1
|
Wang Q, Baier H. Eat, flee, freeze: Division of labor in the larval zebrafish visuomotor system. Proc Natl Acad Sci U S A 2025; 122:e2506018122. [PMID: 40324097 PMCID: PMC12088435 DOI: 10.1073/pnas.2506018122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Affiliation(s)
- Qing Wang
- Department of Genes–Circuits–Behavior, Max Planck Institute for Biological Intelligence, Martinsried82152, Germany
| | - Herwig Baier
- Department of Genes–Circuits–Behavior, Max Planck Institute for Biological Intelligence, Martinsried82152, Germany
| |
Collapse
|
2
|
Han J, Suh B, Han JH. A top-down insular cortex circuit crucial for non-nociceptive fear learning. SCIENCE ADVANCES 2025; 11:eadt6996. [PMID: 40344067 PMCID: PMC12063665 DOI: 10.1126/sciadv.adt6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Understanding how threats drive fear memory formation is crucial to understanding how organisms adapt to environments and treat threat-related disorders such as PTSD. While traditional Pavlovian conditioning studies have provided valuable insights, the exclusive reliance on electric shock as a threat stimulus has limited our understanding of diverse threats. To address this, we developed a conditioning paradigm using a looming visual stimulus as an unconditioned stimulus (US) in mice and identified a distinct neural circuit for visual threat conditioning. Parabrachial CGRP neurons were necessary for both conditioning and memory retrieval. Upstream neurons in the posterior insular cortex (pIC) responded to looming stimuli, and their projections to the parabrachial nucleus (PBN) induced aversive states and drove conditioning. However, this pIC-to-PBN pathway was not required for foot-shock conditioning. These findings reveal how non-nociceptive visual stimuli can drive aversive states and fear memory formation, expanding our understanding of aversive US processing beyond traditional models.
Collapse
Affiliation(s)
- Junho Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Boin Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
3
|
Barnes M, Burton D, Marsden K, Kullman S. Early disruptions in vitamin D receptor signaling induces persistent developmental behavior deficits in zebrafish larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645997. [PMID: 40235984 PMCID: PMC11996324 DOI: 10.1101/2025.03.28.645997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A critical function of the nervous system is to rapidly process sensory information and initiate appropriate behavioral responses. Defects in sensory processing and behavior selection are commonly observed in neuro-psychiatric conditions including anxiety, autism (ASD), and schizophrenia. The etiology of sensory processing disorders remains equivocal; however, it is hypothesized that extrinsic environmental factors can play fundamental roles. In this study we examine the importance of vitamin D (1α, 25-dihydroxyvitamin D3) receptor signaling during early life stage development on sensory processing and neurobehavioral health outcomes. While vitamin D has traditionally been associated with mineral ion homeostasis, accumulating evidence suggests non-calcemic roles for vitamin D including early neurodevelopment. Here we demonstrate that systemic disruption of vitamin D receptor (VDR) signaling with a conditional dominant negative (dnVDR) transgenic zebrafish line results in specific visual and acoustic sensorimotor behavior defects. Induction of dnVDR between 24-72 hours post fertilization (hpf) results in modulation of visual motor response with demonstrate attenuation in acute activity and hypolocomotion across multiple swimming metrics when assayed at 6- and 28-days post fertilization (dpf). Disruption in VDR signaling additionally resulted in a strong and specific attenuation of the Long-Latency C-bends (LLC) within the acoustic startle response at 6 dpf while Short-Latency C-bends (SLC) were moderately impacted. Pre-pulse inhibition (PPI) was not impacted in young larvae however exhibited a significantly attenuated response at 28 dpf suggesting an inability to properly modulate their startle responses later in development and persistent effects of VDR modulation during early development. Overall, our data demonstrate that modulation of vitamin D signaling during critical windows of development irreversibly disrupts the development of neuronal circuitry associated with sensory processing behaviors which may have significant implications to neurobehavioral health outcomes.
Collapse
|
4
|
Zocchi D, Nguyen M, Marquez-Legorreta E, Siwanowicz I, Singh C, Prober DA, Hillman EMC, Ahrens MB. Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits. Curr Biol 2025; 35:163-176.e4. [PMID: 39719697 DOI: 10.1016/j.cub.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.
Collapse
Affiliation(s)
- Dhruv Zocchi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Millen Nguyen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Chanpreet Singh
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - David A Prober
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - Elizabeth M C Hillman
- Columbia University, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, New York, NY 10027, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
5
|
Bak C, Boutin A, Gauzin S, Lejards C, Rampon C, Florian C. Age-associated alteration of innate defensive response to a looming stimulus and brain functional connectivity pattern in mice. Sci Rep 2024; 14:25323. [PMID: 39455881 PMCID: PMC11511918 DOI: 10.1038/s41598-024-76884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Innate defensive behaviors are essential for species survival. While these behaviors start to develop early in an individual's life, there is still much to be understood about how they evolve with advancing age. Considering that aging is often accompanied by various cognitive and physical declines, we tested the hypothesis that innate fear behaviors and underlying cerebral mechanisms are modified by aging. In our study we investigated this hypothesis by examining how aged mice respond to a looming visual threat compared to their younger counterparts. Our findings indicate that aged mice exhibit a different fear response than young mice when facing this imminent threat. Specifically, unlike young mice, aged mice tend to predominantly display freezing behavior without seeking shelter. Interestingly, this altered behavioral response in aged mice is linked to a distinct pattern of functional brain connectivity compared to young mice. Notably, our data highlights a lack of a consistent brain activation following the fear response in aged mice, suggesting that innate defensive behaviors undergo changes with aging.
Collapse
Affiliation(s)
- Célia Bak
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Aroha Boutin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Sébastien Gauzin
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Camille Lejards
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Claire Rampon
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | - Cédrick Florian
- CNRS, UPS, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France.
| |
Collapse
|
6
|
Abstract
The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.
