1
|
Smet W, Blilou I. Developmental and Genetic Aspects of Desert Crops. Annu Rev Genet 2024; 58:91-112. [PMID: 39585906 DOI: 10.1146/annurev-genet-111523-102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.
Collapse
Affiliation(s)
- Wouter Smet
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| |
Collapse
|
2
|
Bouby L, Bonhomme V, Ivorra S, Bacilieri R, Ben Makhad S, Bonnaire E, Cabanis M, Derreumaux M, Dietsch-Sellami MF, Durand F, Evin A, Figueiral I, Flottes L, Hallavant C, Jedrusiak F, Lacombe T, Marinval P, Martin L, Matterne V, Pagnoux C, Pastor T, Pinaud R, Pradat B, Preiss S, Ros J, Rovira N, Ruas MP, Schaal C, Tillier M, Toulemonde F, Wiethold J, Terral JF. Seed morphometrics unravels the evolutionary history of grapevine in France. Sci Rep 2024; 14:22207. [PMID: 39333563 PMCID: PMC11437209 DOI: 10.1038/s41598-024-72692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The cultivation of grapevines has spanned millennia, leading to thousands of varieties through exchanges, mutations, and crosses between genotypes, as well probably as gene flow from wild populations. These varieties are typically categorized by regional origin and primary use, either for wine production or fruit consumption. France, within the Western European group, hosts many of the world's renowned wine grape varieties. However, the historical development of cultivated grapevines in France and in the world remains poorly understood. This study applies morphometry on 19,377 charred and waterlogged archaeological grape pips to investigate the evolutionary history of grapevine in France over the last 10,000 years. The study compares seed outlines and lengths, corrected for taphonomic distortions, with a reference collection of 80 wild and 466 modern domestic grapevine accessions. Findings reveal a shift from wild grapevine exploitation to the expansion of domestic varieties around 600-500 BCE, coinciding with Mediterranean cultural influences and the introduction of eastern grape types. The identification of the East-Table group, a group of varieties of eastern origin for fruit consumption, indicates that grapes were also grown for food, especially in Mediterranean regions and near urban areas, alongside wine production. Early French viticulture featured a notable presence of Western European wine-type grapevines. The abundance of pips with wild-like morphology suggests early cultivation involved plants at an initial domestication stage and gene flow between introduced and wild grapevines. As viticulture spread northward, wild and Eastern morphotypes declined, leading to the dominance of Western European wine types in inner France during the Middle Ages.
Collapse
Affiliation(s)
- L Bouby
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - V Bonhomme
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Athéna, Roquedur, France
| | - S Ivorra
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - R Bacilieri
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, UMT Géno-Vigne, Montpellier, France
| | | | - E Bonnaire
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
- Archéologie Alsace, Sélestat, France
| | - M Cabanis
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
- GEOLAB, Université Clermont Auvergne, CNRS, Inrap, 63000, Clermont-Ferrand, France
| | - M Derreumaux
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
- CRAVO, Compiègne, France
| | - M F Dietsch-Sellami
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
| | - F Durand
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
- TRACES, UMR 5608, CNRS-Université Toulouse Jean Jaurès-EHESS, Toulouse, France
| | - A Evin
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - I Figueiral
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
| | | | | | - F Jedrusiak
- ARSCAN, UMR 7041, CNRS, Université Paris I, Université Paris Nanterre, Ministère Culture, Nanterre, France
| | - T Lacombe
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, UMT Géno-Vigne, Montpellier, France
| | - P Marinval
- ASM, University Paul Valéry-Montpellier 3, CNRS, MCC, Inrap, Montpellier, France
| | - L Martin
- Laboratoire d'archéologie préhistorique et anthropologie, Université de Genève, Genève, Switzerland
- EDYTEM, UMR 5204, CNRS, Le Bourget-du Lac, France
| | - V Matterne
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
| | - C Pagnoux
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
| | - T Pastor
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - R Pinaud
- ASM, University Paul Valéry-Montpellier 3, CNRS, MCC, Inrap, Montpellier, France
| | - B Pradat
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
| | - S Preiss
- Institut Royal des Sciences naturelles de Belgique, Bruxelles, Belgium
| | - J Ros
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - N Rovira
- ASM, University Paul Valéry-Montpellier 3, CNRS, MCC, Inrap, Montpellier, France
| | - M P Ruas
- AASPE, UMR 7209, CNRS-MNHN, Paris, France
| | - C Schaal
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
- Chrono-Environnement, UMR 6249, CNRS, Université Franche-Comté, Besançon, France
| | - M Tillier
- ASM, University Paul Valéry-Montpellier 3, CNRS, MCC, Inrap, Montpellier, France
- Ipso Facto, Arles, France
| | | | - J Wiethold
- Inrap, Institut national de recherches archéologiques préventives, cellule économie végétale et environnement, Paris, France
- ArTeHis, UMR 6298, CNRS, Université Bourgogne, Ministère Culture, Dijon, France
| | - J F Terral
- ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
3
|
Sarmiento Cabello S, Rodríguez-Rodríguez P, Arbelo Ramírez G, Naranjo-Cigala A, Curbelo L, da Graca Gomes MDM, Brito J, Aberlenc F, Zehdi-Azouzi S, Sosa PA. A Comparative Genetic Analysis of Phoenix atlantica in Cape Verde. PLANTS (BASEL, SWITZERLAND) 2024; 13:2209. [PMID: 39204645 PMCID: PMC11360615 DOI: 10.3390/plants13162209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The Cape Verde palm tree, Phoenix atlantica, holds significant ecological and cultural importance within the Cape Verde archipelago. However, its genetic distinctiveness has been questioned due to its close relationship and morphological similarity to the date palm (Phoenix dactylifera). In this study, we used an expanded sample set, 18 simple sequence repeat (SSR) markers, and a plastid minisatellite to characterize P. atlantica in Cape Verde and investigate its relationship with other Phoenix species. Our findings identify genetic markers that differentiate the P. atlantica genetic pool, including a unique fixed allele. We also provide evidence of the recent divergence of P. atlantica from Northern African date palm populations, suggesting a relatively recent colonization of Cape Verde by palm trees. Additionally, we characterized the genetic composition of palm tree populations across three Cape Verde islands, concluding that wild samples from certain populations in Boavista and Sal are best suited for establishing a seed and/or germplasm bank for replantation efforts, representing a crucial step for the conservation of Cape Verde's natural heritage. Overall, our results enhance the understanding of the historical trajectories and genetic characterization of palm trees in Africa, offering valuable insights for conservation strategies.
