard N, Arnal V, Buatois B, Schatz B, Montgelard C. Floral scent evolution in the section Pseudophrys: pollinator-mediated selection or phylogenetic constraints? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:881-889. [PMID: 32130747 DOI: 10.1111/plb.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator-mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys. We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography-mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant-pollinator interactions and floral scent composition using phylogenetic comparative methods. We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects. Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator-mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non-active compounds.
Collapse
Affiliation(s)
- N Joffard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - V Arnal
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - C Montgelard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| |
Collapse
|
39
|
Affiliation(s)
- Luis D. Verde Arregoitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia CP 5090000 Chile
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia CP 5090000 Chile
| |
Collapse
|
40
|
Nascimento LFD, Guimarães PR, Onstein RE, Kissling WD, Pires MM. Associated evolution of fruit size, fruit colour and spines in Neotropical palms. J Evol Biol 2020; 33:858-868. [PMID: 32198956 DOI: 10.1111/jeb.13619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Understanding how ecological interactions have shaped the evolutionary dynamics of species traits remains a challenge in evolutionary ecology. Combining trait evolution models and phylogenies, we analysed the evolution of characters associated with seed dispersal (fruit size and colour) and herbivory (spines) in Neotropical palms to infer the role of these opposing animal-plant interactions in driving evolutionary patterns. We found that the evolution of fruit colour and fruit size was associated in Neotropical palms, supporting the adaptive interpretation of seed-dispersal syndromes and highlighting the role of frugivores in shaping plant evolution. Furthermore, we revealed a positive association between fruit size and the presence of spines on palm leaves, bracteas and stems. We hypothesize that interactions between palms and large-bodied frugivores/herbivores may explain the evolutionary relationship between fruit size and spines. Large-bodied frugivores, such as extinct megafauna, besides consuming the fruits and dispersing large seeds, may also have consumed the leaves or damaged the plants, thus simultaneously favouring the evolution of large fruits and defensive structures. Our findings show how current trait patterns can be understood as the result of the interplay between antagonistic and mutualistic interactions that have happened throughout the evolutionary history of a clade.
Collapse
Affiliation(s)
| | - Paulo R Guimarães
- Departamento de Ecologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Renske E Onstein
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
41
|
Nagy LG, Merényi Z, Hegedüs B, Bálint B. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Res 2020; 48:2209-2219. [PMID: 31943056 PMCID: PMC7049691 DOI: 10.1093/nar/gkz1241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Ongoing large-scale genome sequencing projects are forecasting a data deluge that will almost certainly overwhelm current analytical capabilities of evolutionary genomics. In contrast to population genomics, there are no standardized methods in evolutionary genomics for extracting evolutionary and functional (e.g. gene-trait association) signal from genomic data. Here, we examine how current practices of multi-species comparative genomics perform in this aspect and point out that many genomic datasets are under-utilized due to the lack of powerful methodologies. As a result, many current analyses emphasize gene families for which some functional data is already available, resulting in a growing gap between functionally well-characterized genes/organisms and the universe of unknowns. This leaves unknown genes on the 'dark side' of genomes, a problem that will not be mitigated by sequencing more and more genomes, unless we develop tools to infer functional hypotheses for unknown genes in a systematic manner. We provide an inventory of recently developed methods capable of predicting gene-gene and gene-trait associations based on comparative data, then argue that realizing the full potential of whole genome datasets requires the integration of phylogenetic comparative methods into genomics, a rich but underutilized toolbox for looking into the past.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| |
Collapse
|
42
|
Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. Comparative Genomics Identifies Putative Signatures of Sociality in Spiders. Genome Biol Evol 2020; 12:122-133. [PMID: 31960912 PMCID: PMC7108510 DOI: 10.1093/gbe/evaa007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Comparative genomics has begun to elucidate the genomic basis of social life in insects, but insight into the genomic basis of spider sociality has lagged behind. To begin, to characterize genomic signatures associated with the evolution of social life in spiders, we performed one of the first spider comparative genomics studies including five solitary species and two social species, representing two independent origins of sociality in the genus Stegodyphus. We found that the two social spider species had a large expansion of gene families associated with transport and metabolic processes and an elevated genome-wide rate of molecular evolution compared with the five solitary spider species. Genes that were rapidly evolving in the two social species relative to the five solitary species were enriched for transport, behavior, and immune functions, whereas genes that were rapidly evolving in the solitary species were enriched for energy metabolism processes. Most rapidly evolving genes in the social species Stegodyphus dumicola were broadly expressed across four tissues and enriched for transport functions, but 12 rapidly evolving genes showed brain-specific expression and were enriched for social behavioral processes. Altogether, our study identifies putative genomic signatures and potential candidate genes associated with spider sociality. These results indicate that future spider comparative genomic studies, including broader sampling and additional independent origins of sociality, can further clarify the genomic causes and consequences of social life.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania
| | - Gabriella M Najm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Jonathan N Pruitt
- Department of Psychology, Neurobiology & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
43
|
Jhwueng DC, O'Meara BC. On the Matrix Condition of Phylogenetic Tree. Evol Bioinform Online 2020; 16:1176934320901721. [PMID: 32109980 PMCID: PMC7019399 DOI: 10.1177/1176934320901721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
Phylogenetic comparative analyses use trees of evolutionary relationships between
species to understand their evolution and ecology. A phylogenetic tree of
n taxa can be algebraically transformed into an
n by n squared symmetric phylogenetic
covariance matrix C where each element cij in C represents the affinity between extant species i and
extant species j. This matrix C is used internally in several comparative methods: for example, it is
often inverted to compute the likelihood of the data under a model. However, if
the matrix is ill-conditioned (ie, if κ, defined by the ratio of the maximum eigenvalue of C to the minimum eigenvalue of C, is too high), this inversion may not be stable, and thus neither will
be the calculation of the likelihood or parameter estimates that are based on
optimizing the likelihood. We investigate this potential issue and propose
several methods to attempt to remedy this issue.