Collapse
Affiliation(s)
- Herwig Baier
- Department of Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany;
| | - Ethan K Scott
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
8
|
Rodriguez-Pinto II, Rieucau G, Handegard NO, Boswell KM, Theobald JC. Environmental impact on visual perception modulates behavioral responses of schooling fish to looming predators. J Exp Biol 2024; 227:jeb246665. [PMID: 38186295 DOI: 10.1242/jeb.246665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Aggregation in social fishes has evolved to improve safety from predators. The individual interaction mechanisms that govern collective behavior are determined by the sensory systems that translate environmental information into behavior. In dynamic environments, shifts in conditions impede effective visual sensory perception in fish schools, and may induce changes in the collective response. Here, we consider whether environmental conditions that affect visual contrast modulate the collective response of schools to looming predators. By using a virtual environment to simulate four contrast levels, we tested whether the collective state of minnow fish schools was modified in response to a looming optical stimulus. Our results indicate that fish swam slower and were less polarized in lower contrast conditions. Additionally, schooling metrics known to be regulated by non-visual sensory systems tended to correlate better when contrast decreased. Over the course of the escape response, schools remained tightly formed and retained the capability of transferring social information. We propose that when visual perception is compromised, the interaction rules governing collective behavior are likely to be modified to prioritize ancillary sensory information crucial to maximizing chance of escape. Our results imply that multiple sensory systems can integrate to control collective behavior in environments with unreliable visual information.
Collapse
Affiliation(s)
- Ivan I Rodriguez-Pinto
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| | | | | | - Kevin M Boswell
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| | - Jamie C Theobald
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| |
Collapse
|
9
|
El Manira A. Modular circuit organization for speed control of locomotor movements. Curr Opin Neurobiol 2023; 82:102760. [PMID: 37597455 DOI: 10.1016/j.conb.2023.102760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
Our movements and actions stem from complex processes in the central nervous system. Precise adaptation of locomotor movements is essential for effectively interacting with the environment. To understand the mechanisms underlying these movements, it is crucial to determine the organization of spinal circuits at the level of individual neurons and synapses. This review highlights the insights gained from studying spinal circuits in adult zebrafish and discusses their broader implications for our understanding of locomotor control across species.
Collapse
|
10
|
Dewell RB, Carroll-Mikhail T, Eisenbrandt MR, Mendoza AF, Halder B, Preuss T, Gabbiani F. Convergent escape behaviour from distinct visual processing of impending collision in fish and grasshoppers. J Physiol 2023; 601:4355-4373. [PMID: 37671925 PMCID: PMC10595048 DOI: 10.1113/jp284022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course. Under these conditions, we found that the angular threshold conveyed by collision detecting neurons in grasshoppers was sensitive to acceleration whereas the triggering of escape behaviours was less so. In contrast, neurons in goldfish identified through the characteristic features of the escape behaviours they trigger, showed little sensitivity to acceleration. This closely mirrored a broader lack of sensitivity to acceleration of the goldfish escape behaviour. Thus, although the sensory coding of simulated colliding stimuli with non-zero acceleration probably differs in grasshoppers and goldfish, the triggering of escape behaviours converges towards similar characteristics. Approaching stimuli with non-zero acceleration may help refine our understanding of neural computations underlying escape behaviours in a broad range of animal species. KEY POINTS: A companion manuscript showed that two mathematical models of collision-detecting neurons in grasshoppers and goldfish make distinct predictions for the timing of their responses to simulated objects approaching on a collision course with non-zero acceleration. Testing these experimental predictions showed that grasshopper neurons are sensitive to acceleration while goldfish neurons are not, in agreement with the distinct models proposed previously in these species using constant velocity approaches. Grasshopper and goldfish escape behaviours occurred after the stimulus reached a fixed angular size insensitive to acceleration, suggesting further downstream processing in grasshopper motor circuits to match what was observed in goldfish. Thus, in spite of different sensory processing in the two species, escape behaviours converge towards similar solutions. The use of object acceleration during approach on a collision course may help better understand the neural computations implemented for collision avoidance in a broad range of species.
Collapse
Affiliation(s)
- Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Terri Carroll-Mikhail
- Hunter College and the Graduate Center, The City University of New York, New York, USA
| | | | | | - Bidisha Halder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Preuss
- Hunter College and the Graduate Center, The City University of New York, New York, USA
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Jay M, MacIver MA, McLean DL. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish. J Neurosci 2023; 43:4062-4074. [PMID: 37127363 PMCID: PMC10255127 DOI: 10.1523/jneurosci.0703-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Navigation requires steering and propulsion, but how spinal circuits contribute to direction control during ongoing locomotion is not well understood. Here, we use drifting vertical gratings to evoke directed "fictive" swimming in intact but immobilized larval zebrafish while performing electrophysiological recordings from spinal neurons. We find that directed swimming involves unilateral changes in the duration of motor output and increased recruitment of motor neurons, without impacting the timing of spiking across or along the body. Voltage-clamp recordings from motor neurons reveal increases in phasic excitation and inhibition on the side of the turn. Current-clamp recordings from premotor interneurons that provide phasic excitation or inhibition reveal two types of recruitment patterns. A direction-agnostic pattern with balanced recruitment on the turning and nonturning sides is primarily observed in excitatory V2a neurons with ipsilateral descending axons, while a direction-sensitive pattern with preferential recruitment on the turning side is dominated by V2a neurons with ipsilateral bifurcating axons. Inhibitory V1 neurons are also divided into direction-sensitive and direction-agnostic subsets, although there is no detectable morphologic distinction. Our findings support the modular control of steering and propulsion by spinal premotor circuits, where recruitment of distinct subsets of excitatory and inhibitory interneurons provide adjustments in direction while on the move.SIGNIFICANCE STATEMENT Spinal circuits play an essential role in coordinating movements during locomotion. However, it is unclear how they participate in adjustments in direction that do not interfere with coordination. Here we have developed a system using larval zebrafish that allows us to directly record electrical signals from spinal neurons during "fictive" swimming guided by visual cues. We find there are subsets of spinal interneurons for coordination and others that drive unilateral asymmetries in motor neuron recruitment for direction control. Our findings suggest a modular organization of spinal premotor circuits that enables uninterrupted adjustments in direction during ongoing locomotion.
Collapse
Affiliation(s)
- Michael Jay
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| | - Malcolm A MacIver
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208
| | - David L McLean
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
13
|
Fahimipour AK, Gil MA, Celis MR, Hein GF, Martin BT, Hein AM. Wild animals suppress the spread of socially transmitted misinformation. Proc Natl Acad Sci U S A 2023; 120:e2215428120. [PMID: 36976767 PMCID: PMC10083541 DOI: 10.1073/pnas.2215428120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.