Collapse
Affiliation(s)
- Sonia Sarmiento Cabello
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Priscila Rodríguez-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Guacimara Arbelo Ramírez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Agustín Naranjo-Cigala
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Leticia Curbelo
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Maria de Monte da Graca Gomes
- Direção Geral Da Agricultura Silvicultura e Pecuaria e Delegação do Ministerio da Agricultura e Ambiente do Sal e da Boavista, Praia, Cape Verde
| | - Juliana Brito
- Direção Geral Da Agricultura Silvicultura e Pecuaria e Delegação do Ministerio da Agricultura e Ambiente do Sal e da Boavista, Praia, Cape Verde
| | - Frédérique Aberlenc
- Plant Diversity, Adaptation and Development, Université de Montpellier, Institut de Recherche pour Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 911 Av. Agropolis, BP 64501, 34394 Montpellier CEDEX 5, France
| | - Salwa Zehdi-Azouzi
- Laboratoire de Génétique Moléculaire, Faculté des Sciences de Tunis, Immunologie et Biotechnologie (LR99ES12), Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis 1068, Tunisia
| | - Pedro A. Sosa
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Peñafiel Loaiza N, Chafe AH, Moraes R M, Oleas NH, Roncal J. Genotyping-by-sequencing informs conservation of Andean palms sources of non-timber forest products. Evol Appl 2024; 17:e13765. [PMID: 39091352 PMCID: PMC11291087 DOI: 10.1111/eva.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Conservation and sustainable management of lineages providing non-timber forest products are imperative under the current global biodiversity loss. Most non-timber forest species, however, lack genomic studies that characterize their intraspecific variation and evolutionary history, which inform species' conservation practices. Contrary to many lineages in the Andean biodiversity hotspot that exhibit high diversification, the genus Parajubaea (Arecaceae) has only three species despite the genus' origin 22 million years ago. Two of the three palm species, P. torallyi and P. sunkha, are non-timber forest species endemic to the Andes of Bolivia and are listed as IUCN endangered. The third species, P. cocoides, is a vulnerable species with unknown wild populations. We investigated the evolutionary relationships of Parajubaea species and the genetic diversity and structure of wild Bolivian populations. Sequencing of five low-copy nuclear genes (3753 bp) challenged the hypothesis that P. cocoides is a cultigen that originated from the wild Bolivian species. We further obtained up to 15,134 de novo single-nucleotide polymorphism markers by genotyping-by-sequencing of 194 wild Parajubaea individuals. Our total DNA sequencing effort rejected the taxonomic separation of the two Bolivian species. As expected for narrow endemic species, we observed low genetic diversity, but no inbreeding signal. We found three genetic clusters shaped by geographic distance, which we use to propose three management units. Different percentages of missing genotypic data did not impact the genetic structure of populations. We use the management units to recommend in situ conservation by creating new protected areas, and ex situ conservation through seed collection.
Collapse
Affiliation(s)
- Nicolás Peñafiel Loaiza
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
- Present address:
Chone y BabahoyoLojaEcuador
| | - Abigail H. Chafe
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Mónica Moraes R
- Herbario Nacional de Bolivia, Instituto de EcologíaUniversidad Mayor de San AndrésLa PazBolivia
| | - Nora H. Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático – BioCamb e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio AmbienteUniversidad IndoaméricaQuitoEcuador
| | - Julissa Roncal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
5
|
Ghazanfar SA. Biogeography and Conservation in the Arabian Peninsula: A Present Perspective. PLANTS (BASEL, SWITZERLAND) 2024; 13:2091. [PMID: 39124209 PMCID: PMC11313995 DOI: 10.3390/plants13152091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The Arabian Peninsula, with its rugged mountains, wadis, alluvial plains, sand dune deserts, and diverse coastlines, spans over 3 million km2. The Peninsula is situated at the crossroads of Africa and Asia and is a meeting point for diverse biogeographic realms, including the Palearctic, Afrotropical, and Indomalayan regions. This convergence of biogeographic zones has resulted in a remarkably diverse flora and fauna, which is adapted to the harsh and varied climates found throughout the Peninsula. Each of the countries of the Arabian Peninsula are biologically diverse and unique in their own right, but Yemen, Saudi Arabia, and Oman are the most diverse in terms of their landforms and biological diversity. The mountainous regions support a cooler and more moderate climate compared to the surrounding lowlands, thus forming unique ecosystems that function as refugia for plant and animal species, and have a high endemism of plant species. The desert ecosystems support a variety of lifeforms that are specially adapted to an extreme arid climate. Due to its long history of human habitation and subsistence agriculture, particularly in the mountainous areas, the Arabian Peninsula possesses unique crop varieties adapted to extreme arid climates, making them important genetic resources for the future in the face of climate change. The Arabian Peninsula, though rich and diverse in its biological diversity, has been greatly affected by human activities, especially in the last 50 years, including urbanization, habitat destruction, overgrazing, and climate change, which pose significant threats to the biodiversity of the region. This review presents the biogeography and background of conservation efforts made in the countries in the Arabian Peninsula and gives the progress made in botanical research and conservation practices throughout the Peninsula.