Collapse
Affiliation(s)
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Knoxville, TN, USA
| |
Collapse
|
44
|
Nakagawa S, De Villemereuil P. A General Method for Simultaneously Accounting for Phylogenetic and Species Sampling Uncertainty via Rubin's Rules in Comparative Analysis. Syst Biol 2019; 68:632-641. [PMID: 30597116 DOI: 10.1093/sysbio/syy089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic comparative methods (PCMs), especially ones based on linear models, have played a central role in understanding species' trait evolution. These methods, however, usually assume that phylogenetic trees are known without error or uncertainty, but this assumption is most likely incorrect. So far, Markov chain Monte Carlo (MCMC)-based Bayesian methods have mainly been deployed to account for such "phylogenetic uncertainty" in PCMs. Herein, we propose an approach with which phylogenetic uncertainty is incorporated in a simple, readily implementable and reliable manner. Our approach uses Rubin's rules, which are an integral part of a standard multiple imputation procedure, often employed to recover missing data. We see true phylogenetic trees as missing data under this approach. Further, unmeasured species in comparative data (i.e., missing trait data) can be seen as another source of uncertainty in PCMs because arbitrary sampling of species in a given taxon or "species sampling uncertainty" can affect estimation in PCMs. Using two simulation studies, we show our method can account for phylogenetic uncertainty under many different scenarios (e.g., uncertainty in topology and branch lengths) and, at the same time, it can handle missing trait data (i.e., species sampling uncertainty). A unique property of the multiple imputation procedure is that an index, named "relative efficiency," could be used to quantify the number of trees required for incorporating phylogenetic uncertainty. Thus, by using the relative efficiency, we show the required tree number is surprisingly small ($\sim$50 trees). However, the most notable advantage of our method is that it could be combined seamlessly with PCMs that utilize multiple imputation to handle simultaneously phylogenetic uncertainty (i.e., missing true trees) and species sampling uncertainty (i.e., missing trait data) in PCMs.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Pierre De Villemereuil
- CEFE, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France Shinichi Nakagawa and Pierre de Villemereuil contributed equally to this article
| |
Collapse
|
45
|
Linksvayer TA, Johnson BR. Re-thinking the social ladder approach for elucidating the evolution and molecular basis of insect societies. CURRENT OPINION IN INSECT SCIENCE 2019; 34:123-129. [PMID: 31401545 DOI: 10.1016/j.cois.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The evolution of large insect societies is a major evolutionary transition that occurred in the long-extinct ancestors of termites, ants, corbiculate bees, and vespid wasps. Researchers have long used 'social ladder thinking': assuming progressive stepwise phenotypic evolution and asserting that extant species with simple societies (e.g. some halictid bees) represent the ancestors of species with complex societies, and thus provide insight into general early steps of eusocial evolution. We discuss how this is inconsistent with data and modern evolutionary 'tree thinking'. Phylogenetic comparative methods with broad sampling provide the best means to make rigorous inferences about ancestral traits and evolutionary transitions that occurred within each lineage, and to determine whether consistent phenotypic and genomic changes occurred across independent lineages.
Collapse
Affiliation(s)
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California Davis, United States
| |
Collapse
|
46
|
|
47
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
48
|
Altschul DM, Hopkins WD, Herrelko ES, Inoue-Murayama M, Matsuzawa T, King JE, Ross SR, Weiss A. Personality links with lifespan in chimpanzees. eLife 2018; 7:e33781. [PMID: 30296994 PMCID: PMC6177254 DOI: 10.7554/elife.33781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/09/2018] [Indexed: 11/13/2022] Open
Abstract
Life history strategies for optimizing individual fitness fall on a spectrum between maximizing reproductive efforts and maintaining physical health over time. Strategies across this spectrum are viable and different suites of personality traits evolved to support these strategies. Using data from 538 captive chimpanzees (Pan troglodytes) we tested whether any of the dimensions of chimpanzee personality - agreeableness, conscientiousness, dominance, extraversion, neuroticism, and openness - were associated with longevity, an attribute of slow life history strategies that is especially important in primates given their relatively long lives. We found that higher agreeableness was related to longevity in males, with weaker evidence suggesting that higher openness is related to longer life in females. Our results link the literature on human and nonhuman primate survival and suggest that, for males, evolution has favored the protective effects of low aggression and high quality social bonds.