Collapse
Affiliation(s)
- Ashkaan K. Fahimipour
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL33431
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | - Michael A. Gil
- Department of Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
| | - Maria Rosa Celis
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | | | - Benjamin T. Martin
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Andrew M. Hein
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| |
Collapse
|
14
|
Gabbiani F, Preuss T, Dewell RB. Approaching object acceleration differentially affects the predictions of neuronal collision avoidance models. BIOLOGICAL CYBERNETICS 2023; 117:129-142. [PMID: 37029831 PMCID: PMC10314993 DOI: 10.1007/s00422-023-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
The processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals. Specifically, in goldfish, the [Formula: see text] model has been proposed to describe the Mauthner cell, an identified neuron involved in startle escape responses. In the vinegar fly, a third model was developed for the giant fiber neuron, which triggers last resort escapes immediately before an impending collision. One key property of these models is their prediction that peak neuronal responses occur at a fixed delay after the simulated approaching object reaches a threshold angular size on the retina. This prediction is valid for simulated objects approaching at a constant speed. We tested whether it remains valid when approaching objects accelerate. After characterizing and comparing the models' responses to accelerating and constant speed stimuli, we find that the prediction holds true for the [Formula: see text] and the giant fiber model, but not for the [Formula: see text] model. These results suggest that acceleration in the approach trajectory of an object may help distinguish and further constrain the neuronal computations required for collision avoidance in grasshoppers, fish and vinegar flies.
Collapse
Affiliation(s)
- Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX, 77030, USA.
| | - Thomas Preuss
- Department Psychology, Hunter College and the Graduate Center, The City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Fotowat H, Engert F. Neural circuits underlying habituation of visually evoked escape behaviors in larval zebrafish. eLife 2023; 12:82916. [PMID: 36916795 PMCID: PMC10014075 DOI: 10.7554/elife.82916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Larval zebrafish that are exposed repeatedly to dark looming stimuli will quickly habituate to these aversive signals and cease to respond with their stereotypical escape swims. A dark looming stimulus can be separated into two independent components: one that is characterized by an overall spatial expansion, where overall luminance is maintained at the same level, and a second, that represents an overall dimming within the whole visual field in the absence of any motion energy. Using specific stimulation patterns that isolate these independent components, we first extracted the behavioral algorithms that dictate how these separate information channels interact with each other and across the two eyes during the habituation process. Concurrent brain wide imaging experiments then permitted the construction of circuit models that suggest the existence of two separate neural pathways. The first is a looming channel which responds specifically to expanding edges presented to the contralateral eye and relays that information to the brain stem escape network to generate directed escapes. The second is a dimming-specific channel that could be either monocular or binocularly responsive, and that appears to specifically inhibit escape response when activated. We propose that this second channel is under strong contextual modulation and that it is primarily responsible for the incremental silencing of successive dark looming-evoked escapes.
Collapse
Affiliation(s)
- Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
16
|
Trujillo JE, Bouyoucos I, Rayment WJ, Domenici P, Planes S, Rummer JL, Allan BJM. Escape response kinematics in two species of tropical shark: short escape latencies and high turning performance. J Exp Biol 2022; 225:276912. [PMID: 36168768 PMCID: PMC9845744 DOI: 10.1242/jeb.243973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/17/2022] [Indexed: 01/29/2023]
Abstract
Accelerative manoeuvres, such as fast-starts, are crucial for fish to avoid predation. Escape responses are fast-starts that include fundamental survival traits for prey that experience high predation pressure. However, no previous study has assessed escape performance in neonate tropical sharks. We quantitatively evaluated vulnerability traits of neonate tropical sharks by testing predictions on their fast-start escape performance. We predicted (1) high manoeuvrability, given their high flexibility, but (2) low propulsive locomotion owing to the drag costs associated with pectoral fin extension during escape responses. Further, based on previous work on dogfish, Squalus suckleyi, we predicted (3) long reaction times (as latencies longer than teleosts, >20 ms). We used two-dimensional, high-speed videography analysis of mechano-acoustically stimulated neonate blacktip reef shark, Carcharhinus melanopterus (n=12), and sicklefin lemon shark, Negaprion acutidens (n=8). Both species performed a characteristic C-start double-bend response (i.e. two body bends), but single-bend responses were only observed in N. acutidens. As predicted, neonate sharks showed high manoeuvrability with high turning rates and tight turning radii (3-11% of body length) but low propulsive performance (i.e. speed, acceleration and velocity) when compared with similar-sized teleosts and S. suckleyi. Contrary to expectations, escape latencies were <20 ms in both species, suggesting that the neurophysiological system of sharks when reacting to a predatory attack may not be limited to long response times. These results provide a quantitative assessment of survival traits in neonate tropical sharks that will be crucial for future studies that consider the vulnerability of these sharks to predation.
Collapse
Affiliation(s)
- José E. Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand,Author for correspondence ()
| | - Ian Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia,PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R2T 2N2, Canada
| | - William J. Rayment
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Paolo Domenici
- CNR-IAS, Località Sa Mardini, 09170 Torregrande, Oristano, Italy,CNR-IBF, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France,Laboratoire d'Excellence CORAIL, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai 98729, French Polynesia
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia,Marine Biology, College of Science and Engineering, James Cook University, Townsville 4814, Australia
| | - Bridie J. M. Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
17
|
Hashimoto M, Brito SI, Venner A, Pasqualini AL, Yang TL, Allen D, Fuller PM, Anthony TE. Lateral septum modulates cortical state to tune responsivity to threat stimuli. Cell Rep 2022; 41:111521. [PMID: 36288710 PMCID: PMC9645245 DOI: 10.1016/j.celrep.2022.111521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Sudden unexpected environmental changes capture attention and, when perceived as potentially dangerous, evoke defensive behavioral states. Perturbations of the lateral septum (LS) can produce extreme hyperdefensiveness even to innocuous stimuli, but how this structure influences stimulus-evoked defensive responses and threat perception remains unclear. Here, we show that Crhr2-expressing neurons in mouse LS exhibit phasic activation upon detection of threatening but not rewarding stimuli. Threat-stimulus-driven activity predicts the probability but not vigor or type of defensive behavior evoked. Although necessary for and sufficient to potentiate stimulus-triggered defensive responses, LSCrhr2 neurons do not promote specific behaviors. Rather, their stimulation elicits negative valence and physiological arousal. Moreover, LSCrhr2 activity tracks brain state fluctuations and drives cortical activation and rapid awakening in the absence of threat. Together, our findings suggest that LS directs bottom-up modulation of cortical function to evoke preparatory defensive internal states and selectively enhance responsivity to threat-related stimuli.