Collapse
|
6
|
Meiri M, Bar-Oz G. Unraveling the diversity and cultural heritage of fruit crops through paleogenomics. Trends Genet 2024; 40:398-409. [PMID: 38423916 PMCID: PMC11079635 DOI: 10.1016/j.tig.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Collapse
Affiliation(s)
- Meirav Meiri
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837 Mount Carmel, Israel
| |
Collapse
|
7
|
Rahman H, Vikram P, Hammami Z, Singh RK. Recent advances in date palm genomics: A comprehensive review. Front Genet 2022; 13:959266. [PMID: 36176294 PMCID: PMC9513354 DOI: 10.3389/fgene.2022.959266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the oldest fruit trees of the Arabian peninsula, other Middle-Eastern countries, and also North Africa, the date palm (Phoenix dactylifera L.), is highly significant for the economy of the region. Listed as part of UNESCO’s Intangible Cultural Heritage of Humanity, the date palm is believed to be the first tree cultivated by human beings, and was probably first harvested for its fruit nearly 7,000 years ago. Initial research efforts in date palm genetics focused on understanding the genetic diversity of date palm germplasm collections and its phylogenetic history, both important prerequisites for plant improvement. Despite various efforts, the center of origin of the date palm is still unclear, although genomic studies suggest two probable domestication events: one in the Middle East and the other in North Africa, with two separate gene pools. The current review covers studies related to omics analyses that have sought to decipher the present genetic diversity of the date palm. With advances and cost reductions in sequencing technologies, rapid progress has been made in the past few years in date palm genomics research. Along with organellar genomes, several reference genomes of the date palm are now available. In addition, several genotypes have been re-sequenced, either to detect single nucleotide polymorphisms (SNPs), or to study domestication and identification of key genes/loci associated with important agronomic traits, such as sex, fruit color, and sugar composition. These genomics research progress has paved the way to perform fast-track and precise germplasm improvement processes in date palm. In this study, we review the advances made in the genetics and genomics of the date palm so as to strategize targeted crop improvement plans for marginal areas of the Middle Eastern peninsula, North Africa, and other parts of the world.
Collapse
|
8
|
Liu F, Zhang H, Li H, Zhang X, Liu Q, Zhang Y, Li H, Ma M. How Human Subsistence Strategy Affected Fruit-Tree Utilization During the Late Neolithic and Bronze Age: Investigations in the Northeastern Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:941735. [PMID: 35845664 PMCID: PMC9284277 DOI: 10.3389/fpls.2022.941735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The history of fruit-tree utilization by prehistoric people has become an important issue that has attracted increasing attention in recent years. However, the question of how people used fruit trees has not yet been answered; in particular, the impacts of different subsistence strategies on human behavior regarding fruit-tree utilization (wild gathering or conscious cultivation) have not yet been considered. Here, we present the results of charcoal identification of fruit trees from 16 dated archeological sites in the northeastern Tibetan Plateau (NETP) spanning the period c. 5,200-2,600 BP. We combine this with reported multidisciplinary evidence to explore the history of fruit-tree utilization as well as its relation to the subsistence strategy in the NETP during the late Neolithic and Bronze Age. Our results demonstrate that Rosaceae [Prunus L., Prunus Padus L., Maloideae L., and Malus baccata (L.) Borkh], Elaeagnaceae (Hippophae L. and Elaeagnus angustifolia L.), and Rhamnaceae (only Ziziphus Mill.) were used by people in the NETP, and there was a downward trend in the use of fruit trees during the late Neolithic and Bronze Age. This is in notable contrast to the situation in the Chinese Loess Plateau in the parallel period. The cold-dry climate during the Bronze Age seemed to be one of the reasons. The fruit trees used by people in the NETP were likely gathered from the wild rather than consciously cultivated, and the subsistence strategy of agropastoralism may have played a significant role during the processes.
Collapse
Affiliation(s)
- Fengwen Liu
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Hucai Zhang
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Hu Li
- School of History and Culture, Henan Normal University, Xinxiang, China
| | - Xiaonan Zhang
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Qi Liu
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Yang Zhang
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Haoyu Li
- School of Ecology and Environment Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming, China
| | - Minmin Ma
- Ministry of Education Key Laboratory of Western China’s Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Baumel A, Nieto Feliner G, Médail F, La Malfa S, Di Guardo M, Bou Dagher Kharrat M, Lakhal-Mirleau F, Frelon V, Ouahmane L, Diadema K, Sanguin H, Viruel J. Genome-wide footprints in the carob tree (Ceratonia siliqua) unveil a new domestication pattern of a fruit tree in the Mediterranean. Mol Ecol 2022; 31:4095-4111. [PMID: 35691023 PMCID: PMC9541536 DOI: 10.1111/mec.16563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Intense research efforts over the last two decades have renewed our understanding of plant phylogeography and domestication in the Mediterranean basin. Here we aim to investigate the evolutionary history and the origin of domestication of the carob tree (Ceratonia siliqua), which has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to delimit seven carob evolutionary units (CEUs). We investigated genome‐wide diversity and evolutionary patterns of the CEUs with 3557 single nucleotide polymorphisms generated by restriction‐site associated DNA sequencing (RADseq). To address the complex wild vs. cultivated status of sampled trees, we classified 56 sampled populations across the Mediterranean basin as wild, seminatural or cultivated. Nuclear and cytoplasmic loci were identified from RADseq data and separated for analyses. Phylogenetic analyses of these genomic‐wide data allowed us to resolve west‐to‐east expansions from a single long‐term refugium probably located in the foothills of the High Atlas Mountains near the Atlantic coast. Our findings support multiple origins of domestication with a low impact on the genetic diversity at range‐wide level. The carob was mostly domesticated from locally selected wild genotypes and scattered long‐distance westward dispersals of domesticated varieties by humans, concomitant with major historical migrations by Romans, Greeks and Arabs. Ex situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in southwest Morocco, south Spain and eastern Mediterranean. Our study highlights the relevance of wild and seminatural habitats in the conservation of genetic resources for cultivated trees.