Collapse
Affiliation(s)
- Drew M Altschul
- Department of PsychologySchool of Philosophy, Psychology and Language Sciences, The University of EdinburghEdinburghUnited Kingdom
- Scottish Primate Research GroupUnited Kingdom
- Centre for Cognitive Ageing and Cognitive EpidemiologyEdinburghUnited Kingdom
| | - William D Hopkins
- Neuroscience InstituteGeorgia State UniversityAtlantaUnited States
- Division of Developmental and Cognitive NeurosciencesYerkes National Primate Research CenterAtlantaUnited States
| | - Elizabeth S Herrelko
- National Zoological Park, Smithsonian InstitutionWashingtonUnited States
- Psychology DivisionUniversity of StirlingStirlingUnited Kingdom
| | - Miho Inoue-Murayama
- Wildlife Research CenterKyoto UniversityKyotoJapan
- Wildlife Genome Collaborative Research GroupNational Institute for Environmental StudiesTsukubaJapan
| | - Tetsuro Matsuzawa
- Institute for Advanced Study, Kyoto UniversityKyotoJapan
- Primate Research InstituteKyoto UniversityInuyamaJapan
- Japan Monkey CentreInuyamaJapan
| | - James E King
- Department of PsychologyUniversity of ArizonaTucsonUnited States
| | - Stephen R Ross
- Lester E. Fisher Center for the Study and Conservation of ApesLincoln Park ZooChicagoUnited States
| | - Alexander Weiss
- Department of PsychologySchool of Philosophy, Psychology and Language Sciences, The University of EdinburghEdinburghUnited Kingdom
- Scottish Primate Research GroupUnited Kingdom
| |
Collapse
|
49
|
Teixidor-Toneu I, Jordan FM, Hawkins JA. Comparative phylogenetic methods and the cultural evolution of medicinal plant use. NATURE PLANTS 2018; 4:754-761. [PMID: 30202108 DOI: 10.1038/s41477-018-0226-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Human life depends on plant biodiversity and the ways in which plants are used are culturally determined. Whilst anthropologists have used phylogenetic comparative methods (PCMs) to gain an increasingly sophisticated understanding of the evolution of political, religious, social and material culture, plant use has been almost entirely neglected. Medicinal plants are of special interest because of their role in maintaining people's health across the world. PCMs in particular, and cultural evolutionary theory in general, provide a framework in which to study the diversity of medicinal plant applications cross-culturally, and to infer changes in plant use over time. These methods can be applied to single medicinal plants as well as the entire set of plants used by a culture for medicine, and they account for the non-independence of data when testing for floristic, cultural or other drivers of plant use. With cultural, biological and linguistic diversity under threat, gaining a deeper and broader understanding of the variation of medicinal plant use through time and space is pressing.
Collapse
Affiliation(s)
- Irene Teixidor-Toneu
- University of Reading, School of Biological Sciences, Reading, Berkshire, UK
- Universitetet i Oslo, Naturhistorisk Museum, Oslo, Norway
| | - Fiona M Jordan
- University of Bristol, Department of Anthropology & Archaeology, Bristol, UK
| | - Julie A Hawkins
- University of Reading, School of Biological Sciences, Reading, Berkshire, UK.
| |
Collapse
|
50
|
Mellor E, McDonald Kinkaid H, Mason G. Phylogenetic comparative methods: Harnessing the power of species diversity to investigate welfare issues in captive wild animals. Zoo Biol 2018; 37:369-388. [PMID: 30058134 DOI: 10.1002/zoo.21427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
Abstract
This paper reviews a way of investigating health and welfare problems in captive wild animals (e.g., those in zoos, aviaries, aquaria, or aquaculture systems) that has great potential, but to date has been little used: systematically comparing species with few or no health and welfare issues to those more prone to problems. Doing so empirically pinpoints species-typical welfare risk and protective factors (such as aspects of their natural behavioral biology): information which can then be used to help prevent or remedy problems by suggesting new ways to improve housing and husbandry, and by identifying species intrinsically best suited to captivity. We provide a detailed, step-by-step "how to" guide for researchers interested in using these techniques, including guidance on how to statistically control for the inherent similarities shared by related species: an important concern because simple, cross-species comparisons that do not do this may well fail to meet statistical assumptions of non-independence. The few relevant studies that have investigated captive wild animals' welfare problems using this method are described. Overall, such approaches reap value from the great number and diversity of species held in captivity (e.g., the many thousands of species held in zoos); can yield new insights from existing data and published results; render previously intractable welfare questions (such as "do birds need to fly?" or "do Carnivora need to hunt?") amenable to study; and generate evidence-based principles for integrating animal welfare into collection planning.
Collapse
Affiliation(s)
- Emma Mellor
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | - Georgia Mason
- Department of Animal Biosciences, University of Guelph, Ontario, Canada
| |
Collapse
|