Collapse
Affiliation(s)
- Mariko Hashimoto
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Ignacio Brito
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Loren Pasqualini
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Lulu Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David Allen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Michael Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Todd Erryl Anthony
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Departments of Psychiatry and Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ferreira CH, Heinemans M, Farias M, Gonçalves R, Moita MA. Social Cues of Safety Can Override Differences in Threat Level. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.885795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals in groups integrate social with directly gathered information about the environment to guide decisions regarding reproduction, foraging, and defence against predatory threats. In the context of predation, usage of social information has acute fitness benefits, aiding the detection of predators, the mounting of concerted defensive responses, or allowing the inference of safety, permitting other beneficial behaviors, such as foraging for food. We previously showed that Drosophila melanogaster exposed to an inescapable visual threat use freezing by surrounding flies as a cue of danger and movement resumption as a cue of safety. Moreover, group responses were primarily guided by the safety cues, resulting in a net social buffering effect, i.e., a graded decrease in freezing behavior with increasing group sizes, similar to other animals. Whether and how different threat levels affect the use of social cues to guide defense responses remains elusive. Here, we investigated this issue by exposing flies individually and in groups to two threat imminences using looms of different speeds. We showed that freezing responses are stronger to the faster looms regardless of social condition. However, social buffering was stronger for groups exposed to the fast looms, such that the increase in freezing caused by the higher threat was less prominent in flies tested in groups than those tested individually. Through artificial control of movement, we created groups composed of moving and freezing flies and by varying group composition, we titrated the motion cues that surrounding flies produce, which were held constant across threat levels. We found that the same level of safety motion cues had a bigger weight on the flies’ decisions when these were exposed to the higher threat, thus overriding differences in perceived threat levels. These findings shed light on the “safety in numbers” effect, revealing the modulation of the saliency of social safety cues across threat intensities, a possible mechanism to regulate costly defensive responses.
Collapse
|
19
|
Ecological decision-making: From circuit elements to emerging principles. Curr Opin Neurobiol 2022; 74:102551. [DOI: 10.1016/j.conb.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
|
20
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Kimura H, Pfalzgraff T, Levet M, Kawabata Y, Steffensen JF, Johansen JL, Domenici P. Escaping from multiple visual threats: Modulation of escape responses in Pacific staghorn sculpin ( Leptocottus armatus). J Exp Biol 2022; 225:275328. [DOI: 10.1242/jeb.243328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (Stage 1) and a contralateral bend (Stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment); a 33 ms; or a 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur shortly before and after a predicted 60 ms visual escape latency (i.e. during Stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the Stage 1 turning angle, compared to a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but that escape trajectory cannot be modulated after the body motion has started.
Collapse
Affiliation(s)
- Hibiki Kimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Tilo Pfalzgraff
- Technical University of Denmark, DTU AQUA, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Campus MIL, 1375 Avenue Thérèse-Lavoie-Roux, Montréal QC H2V 0B3, Canada
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L. Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, HI 96744, USA
| | | |
Collapse
|
22
|
MacIver MA, Finlay BL. The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200523. [PMID: 34957852 PMCID: PMC8710882 DOI: 10.1098/rstb.2020.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal's body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Malcolm A. MacIver
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208, USA
| | - Barbara L. Finlay
- Department of Psychology, Behavioral and Evolutionary Neuroscience Group, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
23
|
Audiovisual integration in the Mauthner cell enhances escape probability and reduces response latency. Sci Rep 2022; 12:1097. [PMID: 35058502 PMCID: PMC8776867 DOI: 10.1038/s41598-022-04998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFast and accurate threat detection is critical for animal survival. Reducing perceptual ambiguity by integrating multiple sources of sensory information can enhance perception and reduce response latency. However, studies addressing the link between behavioral correlates of multisensory integration and its underlying neural basis are rare. Fish that detect an urgent threat escape with an explosive behavior known as C-start. The C-start is driven by an identified neural circuit centered on the Mauthner cell, an identified neuron capable of triggering escapes in response to visual and auditory stimuli. Here we demonstrate that goldfish can integrate visual looms and brief auditory stimuli to increase C-start probability. This multisensory enhancement is inversely correlated to the salience of the stimuli, with weaker auditory cues producing a proportionally stronger multisensory effect. We also show that multisensory stimuli reduced C-start response latency, with most escapes locked to the presentation of the auditory cue. We make a direct link between behavioral data and its underlying neural mechanism by reproducing the behavioral data with an integrate-and-fire computational model of the Mauthner cell. This model of the Mauthner cell circuit suggests that excitatory inputs integrated at the soma are key elements in multisensory decision making during fast C-start escapes. This provides a simple but powerful mechanism to enhance threat detection and survival.
Collapse
|
24
|
Zhou B, Li Z, Kim S, Lafferty J, Clark DA. Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons. eLife 2022; 11:72067. [PMID: 35023828 PMCID: PMC8849349 DOI: 10.7554/elife.72067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Zifan Li
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - Sunnie Kim
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - John Lafferty
- Department of Statistics and Data Science, Yale University, New Haven, United States
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
25
|
Sato N, Shidara H, Ogawa H. Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon 2022; 8:e08800. [PMID: 35111985 PMCID: PMC8790502 DOI: 10.1016/j.heliyon.2022.e08800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Escape behavior is essential for animals to avoid attacks by predators. In some species, multiple escape responses could be employed. However, it remains unknown what aspects of threat stimuli affect the choice of an escape response. We focused on two distinct escape responses (running and jumping) to short airflow in crickets and examined the effects of multiple stimulus aspects including the angle, velocity, and duration on the choice between these responses. The faster and longer the airflow, the more frequently the crickets jumped. This meant that the choice of an escape response depends on both the velocity and duration of the stimulus and suggests that the neural basis for choosing an escape response includes the integration process of multiple stimulus parameters. In addition, the moving speed and distance changed depending on the stimulus velocity and duration for running but not for jumping. Running away would be more adaptive escape behavior.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
26
|
Lukas J, Romanczuk P, Klenz H, Klamser P, Arias Rodriguez L, Krause J, Bierbach D. Acoustic and visual stimuli combined promote stronger responses to aerial predation in fish. Behav Ecol 2021; 32:1094-1102. [PMID: 34949958 PMCID: PMC8691536 DOI: 10.1093/beheco/arab043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bird predation poses a strong selection pressure on fish. Since birds must enter the water to catch fish, a combination of visual and mechano-acoustic cues (multimodal) characterize an immediate attack, while single cues (unimodal) may represent less dangerous disturbances. We investigated whether fish could use this information to distinguish between non-threatening and dangerous events and adjust their antipredator response to the perceived level of risk. To do so, we investigated the antipredator behavior of the sulphur molly (Poecilia sulphuraria), a small freshwater fish which is almost exclusively preyed on by piscivorous birds in its endemic sulfide spring habitat. In a field survey, we confirmed that these fish frequently have to distinguish between disturbances stemming from attacking birds (multimodal) and those which pose no (immediate) threat such as bird overflights (unimodal). In a laboratory experiment, we then exposed fish to artificial visual and/or acoustic stimuli presented separately or combined. Sensitivity was high regardless of stimulus type and number (more than 96% of fish initiated diving), but fish dove deeper, faster, and for longer when both stimuli were available simultaneously. Based on the system's high rates of bird activity, we argue that such an unselective dive initiation with subsequent fine-tuning of diving parameters in accordance to cue modality represents an optimal strategy for these fish to save energy necessary to respond to future attacks. Ultimately, our study shows that fish anticipate the imminent risk posed by disturbances linked to bird predation through integrating information from both visual and acoustic cues.