Collapse
Affiliation(s)
- Alex Baumel
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | | | - Frédéric Médail
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Magda Bou Dagher Kharrat
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Campus Sciences et Technologies, Beirut, Lebanon
| | - Fatma Lakhal-Mirleau
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Valentine Frelon
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Lahcen Ouahmane
- Faculté des Sciences Semlalia, Laboratoire de Biotechnologies Microbiennes Agrosciences et Environnement, Université Cadi Ayyad Marrakech, Marrakech, Morocco
| | - Katia Diadema
- Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), Hyères, France
| | - Hervé Sanguin
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | |
Collapse
|
10
|
Varela D, Romeiras MM, Silva L. Implications of climate change on the distribution and conservation of Cabo Verde endemic trees. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
Helmstetter AJ, Cable S, Rakotonasolo F, Rabarijaona R, Rakotoarinivo M, Eiserhardt WL, Baker WJ, Papadopulos AST. The demographic history of Madagascan micro-endemics: have rare species always been rare? Proc Biol Sci 2021; 288:20210957. [PMID: 34547905 PMCID: PMC8456134 DOI: 10.1098/rspb.2021.0957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023] Open
Abstract
Extinction has increased as human activities impact ecosystems, yet relatively few species have conservation assessments. Novel approaches are needed to highlight threatened species that are currently data-deficient. Many Madagascan plant species have extremely narrow ranges, but this may not have always been the case-it is unclear how the island's diverse flora evolved. To assess this, we generated restriction-site associated DNA sequence data for 10 Madagascan plant species, estimated effective population size (Ne) for each species and compared this to census (Nc) sizes. In each case, Ne was an order of magnitude larger than Nc-signifying rapid, recent population decline. We then estimated species' demographic history, tracking changes in Ne over time. We show that it is possible to predict extinction risk, particularly in the most threatened species. Furthermore, simulations showed that our approach has the power to detect population decline during the Anthropocene. Our analyses reveal that Madagascar's micro-endemics were not always rare, having experienced a rapid decline in their recent history. This casts further uncertainty over the processes that generated Madagascar's exceptional biodiversity. Our approach targets data-deficient species in need of conservation assessment, particularly in regions where human modification of the environment has been rapid.
Collapse
Affiliation(s)
- Andrew J. Helmstetter
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Institut de Recherche pour le Développement (IRD), UMR-DIADE, 911 Avenue Agropolis, BP 64501, Montpellier 34394, France
| | - Stuart Cable
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Kew Madagascar Conservation Centre, Lot II J 131 B Ambodivoanjo, Ivandry, Antananarivo 101, Madagascar
| | - Franck Rakotonasolo
- Kew Madagascar Conservation Centre, Lot II J 131 B Ambodivoanjo, Ivandry, Antananarivo 101, Madagascar
| | - Romer Rabarijaona
- Kew Madagascar Conservation Centre, Lot II J 131 B Ambodivoanjo, Ivandry, Antananarivo 101, Madagascar
| | - Mijoro Rakotoarinivo
- Mention Biologie et Ecologie Végétales, Faculté des Sciences, Université d'Antananarivo, Antananarivo BP 906101, Madagascar
| | - Wolf L. Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Alexander S. T. Papadopulos
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
12
|
Pérez-Escobar OA, Bellot S, Przelomska NAS, Flowers JM, Nesbitt M, Ryan P, Gutaker RM, Gros-Balthazard M, Wells T, Kuhnhäuser BG, Schley R, Bogarín D, Dodsworth S, Diaz R, Lehmann M, Petoe P, Eiserhardt WL, Preick M, Hofreiter M, Hajdas I, Purugganan M, Antonelli A, Gravendeel B, Leitch IJ, Torres Jimenez MF, Papadopulos AST, Chomicki G, Renner SS, Baker WJ. Molecular clocks and archaeogenomics of a Late Period Egyptian date palm leaf reveal introgression from wild relatives and add timestamps on the domestication. Mol Biol Evol 2021; 38:4475-4492. [PMID: 34191029 PMCID: PMC8476131 DOI: 10.1093/molbev/msab188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.
Collapse
Affiliation(s)
| | - Sidonie Bellot
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jonathan M Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mark Nesbitt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Philippa Ryan
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Muriel Gros-Balthazard
- French National Research Institute for Sustainable Development, Montpellier, BP 64501 - 34394 Cedex 5, France
| | - Tom Wells
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Rowan Schley
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Diego Bogarín
- Lankester Botanical Garden, University of Costa Rica, San José, 302-7050, Costa Rica
| | - Steven Dodsworth
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Rudy Diaz
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Peter Petoe
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michaela Preick
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Michael Hofreiter
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Irka Hajdas
- Department of Earth Sciences, ETH Zurich, 8092, Switzerland
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK.,Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Maria Fernanda Torres Jimenez
- Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, University of Bangor, Bangor LL57 2UW, UK
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | |
Collapse
|
13
|
Abstract
Resurrection genomics is an alternative to ancient DNA approaches in studying the genetics and evolution of past and possibly extinct populations. By reviving biological material such as germinating ancient seeds from archaeological and paleontological sites, or historical collections, one can study genomes of lost populations. We applied this approach by sequencing the genomes of seven Judean date palms (Phoenix dactylifera) that were germinated from ∼2,000 y old seeds recovered in the Southern Levant. Using this genomic data, we were able to document that introgressive hybridization of the wild Cretan palm Phoenix theophrasti into date palms had occurred in the Eastern Mediterranean by ∼2,200 y ago and examine the evolution of date palm populations in this pivotal region two millennia ago. Seven date palm seeds (Phoenix dactylifera L.), radiocarbon dated from the fourth century BCE to the second century CE, were recovered from archaeological sites in the Southern Levant and germinated to yield viable plants. We conducted whole-genome sequencing of these germinated ancient samples and used single-nucleotide polymorphism data to examine the genetics of these previously extinct Judean date palms. We find that the oldest seeds from the fourth to first century BCE are related to modern West Asian date varieties, but later material from the second century BCE to second century CE showed increasing genetic affinities to present-day North African date palms. Population genomic analysis reveals that by ∼2,400 to 2,000 y ago, the P. dactylifera gene pool in the Eastern Mediterranean already contained introgressed segments from the Cretan palm Phoenix theophrasti, a crucial genetic feature of the modern North African date palm populations. The P. theophrasti introgression fraction content is generally higher in the later samples, while introgression tracts are longer in these ancient germinated date palms compared to modern North African varieties. These results provide insights into crop evolution arising from an analysis of plants originating from ancient germinated seeds and demonstrate what can be accomplished with the application of a resurrection genomics approach.
Collapse
|
14
|
Individualistic evolutionary responses of Central African rain forest plants to Pleistocene climatic fluctuations. Proc Natl Acad Sci U S A 2020; 117:32509-32518. [PMID: 33277432 DOI: 10.1073/pnas.2001018117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Understanding the evolutionary dynamics of genetic diversity is fundamental for species conservation in the face of climate change, particularly in hyper-diverse biomes. Species in a region may respond similarly to climate change, leading to comparable evolutionary dynamics, or individualistically, resulting in dissimilar patterns. The second-largest expanse of continuous tropical rain forest (TRF) in the world is found in Central Africa. Here, present-day patterns of genetic structure are thought to be dictated by repeated expansion and contraction of TRFs into and out of refugia during Pleistocene climatic fluctuations. This refugia model implies a common response to past climate change. However, given the unrivalled diversity of TRFs, species could respond differently because of distinct environmental requirements or ecological characteristics. To test this, we generated genome-wide sequence data for >700 individuals of seven codistributed plants from Lower Guinea in Central Africa. We inferred species' evolutionary and demographic histories within a comparative phylogeographic framework. Levels of genetic structure varied among species and emerged primarily during the Pleistocene, but divergence events were rarely concordant. Demographic trends ranged from repeated contraction and expansion to continuous growth. Furthermore, patterns in genetic variation were linked to disparate environmental factors, including climate, soil, and habitat stability. Using a strict refugia model to explain past TRF dynamics is too simplistic. Instead, individualistic evolutionary responses to Pleistocene climatic fluctuations have shaped patterns in genetic diversity. Predicting the future dynamics of TRFs under climate change will be challenging, and more emphasis is needed on species ecology to better conserve TRFs worldwide.
Collapse
|
15
|
Gros‐Balthazard M, Battesti V, Ivorra S, Paradis L, Aberlenc F, Zango O, Zehdi‐Azouzi S, Moussouni S, Naqvi SA, Newton C, Terral J. On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms ( Phoenix dactylifera L.) in Siwa Oasis, Egypt. Evol Appl 2020; 13:1818-1840. [PMID: 32908588 PMCID: PMC7463332 DOI: 10.1111/eva.12930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/06/2022] Open
Abstract
Crop diversity is shaped by biological and social processes interacting at different spatiotemporal scales. Here, we combined population genetics and ethnobotany to investigate date palm (Phoenix dactylifera L.) diversity in Siwa Oasis, Egypt. Based on interviews with farmers and observation of practices in the field, we collected 149 date palms from Siwa Oasis and 27 uncultivated date palms from abandoned oases in the surrounding desert. Using genotyping data from 18 nuclear and plastid microsatellite loci, we confirmed that some named types each constitute a clonal line, that is, a true-to-type cultivar. We also found that others are collections of clonal lines, that is, ethnovarieties, or even unrelated samples, that is, local categories. This alters current assessments of agrobiodiversity, which are visibly underestimated, and uncovers the impact of low-intensity, but highly effective, farming practices on biodiversity. These hardly observable practices, hypothesized by ethnographic survey and confirmed by genetic analysis, are enabled by the way Isiwans conceive and classify living beings in their oasis, which do not quite match the way biologists do: a classic disparity of etic versus. emic categorizations. In addition, we established that Siwa date palms represent a unique and highly diverse genetic cluster, rather than a subset of North African and Middle Eastern palm diversity. As previously shown, North African date palms display evidence of introgression by the wild relative Phoenix theophrasti, and we found that the uncultivated date palms from the abandoned oases share even more alleles with this species than cultivated palms in this region. The study of Siwa date palms could hence be a key to the understanding of date palm diversification in North Africa. Integration of ethnography and population genetics promoted the understanding of the interplay between diversity management in the oasis (short-time scale), and the origins and dynamic of diversity through domestication and diversification (long-time scale).
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- Center for Genomics and Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Institut des Sciences de l’ÉvolutionUMR 5554 CNRS/Université de Montpellier/IRD/EPHECC065Équipe Dynamique de la Biodiversité, Anthropo‐écologieUniversité – MontpellierMontpellier Cedex 5France
| | - Vincent Battesti
- UMR 7206 Éco‐anthropologieCNRSMuséum national d’histoire naturelleUniversite de Paris: Musée de l’HommeParisFrance
| | - Sarah Ivorra
- Institut des Sciences de l’ÉvolutionUMR 5554 CNRS/Université de Montpellier/IRD/EPHECC065Équipe Dynamique de la Biodiversité, Anthropo‐écologieUniversité – MontpellierMontpellier Cedex 5France
| | - Laure Paradis
- Institut des Sciences de l’ÉvolutionUMR 5554 CNRS/Université de Montpellier/IRD/EPHECC065Équipe Dynamique de la Biodiversité, Anthropo‐écologieUniversité – MontpellierMontpellier Cedex 5France
| | - Frédérique Aberlenc
- Institut de Recherche pour le Développement (IRD)Université de Montpellier, UMR DIADEMontpellierFrance
| | | | | | - Souhila Moussouni
- Faculté des Sciences BiologiquesLaboratoire de Recherche sur les Zones Arides (LRZA)Université des Science et de la Technologie Houari Boumediene (USTHB)AlgerAlgeria
| | - Summar Abbas Naqvi
- Institute of Horticultural SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Jean‐Frédéric Terral
- Institut des Sciences de l’ÉvolutionUMR 5554 CNRS/Université de Montpellier/IRD/EPHECC065Équipe Dynamique de la Biodiversité, Anthropo‐écologieUniversité – MontpellierMontpellier Cedex 5France
| |
Collapse
|
16
|
Hazzouri KM, Flowers JM, Nelson D, Lemansour A, Masmoudi K, Amiri KMA. Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. FRONTIERS IN PLANT SCIENCE 2020; 11:293. [PMID: 32256513 PMCID: PMC7090123 DOI: 10.3389/fpls.2020.00293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Date palm (Phoenix dactylifera L.) is a socio-economically important crop in the Middle East and North Africa and a major contributor to food security in arid regions of the world. P. dactylifera is both drought and salt tolerant, but recent water shortages and increases in groundwater and soil salinity have threatened the continued productivity of the crop. Recent studies of date palm have begun to elucidate the physiological mechanisms of abiotic stress tolerance and the genes and biochemical pathways that control the response to these stresses. Here we review recent studies on tolerance of date palm to salinity and drought stress, the role of the soil and root microbiomes in abiotic stress tolerance, and highlight recent findings of omic-type studies. We present a perspective on future research of abiotic stress in date palm that includes improving existing genome resources, application of genetic mapping to determine the genetic basis of variation in tolerances among cultivars, and adoption of gene-editing technologies to the study of abiotic stress in date palms. Development of necessary resources and application of the proposed methods will provide a foundation for future breeders and genetic engineers aiming to develop more stress-tolerant cultivars of date palm.