Collapse
Affiliation(s)
- Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Cluster of Excellence ‘Science of Intelligence’ (SCIoI), Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Haider Klenz
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Pascal Klamser
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Av. Universidad s/n, 86150 Villahermosa, Tabasco, México
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin
- Cluster of Excellence ‘Science of Intelligence’ (SCIoI), Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Thaer-Institute, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin
- Cluster of Excellence ‘Science of Intelligence’ (SCIoI), Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| |
Collapse
|
27
|
Mancienne T, Marquez-Legorreta E, Wilde M, Piber M, Favre-Bulle I, Vanwalleghem G, Scott EK. Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish. Front Neural Circuits 2021; 15:748535. [PMID: 34744637 PMCID: PMC8568047 DOI: 10.3389/fncir.2021.748535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.
Collapse
Affiliation(s)
- Tessa Mancienne
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | | | - Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Marielle Piber
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Itia Favre-Bulle
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
- School of Mathematics and Physics, The University of Queensland, Saint Lucia, QLD, Australia
| | - Gilles Vanwalleghem
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Ethan K. Scott
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
28
|
A specialized spinal circuit for command amplification and directionality during escape behavior. Proc Natl Acad Sci U S A 2021; 118:2106785118. [PMID: 34663699 PMCID: PMC8545473 DOI: 10.1073/pnas.2106785118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
We are constantly faced with a choice moving to the left or right; understanding how the brain solves the selection of action direction is of tremendous interest both from biological and clinical perspectives. In vertebrates, action selection is often considered to be the realm of higher cognitive processing. However, by combining electrophysiology, serial block-face electron microscopy, and behavioral analyses in zebrafish, we have revealed a pivotal role, as well as the full functional connectome of a specialized spinal circuit relying on strong axo-axonic synaptic connections. This includes identifying a class of cholinergic V2a interneurons and establishing that they act as a segmentally repeating hub that receives and amplifies escape commands from the brain to ensure the appropriate escape directionality. In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.
Collapse
|
29
|
Hein AM, Altshuler DL, Cade DE, Liao JC, Martin BT, Taylor GK. An Algorithmic Approach to Natural Behavior. Curr Biol 2021; 30:R663-R675. [PMID: 32516620 DOI: 10.1016/j.cub.2020.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Uncovering the mechanisms and implications of natural behavior is a goal that unites many fields of biology. Yet, the diversity, flexibility, and multi-scale nature of these behaviors often make understanding elusive. Here, we review studies of animal pursuit and evasion - two special classes of behavior where theory-driven experiments and new modeling techniques are beginning to uncover the general control principles underlying natural behavior. A key finding of these studies is that intricate sequences of pursuit and evasion behavior can often be constructed through simple, repeatable rules that link sensory input to motor output: we refer to these rules as behavioral algorithms. Identifying and mathematically characterizing these algorithms has led to important insights, including the discovery of guidance rules that attacking predators use to intercept mobile prey, and coordinated neural and biomechanical mechanisms that animals use to avoid impending collisions. Here, we argue that algorithms provide a good starting point for studies of natural behavior more generally. Rather than beginning at the neural or ecological levels of organization, we advocate starting in the middle, where the algorithms that link sensory input to behavioral output can provide a solid foundation from which to explore both the implementation and the ecological outcomes of behavior. We review insights that have been gained through such an algorithmic approach to pursuit and evasion behaviors. From these, we synthesize theoretical principles and lay out key modeling tools needed to apply an algorithmic approach to the study of other complex natural behaviors.
Collapse
Affiliation(s)
- Andrew M Hein
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA; Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - David E Cade
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA; Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Benjamin T Martin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA; Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Graham K Taylor
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
30
|
Xu L, Guan NN, Huang CX, Hua Y, Song J. A neuronal circuit that generates the temporal motor sequence for the defensive response in zebrafish larvae. Curr Biol 2021; 31:3343-3357.e4. [PMID: 34289386 DOI: 10.1016/j.cub.2021.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023]
Abstract
Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.
Collapse
Affiliation(s)
- Lulu Xu
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Na N Guan
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China
| | - Chun-Xiao Huang
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianren Song
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
31
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
32
|
Bhattacharyya K, McLean DL, MacIver MA. Intersection of motor volumes predicts the outcome of ambush predation of larval zebrafish. J Exp Biol 2021; 224:jeb235481. [PMID: 33649181 PMCID: PMC7938803 DOI: 10.1242/jeb.235481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Escape maneuvers are key determinants of animal survival and are under intense selection pressure. A number of escape maneuver parameters contribute to survival, including response latency, escape speed and direction. However, the relative importance of these parameters is context dependent, suggesting that interactions between parameters and predatory context determine the likelihood of escape success. To better understand how escape maneuver parameters interact and contribute to survival, we analyzed the responses of larval zebrafish (Danio rerio) to the attacks of dragonfly nymphs (Sympetrum vicinum). We found that no single parameter explains the outcome. Instead, the relative intersection of the swept volume of the nymph's grasping organs with the volume containing all possible escape trajectories of the fish is the strongest predictor of escape success. In cases where the prey's motor volume exceeds that of the predator, the prey survives. By analyzing the intersection of these volumes, we compute the survival benefit of recruiting the Mauthner cell, a neuron in anamniotes devoted to producing escapes. We discuss how the intersection of motor volume approach provides a framework that unifies the influence of many escape maneuver parameters on the likelihood of survival.