Collapse
Affiliation(s)
- Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jonathan M. Flowers
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - David Nelson
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Khaled Masmoudi
- College of Food and Agriculture, Department of Integrative Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- College of Science, Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Sallon S, Cherif E, Chabrillange N, Solowey E, Gros-Balthazard M, Ivorra S, Terral JF, Egli M, Aberlenc F. Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies. SCIENCE ADVANCES 2020; 6:eaax0384. [PMID: 32076636 PMCID: PMC7002127 DOI: 10.1126/sciadv.aax0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/27/2019] [Indexed: 05/16/2023]
Abstract
Germination of 2000-year-old seeds of Phoenix dactylifera from Judean desert archaeological sites provides a unique opportunity to study the Judean date palm, described in antiquity for the quality, size, and medicinal properties of its fruit, but lost for centuries. Microsatellite genotyping of germinated seeds indicates that exchanges of genetic material occurred between the Middle East (eastern) and North Africa (western) date palm gene pools, with older seeds exhibiting a more eastern nuclear genome on a gradient from east to west of genetic contributions. Ancient seeds were significantly longer and wider than modern varieties, supporting historical records of the large size of the Judean date. These findings, in accord with the region's location between east and west date palm gene pools, suggest that sophisticated agricultural practices may have contributed to the Judean date's historical reputation. Given its exceptional storage potentialities, the date palm is a remarkable model for seed longevity research.
Collapse
Affiliation(s)
- Sarah Sallon
- Louis L. Borick Natural Medicine Research Center (NMRC), Hadassah Medical Organization, 91120 Jerusalem
- Corresponding author. (S.S.); (F.A.)
| | - Emira Cherif
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, Montpellier, France
| | - Nathalie Chabrillange
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, Montpellier, France
| | - Elaine Solowey
- Arava Institute of Environmental Studies (AIES), Kibbutz Ketura 88840, Israel
| | - Muriel Gros-Balthazard
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS/Université de Montpellier/IRD/EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Sarah Ivorra
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS/Université de Montpellier/IRD/EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Frédéric Terral
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS/Université de Montpellier/IRD/EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Markus Egli
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Frédérique Aberlenc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, Montpellier, France
- Corresponding author. (S.S.); (F.A.)
| |
Collapse
|
18
|
Liu S, Cornille A, Decroocq S, Tricon D, Chague A, Eyquard JP, Liu WS, Giraud T, Decroocq V. The complex evolutionary history of apricots: Species divergence, gene flow and multiple domestication events. Mol Ecol 2019; 28:5299-5314. [PMID: 31677192 DOI: 10.1111/mec.15296] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Domestication is an excellent model to study diversification and this evolutionary process can be different in perennial plants, such as fruit trees, compared to annual crops. Here, we inferred the history of wild apricot species divergence and of apricot domestication history across Eurasia, with a special focus on Central and Eastern Asia, based on microsatellite markers and approximate Bayesian computation. We significantly extended our previous sampling of apricots in Europe and Central Asia towards Eastern Asia, resulting in a total sample of 271 cultivated samples and 306 wild apricots across Eurasia, mainly Prunus armeniaca and Prunus sibirica, with some Prunus mume and Prunus mandshurica. We recovered wild Chinese species as genetically differentiated clusters, with P. sibirica being divided into two clusters, one possibly resulting from hybridization with P. armeniaca. Central Asia also appeared as a diversification centre of wild apricots. We further revealed at least three domestication events, without bottlenecks, that gave rise to European, Southern Central Asian and Chinese cultivated apricots, with ancient gene flow among them. The domestication event in China possibly resulted from ancient hybridization between wild populations from Central and Eastern Asia. We also detected extensive footprints of recent admixture in all groups of cultivated apricots. Our results thus show that apricot is an excellent model for studying speciation and domestication in long-lived perennial fruit trees.
Collapse
Affiliation(s)
- Shuo Liu
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Yingkou City, China
| | - Amandine Cornille
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - David Tricon
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | - Aurélie Chague
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | | | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
19
|
Genome-wide association mapping of date palm fruit traits. Nat Commun 2019; 10:4680. [PMID: 31615981 PMCID: PMC6794320 DOI: 10.1038/s41467-019-12604-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Date palms (Phoenix dactylifera) are an important fruit crop of arid regions of the Middle East and North Africa. Despite its importance, few genomic resources exist for date palms, hampering evolutionary genomic studies of this perennial species. Here we report an improved long-read genome assembly for P. dactylifera that is 772.3 Mb in length, with contig N50 of 897.2 Kb, and use this to perform genome-wide association studies (GWAS) of the sex determining region and 21 fruit traits. We find a fruit color GWAS at the R2R3-MYB transcription factor VIRESCENS gene and identify functional alleles that include a retrotransposon insertion and start codon mutation. We also find a GWAS peak for sugar composition spanning deletion polymorphisms in multiple linked invertase genes. MYB transcription factors and invertase are implicated in fruit color and sugar composition in other crops, demonstrating the importance of parallel evolution in the evolutionary diversification of domesticated species. Date palm is an important fruit crop in the Middle East and North Africa. Here, the authors report an improved genome assembly of this species and perform GWAS mapping of sex determining region and 21 fruit traits using high density SNP data generated from re-sequencing of the mapping population.
Collapse
|
20
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
21
|
Chaluvadi SR, Young P, Thompson K, Bahri BA, Gajera B, Narayanan S, Krueger R, Bennetzen JL. Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm ( Phoenix dactylifera) and related species. PLANT DIVERSITY 2019; 41:330-339. [PMID: 31934678 PMCID: PMC6951277 DOI: 10.1016/j.pld.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 06/10/2023]
Abstract
Date palm (Phoenix dactylifera), one of the most ancient crops, is grown commercially in >30 countries. Using whole plastome assemblies, phylogenetic analyses revealed that cultivated date palm accessions share the same clade with P hoenix sylvestris, P hoenix pusilla and P hoenix acaulis, which are native to the Indian subcontinent, and Phoenix caespitosa that is native to the Arabian Peninsula and the deserts of Somalia. Analysis of genetic diversity and genetic relationships among date palm accessions from 13 producing countries involved 195 date palm accessions that were genotyped at 19 microsatellite loci. Extensive genetic diversity was observed, with many accessions heterozygous for most markers in this clonally propagated crop. The average number of alleles per locus (42.1), expected heterozygosity (0.8), observed heterozygosity (0.47) and fixation indices (FST = 0.42) demonstrated substantial genetic diversity and population structure. Iraqi accessions were found to have the richest allelic diversity, and the most private alleles. The model-based Bayesian method indicated that these accessions could be broadly divided into two structure groups, one group with predominantly African accessions and another predominantly Asian. Some germplasm, especially from Tunisia and Iraq, deviated from this generalization. Many accessions in the STRUCTURE-derived groups were found to be genetic admixtures, with gene flow between Asian and African groups. Indian and Pakistani date palms were found to be most closely related to North African germplasm.
Collapse
Affiliation(s)
| | - Porter Young
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Bochra Amina Bahri
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Laboratory of Bioaggressors and Integrated Protection in Agriculture, The National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles-Nicolle, Tunis 1082, Tunisia
| | | | | | - Robert Krueger
- USDA-ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA
| | | |
Collapse
|
22
|
Wales N, Blackman BK. Plant Domestication: Wild Date Palms Illuminate a Crop's Sticky Origins. Curr Biol 2019; 27:R702-R704. [PMID: 28743015 DOI: 10.1016/j.cub.2017.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a new study, previously unknown populations of wild date palm have been identified in remote areas of Oman. Genomic analyses indicate date palm domestication occurred in the eastern portion of the Arabian Peninsula and reveal substantial subsequent gene flow with African palm populations.
Collapse
Affiliation(s)
- Nathan Wales
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Mohamoud YA, Mathew LS, Torres MF, Younuskunju S, Krueger R, Suhre K, Malek JA. Novel subpopulations in date palm (Phoenix dactylifera) identified by population-wide organellar genome sequencing. BMC Genomics 2019; 20:498. [PMID: 31208317 PMCID: PMC6580582 DOI: 10.1186/s12864-019-5834-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Background The date palm is one of the oldest cultivated fruit trees. The tree can withstand high temperatures and low water and the fruit can be stored dry offering nutrition across the year. The first region of cultivation is believed to be near modern day Iraq, however, where and if the date palm was domesticated is still a topic of debate. Recent studies of chloroplast and genomic DNA revealed two major subpopulations of cultivars centered in both the Eastern range of date palm cultivation including Arabian Peninsula, Iraq and parts of South Asia, and the Western range, including North Africa. Results To better understand the origins of date palm cultivation we sequenced and analyzed over 200 mitochondrial and chloroplast genomes from a geographically diverse set of date palms. Here we show that, based on mitochondrial and chloroplast genome-wide genotyping data, the most common cultivated date palms contain 4 haplotypes that appear associated with geographical region of cultivar origin. Conclusions These data suggest at least 3 and possibly 4 original maternal contributions to the current date palm population and doubles the original number. One new haplotype was found mainly in Tunisia, Algeria and Egypt and the second in Iraq, Iran and Oman. We propose that earliest date palm cultivation occurred independently in at least 3 distinct locations. This discovery will further inform understanding of the history and origins of cultivated date palm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5834-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin A Mohamoud
- Genomics Laboratory, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
| | - Lisa S Mathew
- Genomics Laboratory, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
| | - Maria F Torres
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar.,Present Address: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Shameem Younuskunju
- Genomics Laboratory, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar.,Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Robert Krueger
- USDA-ARS National Clonal Germplasm Repository for Citrus & Dates, Riverside, CA, USA
| | - Karsten Suhre
- Department of Physiology, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
| | - Joel A Malek
- Genomics Laboratory, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar.
| |
Collapse
|
24
|
Fuller DQ, Stevens CJ. Between domestication and civilization: the role of agriculture and arboriculture in the emergence of the first urban societies. VEGETATION HISTORY AND ARCHAEOBOTANY 2019; 28:263-282. [PMID: 31118541 PMCID: PMC6499764 DOI: 10.1007/s00334-019-00727-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/26/2019] [Indexed: 05/25/2023]
Abstract
The transition to urbanism has long focused on annual staple crops (cereals and legumes), perhaps at the expense of understanding other changes within agricultural practices that occurred between the end of the initial domestication period and urbanisation. This paper examines the domestication and role of fruit tree crops within urbanisation in both Western Asia and China, using a combination of evidence for morphological change and a database that documents both the earliest occurrence of tree fruit crops and their spread beyond their wild range. In Western Asia the domestication of perennial fruit crops likely occurs between 6500 bc and 3500 bc, although it accompanies a shift in location from that of the earliest domestications within the Fertile Crescent to Mesopotamia, where the earliest urban societies arose. For China, fruit-tree domestication dates between ca 4000 and 2500 bc, commencing after millet domestication and rice domestication in Northern and Southern China, respectively, but within the period that led up to the urban societies that characterised the Longshan period in the Yellow River basin and the Liangzhu Culture in the Lower Yangtze. These results place the domestication of major fruit trees between the end of the domestication of staple annual crops and the rise of urbanism. On this basis it is argued that arboriculture played a fundamental role within the re-organisation of existing land use, shifting the emphasis from short-term returns of cereal crops into longer term investment in the developing agricultural landscape in both Western and East Asia. In this respect perennial tree crops can be placed alongside craft specialisation, such as metallurgy and textiles, in the formation of urban centres and the shaping the organisational administration that accompanied the rise of urbanism.