Collapse
Affiliation(s)
- Kiran Bhattacharyya
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Malcolm A MacIver
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
33
|
Schakmann M, Becker V, Søgaard M, Johansen JL, Steffensen JF, Domenici P. Latency of mechanically stimulated escape responses in the Pacific spiny dogfish, Squalus suckleyi. J Exp Biol 2021; 224:jeb.230698. [PMID: 33431597 DOI: 10.1242/jeb.230698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
Fast escape responses to a predator threat are fundamental to the survival of mobile marine organisms. However, elasmobranchs are often underrepresented in such studies. Here, we measured the escape latency (time interval between the stimulus and first visible reaction) of mechanically induced escape responses in the Pacific spiny dogfish, Squalus suckleyi, and in two teleosts from the same region, the great sculpin, Myoxocephalus polyacanthocephalus, and the pile perch, Rhacochilus vacca We found that the dogfish had a longer minimum latency (66.7 ms) compared with that for the great sculpin (20.8 ms) and pile perch (16.7 ms). Furthermore, the dogfish had a longer latency than that of 48 different teleosts identified from 35 different studies. We suggest such long latencies in dogfish may be due to the absence of Mauthner cells, the giant neurons that control fast escape responses in fishes.
Collapse
Affiliation(s)
- Mathias Schakmann
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96815, USA .,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - Victoria Becker
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Mathias Søgaard
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Paolo Domenici
- CNR- IAS, Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino Torregrande, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
34
|
Zhang Z, Cong L, Bai L, Wang K. Light-field microscopy for fast volumetric brain imaging. J Neurosci Methods 2021; 352:109083. [PMID: 33484746 DOI: 10.1016/j.jneumeth.2021.109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023]
Abstract
Recording neural activities over large populations is critical for a better understanding of the functional mechanisms of animal brains. Traditional optical imaging technologies for in vivo neural activity recording are usually limited in throughput and cannot cover a large imaging volume at high speed. Light-field microscopy features a highly parallelized imaging collection mechanism and can simultaneously record optical signals from different depths. Therefore, it can potentially increase the imaging throughput substantially. Furthermore, its unique instantaneous volumetric imaging capability enables the capture of highly dynamic processes, such as recording whole-animal neural activities in freely moving Caenorhabditis elegans and whole-brain neural activity in freely swimming larval zebrafish during prey capture. Here, we summarize the principles of and considerations in the practical implementation of light-field microscopy as currently applied in biological imaging experiments. We also discuss the strategies that light-field microscopy can employ when imaging thick tissues in the presence of scattering and background interference. Finally, we present a few examples of applying light-field microscopy in neuroscientific studies in several important animal models.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Cong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
35
|
Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y, Laurell E, Kawakami K, Dal Maschio M, Baier H. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 2020; 109:805-822.e6. [PMID: 33357384 DOI: 10.1016/j.neuron.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
When navigating the environment, animals need to prioritize responses to the most relevant stimuli. Although a theoretical framework for selective visual attention exists, its circuit implementation has remained obscure. Here we investigated how larval zebrafish select between simultaneously presented visual stimuli. We found that a mix of winner-take-all (WTA) and averaging strategies best simulates behavioral responses. We identified two circuits whose activity patterns predict the relative saliencies of competing visual objects. Stimuli presented to only one eye are selected by WTA computation in the inner retina. Binocularly presented stimuli, on the other hand, are processed by reciprocal, bilateral connections between the nucleus isthmi (NI) and the tectum. This interhemispheric computation leads to WTA or averaging responses. Optogenetic stimulation and laser ablation of NI neurons disrupt stimulus selection and behavioral action selection. Thus, depending on the relative locations of competing stimuli, a combination of retinotectal and isthmotectal circuits enables selective visual attention.
Collapse
Affiliation(s)
- António M Fernandes
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Duncan S Mearns
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Yvonne Kölsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Marco Dal Maschio
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
36
|
Reichmann F, Rimmer N, Tilley CA, Dalla Vecchia E, Pinion J, Al Oustah A, Carreño Gutiérrez H, Young AMJ, McDearmid JR, Winter MJ, Norton WHJ. The zebrafish histamine H3 receptor modulates aggression, neural activity and forebrain functional connectivity. Acta Physiol (Oxf) 2020; 230:e13543. [PMID: 32743878 DOI: 10.1111/apha.13543] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/17/2023]
Abstract
AIM Aggression is a behavioural trait characterized by the intention to harm others for offensive or defensive purposes. Neurotransmitters such as serotonin and dopamine are important mediators of aggression. However, the physiological role of the histaminergic system during this behaviour is currently unclear. Here, we aimed to better understand histaminergic signalling during aggression by characterizing the involvement of the histamine H3 receptor (Hrh3). METHODS We have generated a novel zebrafish Hrh3 null mutant line using CRISPR-Cas9 genome engineering and investigated behavioural changes and alterations to neural activity using whole brain Ca2+ imaging in zebrafish larvae and ribosomal protein S6 (rpS6) immunohistochemistry in adults. RESULTS We show that genetic inactivation of the histamine H3 receptor (Hrh3) reduces aggression in zebrafish, an effect that can be reproduced by pharmacological inhibition. In addition, hrh3-/- zebrafish show behavioural impairments consistent with heightened anxiety. Larval in vivo whole brain Ca2+ imaging reveals higher neuronal activity in the forebrain of mutants, but lower activity in specific hindbrain areas and changes in measures of functional connectivity between subregions. Adult hrh3-/- zebrafish display brain region-specific neural activity changes in response to aggression of both key regions of the social decision-making network, and the areas containing histaminergic neurons in the zebrafish brain. CONCLUSION These results highlight the importance of zebrafish Hrh3 signalling for aggression and anxiety and uncover the brain areas involved. Targeting this receptor might be a potential novel therapeutic route for human conditions characterized by heightened aggression.
Collapse
Affiliation(s)
- Florian Reichmann
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Neal Rimmer
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ceinwen A Tilley
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Joseph Pinion
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Amir Al Oustah
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hector Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Jonathan R McDearmid
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
37
|
Paz A, McDole B, Kowalko JE, Duboue ER, Keene AC. Evolution of the acoustic startle response of Mexican cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:474-485. [PMID: 32779370 DOI: 10.1002/jez.b.22988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/08/2022]
Abstract
The ability to detect threatening stimuli and initiate an escape response is essential for survival and under stringent evolutionary pressure. In diverse fish species, acoustic stimuli activate Mauthner neurons, which initiate a C-start escape response. This reflexive behavior is highly conserved across aquatic species and provides a model for investigating the neural mechanism underlying the evolution of escape behavior. Here, we characterize evolved differences in the C-start response between populations of the Mexican cavefish, Astyanax mexicanus. Cave populations of A. mexicanus inhabit an environment devoid of light and macroscopic predators, resulting in evolved differences in various morphological and behavioral traits. We find that the C-start is present in river-dwelling surface fish and multiple populations of cavefish, but that response kinematics and probability differ between populations. The Pachón population of cavefish exhibits an increased response probability, a slower response latency and speed, and reduction of the maximum bend angle, revealing evolved differences between surface and cave populations. Analysis of the responses of two other independently evolved populations of cavefish, revealed the repeated evolution of reduced angular speed. Investigation of surface-cave hybrids reveals a correlation between angular speed and peak angle, suggesting these two kinematic characteristics are related at the genetic or functional levels. Together, these findings provide support for the use of A. mexicanus as a model to investigate the evolution of escape behavior.