Collapse
Affiliation(s)
- Dorian Q. Fuller
- Institute of Archaeology, University of London, 31-34 Gordon Square, London, WC1H 0PY UK
- School of Archaeology and Museology, Northwest University, Xi’an, Shaanxi 710069 China
| | - Chris J. Stevens
- Institute of Archaeology, University of London, 31-34 Gordon Square, London, WC1H 0PY UK
- School of Archaeology and Museology, Peking University, Beijing, 100871 China
| |
Collapse
|
25
|
Flowers JM, Hazzouri KM, Gros-Balthazard M, Mo Z, Koutroumpa K, Perrakis A, Ferrand S, Khierallah HSM, Fuller DQ, Aberlenc F, Fournaraki C, Purugganan MD. Cross-species hybridization and the origin of North African date palms. Proc Natl Acad Sci U S A 2019; 116:1651-1658. [PMID: 30642962 PMCID: PMC6358688 DOI: 10.1073/pnas.1817453116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Date palm (Phoenix dactylifera L.) is a major fruit crop of arid regions that were domesticated ∼7,000 y ago in the Near or Middle East. This species is cultivated widely in the Middle East and North Africa, and previous population genetic studies have shown genetic differentiation between these regions. We investigated the evolutionary history of P. dactylifera and its wild relatives by resequencing the genomes of date palm varieties and five of its closest relatives. Our results indicate that the North African population has mixed ancestry with components from Middle Eastern P. dactylifera and Phoenix theophrasti, a wild relative endemic to the Eastern Mediterranean. Introgressive hybridization is supported by tests of admixture, reduced subdivision between North African date palm and P. theophrasti, sharing of haplotypes in introgressed regions, and a population model that incorporates gene flow between these populations. Analysis of ancestry proportions indicates that as much as 18% of the genome of North African varieties can be traced to P. theophrasti and a large percentage of loci in this population are segregating for single-nucleotide polymorphisms (SNPs) that are fixed in P. theophrasti and absent from date palm in the Middle East. We present a survey of Phoenix remains in the archaeobotanical record which supports a late arrival of date palm to North Africa. Our results suggest that hybridization with P. theophrasti was of central importance in the diversification history of the cultivated date palm.
Collapse
Affiliation(s)
- Jonathan M Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Khaled M Hazzouri
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Muriel Gros-Balthazard
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ziyi Mo
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
| | - Andreas Perrakis
- Mediterranean Plant Conservation Unit, International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM) Mediterranean Agronomic Institute of Chania, 73100 Chania, Crete, Greece
| | - Sylvie Ferrand
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hussam S M Khierallah
- Date Palm Research Unit, College of Agriculture, University of Baghdad, Baghdad 10071, Iraq
| | - Dorian Q Fuller
- Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom
| | - Frederique Aberlenc
- Unité Mixte de Recherche (UMR) Diversity Adaptation and Development of Plants (DIADE), Institut de Recherche pour le Développement, 34394 Montpellier, France
| | - Christini Fournaraki
- Mediterranean Plant Conservation Unit, International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM) Mediterranean Agronomic Institute of Chania, 73100 Chania, Crete, Greece
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates;
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
26
|
de La Harpe M, Hess J, Loiseau O, Salamin N, Lexer C, Paris M. A dedicated target capture approach reveals variable genetic markers across micro- and macro-evolutionary time scales in palms. Mol Ecol Resour 2019; 19:221-234. [PMID: 30240120 DOI: 10.1111/1755-0998.12945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Understanding the genetics of biological diversification across micro- and macro-evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non-genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well-known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub-families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high-quality single nucleotide polymorphisms (SNPs) detected at both the sub-family and population levels facilitates efficient analyses of genomic diversity across micro- and macro-evolutionary time scales.
Collapse
Affiliation(s)
- Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Oriane Loiseau
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Margot Paris
- Department of Biology, Unit Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
27
|
Gros-Balthazard M, Hazzouri KM, Flowers JM. Genomic Insights into Date Palm Origins. Genes (Basel) 2018; 9:genes9100502. [PMID: 30336633 PMCID: PMC6211059 DOI: 10.3390/genes9100502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence of wild ancestral populations in remote locations of Oman and high differentiation between African and Middle Eastern populations. While genomic data are consistent with the view that domestication took place in the Gulf region, they suggest that the process was more complex involving multiple gene pools and possibly a secondary domestication. Many questions remain unanswered, especially regarding the genetic architecture of domestication and diversification. We provide a road map to future studies that will further clarify the domestication history of this iconic crop.
Collapse
Affiliation(s)
- Muriel Gros-Balthazard
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, UAE.
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
| | - Jonathan Mark Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, UAE.
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA.
| |
Collapse
|
28
|
Wang L, He F, Huang Y, He J, Yang S, Zeng J, Deng C, Jiang X, Fang Y, Wen S, Xu R, Yu H, Yang X, Zhong G, Chen C, Yan X, Zhou C, Zhang H, Xie Z, Larkin RM, Deng X, Xu Q. Genome of Wild Mandarin and Domestication History of Mandarin. MOLECULAR PLANT 2018; 11:1024-1037. [PMID: 29885473 DOI: 10.1016/j.molp.2018.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 05/19/2023]
Abstract
Mandarin (Citrus reticulata) is one of the most important citrus crops worldwide. Its domestication is believed to have occurred in South China, which has been one of the centers of mandarin cultivation for four millennia. We collected natural wild populations of mandarin around the Nanling region and cultivated landraces in the vicinity. We found that the citric acid level was dramatically reduced in cultivated mandarins. To understand genetic basis of mandarin domestication, we de novo assembled a draft genome of wild mandarin and analyzed a set of 104 citrus genomes. We found that the Mangshan mandarin is a primitive type and that two independent domestication events have occurred, resulting in two groups of cultivated mandarins (MD1 and MD2) in the North and South Nanling Mountains, respectively. Two bottlenecks and two expansions of effective population size were identified for the MD1 group of cultivated mandarins. However, in the MD2 group there was a long and continuous decrease in the population size. MD1 and MD2 mandarins showed different patterns of interspecific introgression from cultivated pummelo species. We identified a region of high divergence in an aconitate hydratase (ACO) gene involved in the regulation of citrate content, which was possibly under selection during the domestication of mandarin. This study provides concrete genetic evidence for the geographical origin of extant wild mandarin populations and sheds light on the domestication and evolutionary history of mandarin.
Collapse
Affiliation(s)
- Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Fa He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jiaxian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shuizhi Yang
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P.R. China
| | - Jiwu Zeng
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Chongling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541000, P.R. China
| | - Xiaolin Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yiwen Fang
- Institute of Citrus Science Research of Ganzhou City, Ganzhou 341000, P.R. China
| | - Shaohua Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Huiwen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoming Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Guangyan Zhong
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Chuanwu Chen
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Xiang Yan
- Institute of Citrus Science Research of Ganzhou City, Ganzhou 341000, P.R. China
| | - Changfu Zhou
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P.R. China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|