Collapse
Affiliation(s)
- Alexandra Paz
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Erik R Duboue
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
38
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
39
|
Förster D, Helmbrecht TO, Mearns DS, Jordan L, Mokayes N, Baier H. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey. eLife 2020; 9:e58596. [PMID: 33044168 PMCID: PMC7550190 DOI: 10.7554/elife.58596] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Retinal axon projections form a map of the visual environment in the tectum. A zebrafish larva typically detects a prey object in its peripheral visual field. As it turns and swims towards the prey, the stimulus enters the central, binocular area, and seemingly expands in size. By volumetric calcium imaging, we show that posterior tectal neurons, which serve to detect prey at a distance, tend to respond to small objects and intrinsically compute their direction of movement. Neurons in anterior tectum, where the prey image is represented shortly before the capture strike, are tuned to larger object sizes and are frequently not direction-selective, indicating that mainly interocular comparisons serve to compute an object's movement at close range. The tectal feature map originates from a linear combination of diverse, functionally specialized, lamina-specific, and topographically ordered retinal ganglion cell synaptic inputs. We conclude that local cell-type composition and connectivity across the tectum are adapted to the processing of location-dependent, behaviorally relevant object features.
Collapse
Affiliation(s)
- Dominique Förster
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Duncan S Mearns
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Linda Jordan
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Nouwar Mokayes
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| |
Collapse
|
40
|
A vertebrate model to reveal neural substrates underlying the transitions between conscious and unconscious states. Sci Rep 2020; 10:15789. [PMID: 32978423 PMCID: PMC7519646 DOI: 10.1038/s41598-020-72669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
The field of neuropharmacology has not yet achieved a full understanding of how the brain transitions between states of consciousness and drug-induced unconsciousness, or anesthesia. Many small molecules are used to alter human consciousness, but the repertoire of underlying molecular targets, and thereby the genes, are incompletely understood. Here we describe a robust larval zebrafish model of anesthetic action, from sedation to general anesthesia. We use loss of movement under three different conditions, spontaneous movement, electrical stimulation or a tap, as a surrogate for sedation and general anesthesia, respectively. Using these behavioral patterns, we find that larval zebrafish respond to inhalational and IV anesthetics at concentrations similar to mammals. Additionally, known sedative drugs cause loss of spontaneous larval movement but not to the tap response. This robust, highly tractable vertebrate model can be used in the detection of genes and neural substrates involved in the transition from consciousness to unconsciousness.
Collapse
|
41
|
Groneberg AH, Marques JC, Martins AL, Diez Del Corral R, de Polavieja GG, Orger MB. Early-Life Social Experience Shapes Social Avoidance Reactions in Larval Zebrafish. Curr Biol 2020; 30:4009-4021.e4. [PMID: 32888479 DOI: 10.1016/j.cub.2020.07.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Social experiences greatly define subsequent social behavior. Lack of such experiences, especially during critical phases of development, can severely impede the ability to behave adequately in social contexts. To date, it is not well characterized how early-life social isolation leads to social deficits and impacts development. In many model species, it is challenging to fully control social experiences, because they depend on parental care. Moreover, complex social behaviors involve multiple sensory modalities, contexts, and actions. Hence, when studying social isolation effects, it is important to parse apart social deficits from general developmental effects, such as abnormal motor learning. Here, we characterized how social experiences during early development of zebrafish larvae modulate their social behavior at 1 week of age, when social avoidance reactions can be measured as discrete swim events. We show that raising larvae in social isolation leads to enhanced social avoidance, in terms of the distance at which larvae react to one another and the strength of swim movement they use. Specifically, larvae raised in isolation use a high-acceleration escape swim, the short latency C-start, more frequently during social interactions. These behavioral differences are absent in non-social contexts. By ablating the lateral line and presenting the fish with local water vibrations, we show that lateral line inputs are both necessary and sufficient to drive enhanced social avoidance reactions. Taken together, our results show that social experience during development is a critical factor in shaping mechanosensory avoidance reactions in larval zebrafish.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - João C Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - A Lucas Martins
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ruth Diez Del Corral
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Michael B Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
42
|
McKee A, McHenry MJ. The Strategy of Predator Evasion in Response to a Visual Looming Stimulus in Zebrafish ( Danio rerio). Integr Org Biol 2020; 2:obaa023. [PMID: 33791564 PMCID: PMC7750966 DOI: 10.1093/iob/obaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A diversity of animals survive encounters with predators by escaping from a looming visual stimulus. Despite the importance of this behavior, it is generally unclear how visual cues facilitate a prey’s survival from predation. Therefore, the aim of this study was to understand how the visual angle subtended on the eye of the prey by the predator affects the distance of adult zebrafish (Danio rerio) from predators. We performed experiments to measure the threshold visual angle and mathematically modeled the kinematics of predator and prey. We analyzed the responses to the artificial stimulus with a novel approach that calculated relationships between hypothetical values for a threshold-stimulus angle and the latency between stimulus and response. These relationships were verified against the kinematic responses of zebrafish to a live fish predator (Herichthys cyanoguttatus). The predictions of our model suggest that the measured threshold visual angle facilitates escape when the predator’s approach is slower than approximately twice the prey’s escape speed. These results demonstrate the capacity and limits to how the visual angle provides a prey with the means to escape a predator.
Collapse
Affiliation(s)
- A McKee
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| | - M J McHenry
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| |
Collapse
|
43
|
Yang X, Liu Q, Zhong J, Song R, Zhang L, Wang L. A simple threat-detection strategy in mice. BMC Biol 2020; 18:93. [PMID: 32727449 PMCID: PMC7388474 DOI: 10.1186/s12915-020-00825-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Avoiding danger and accessing environmental resources are two fundamental, yet conflicting, survival instincts across species. To maintain a balance between these instincts, animals must efficiently distinguish approaching threats from low-threat cues. However, little is known about the key visual features that animals use to promptly detect such imminent danger and thus facilitate an immediate and appropriate behavioral response. RESULTS We used an automatic behavior detection system in mice to quantify innate defensive behaviors, including freezing, flight, and rearing, to a series of looming visual stimuli with varying expanding speeds and varying initial and final sizes. Looming visual stimuli within a specific "alert range" induced flight behavior in mice. Looming stimuli with an angular size of 10-40° and an expanding speed of 57-320°/s were in this range. Stimuli with relatively low expanding speeds tended to trigger freezing behavior, while those with relatively high expanding speeds tended to trigger rearing behavior. If approaching objects are in this "alert range," their visual features will trigger a flight response; however, non-threatening objects, based on object size and speed, will not. CONCLUSIONS These results indicate a simple strategy in mice that is used to detect predators and suggest countermeasures that predators may have taken to overcome these defensive strategies.
Collapse
Affiliation(s)
- Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru Song
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Lin Zhang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Tseng YT, Zhao B, Liu J, Ding H, Wang F, Wang L. Sleep deprivation and adrenalectomy lead to enhanced innate escape response to visual looming stimuli. Biochem Biophys Res Commun 2020; 527:737-743. [PMID: 32444141 DOI: 10.1016/j.bbrc.2020.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 11/28/2022]
Abstract
Optimal selections of innate behaviors that enable animals to adapt to particular conditions, whether environmental or internal, remain poorly understood. We report that mice under acute (8 h) sleep deprivation had an enhanced innate escape response and upregulation of c-fos expression in multiple brain areas that regulate wakefulness. By comparison, adrenalectomized mice under the same sleep deprivation condition displayed an even more exaggerated escape response and these wake-regulating brain areas were even more active. This suggests that acute sleep deprivation enhances innate escape response, possibly by altering wake state without causing significant anxiety. We also report that the hypothalamic-pituitary-adrenal axis feedback under sleep deprivation prevents an exaggerated escape response by modulating wake-regulating brain areas. Taken together, our findings suggest that animals prioritize escape response over sleep, as the need of both behaviors simultaneously increase. We also provide an insight into the neural mechanisms underlying the interaction between sleep and innate escape response.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Binghao Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hui Ding
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
45
|
Spatial planning with long visual range benefits escape from visual predators in complex naturalistic environments. Nat Commun 2020; 11:3057. [PMID: 32546681 PMCID: PMC7298009 DOI: 10.1038/s41467-020-16102-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/14/2020] [Indexed: 01/04/2023] Open
Abstract
It is uncontroversial that land animals have more elaborated cognitive abilities than their aquatic counterparts such as fish. Yet there is no apparent a-priori reason for this. A key cognitive faculty is planning. We show that in visually guided predator-prey interactions, planning provides a significant advantage, but only on land. During animal evolution, the water-to-land transition resulted in a massive increase in visual range. Simulations of behavior identify a specific type of terrestrial habitat, clustered open and closed areas (savanna-like), where the advantage of planning peaks. Our computational experiments demonstrate how this patchy terrestrial structure, in combination with enhanced visual range, can reveal and hide agents as a function of their movement and create a selective benefit for imagining, evaluating, and selecting among possible future scenarios-in short, for planning. The vertebrate invasion of land may have been an important step in their cognitive evolution.
Collapse
|
46
|
Otero Coronel S, Martorell N, Beron de Astrada M, Medan V. Stimulus Contrast Information Modulates Sensorimotor Decision Making in Goldfish. Front Neural Circuits 2020; 14:23. [PMID: 32547371 PMCID: PMC7270408 DOI: 10.3389/fncir.2020.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Animal survival relies on environmental information gathered by their sensory systems. We found that contrast information of a looming stimulus biases the type of defensive behavior that goldfish (Carassius auratus) perform. Low-contrast looms only evoke subtle alarm reactions whose probability is independent of contrast. As looming contrast increases, the probability of eliciting a fast escape maneuver, the C-start response, increases dramatically. Contrast information also modulates the decision of when to escape. Although response latency is known to depend on looming retinal size, we found that contrast acts as an additional parameter influencing this decision. When presenting progressively higher contrast stimuli, animals need shorter periods of stimulus processing to initiate the response. Our results comply with the notion that the decision to escape is a flexible process initiated with stimulus detection and followed by assessment of the perceived risk posed by the stimulus. Highly disruptive behaviors as the C-start are only observed when a multifactorial threshold that includes stimulus contrast is surpassed.
Collapse
Affiliation(s)
- Santiago Otero Coronel
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Martorell
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Beron de Astrada
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Violeta Medan
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Sato N, Shidara H, Ogawa H. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci Rep 2019; 9:18112. [PMID: 31792301 PMCID: PMC6889515 DOI: 10.1038/s41598-019-54555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
48
|
Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA. Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLoS Biol 2019; 17:e3000480. [PMID: 31613896 PMCID: PMC6793939 DOI: 10.1371/journal.pbio.3000480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system.
Collapse
Affiliation(s)
- Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, Maryland, United States of America
| | - Kathryn M. Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Sadie A. Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Kevin L. Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| |
Collapse
|
49
|
Domenici P, Hale ME. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J Exp Biol 2019; 222:222/18/jeb166009. [DOI: 10.1242/jeb.166009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The study of fish escape responses has provided important insights into the accelerative motions and fast response times of these animals. In addition, the accessibility of the underlying neural circuits has made the escape response a fundamental model in neurobiology. Fish escape responses were originally viewed as highly stereotypic all-or-none behaviours. However, research on a wide variety of species has shown considerable taxon-specific and context-dependent variability in the kinematics and neural control of escape. In addition, escape-like motions have been reported: these resemble escape responses kinematically, but occur in situations that do not involve a response to a threatening stimulus. This Review focuses on the diversity of escape responses in fish by discussing recent work on: (1) the types of escape responses as defined by kinematic analysis (these include C- and S-starts, and single- versus double-bend responses); (2) the diversity of neuromuscular control; (3) the variability of escape responses in terms of behaviour and kinematics within the context of predator−prey interactions; and (4) the main escape-like motions observed in various species. Here, we aim to integrate recent knowledge on escape responses and highlight rich areas for research. Rapidly developing approaches for studying the kinematics of swimming motion both in the lab and within the natural environment provide new avenues for research on these critical and common behaviours.
Collapse
Affiliation(s)
- Paolo Domenici
- Organismal Biology Laboratory, IAS-CNR Località Sa Mardini, Torregrande, Oristano 09170, Italy
| | - Melina E. Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|