1
|
Han X, Bonin V. Higher-order cortical and thalamic pathways shape visual processing streams in the mouse cortex. Curr Biol 2024; 34:5671-5684.e6. [PMID: 39566501 DOI: 10.1016/j.cub.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Mammalian visual functions rely on distributed processing across interconnected cortical and subcortical regions. In higher-order visual areas (HVAs), visual features are processed in specialized streams that integrate feedforward and higher-order inputs from intracortical and thalamocortical pathways. However, the precise circuit organization responsible for HVA specialization remains unclear. We investigated the cellular architecture of primary visual cortex (V1) and higher-order visual pathways in the mouse, focusing on their roles in shaping visual representations. Using in vivo functional imaging and neural circuit tracing, we found that HVAs preferentially receive inputs from both V1 and higher-order pathways tuned to similar spatiotemporal properties, with the strongest selectivity seen in layer 2/3 neurons. These neurons exhibit target-specific tuning and sublaminar specificity in their projections, reflecting cell-type-specific visual information flow. In contrast, HVA layer 5 pathways nonspecifically broadcast visual signals across cortical areas, suggesting a role in distributing HVA outputs. Additionally, thalamocortical pathways from the lateral posterior thalamic nucleus (LP) provide highly specific, nearly non-overlapping visual inputs to HVAs, complementing intracortical inputs and contributing to input functional diversity. Our findings suggest that the convergence of laminar and cell-type-specific pathways V1 and higher-order intracortical and thalamocortical pathways plays a key role in shaping the functional specialization and diversity of HVAs.
Collapse
Affiliation(s)
- Xu Han
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Dias RF, Rajan R, Baeta M, Belbut B, Marques T, Petreanu L. Visual experience reduces the spatial redundancy between cortical feedback inputs and primary visual cortex neurons. Neuron 2024; 112:3329-3342.e7. [PMID: 39137776 DOI: 10.1016/j.neuron.2024.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024]
Abstract
The role of experience in the organization of cortical feedback (FB) remains unknown. We measured the effects of manipulating visual experience on the retinotopic specificity of supragranular and infragranular projections from the lateromedial (LM) visual area to layer (L)1 of the mouse primary visual cortex (V1). LM inputs were, on average, retinotopically matched with V1 neurons in normally and dark-reared mice, but visual exposure reduced the fraction of spatially overlapping inputs to V1. FB inputs from L5 conveyed more surround information to V1 than those from L2/3. The organization of LM inputs from L5 depended on their orientation preference and was disrupted by dark rearing. These observations were recapitulated by a model where visual experience minimizes receptive field overlap between LM inputs and V1 neurons. Our results provide a mechanism for the dependency of surround modulations on visual experience and suggest how expected interarea coactivation patterns are learned in cortical circuits.
Collapse
Affiliation(s)
- Rodrigo F Dias
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Radhika Rajan
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Beatriz Belbut
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Tiago Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
3
|
Ciceri S, Oude Lohuis MN, Rottschäfer V, Pennartz CMA, Avitabile D, van Gaal S, Olcese U. The Neural and Computational Architecture of Feedback Dynamics in Mouse Cortex during Stimulus Report. eNeuro 2024; 11:ENEURO.0191-24.2024. [PMID: 39260892 PMCID: PMC11444237 DOI: 10.1523/eneuro.0191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024] Open
Abstract
Conscious reportability of visual input is associated with a bimodal neural response in the primary visual cortex (V1): an early-latency response coupled to stimulus features and a late-latency response coupled to stimulus report or detection. This late wave of activity, central to major theories of consciousness, is thought to be driven by the prefrontal cortex (PFC), responsible for "igniting" it. Here we analyzed two electrophysiological studies in mice performing different stimulus detection tasks and characterized neural activity profiles in three key cortical regions: V1, posterior parietal cortex (PPC), and PFC. We then developed a minimal network model, constrained by known connectivity between these regions, reproducing the spatiotemporal propagation of visual- and report-related activity. Remarkably, while PFC was indeed necessary to generate report-related activity in V1, this occurred only through the mediation of PPC. PPC, and not PFC, had the final veto in enabling the report-related late wave of V1 activity.
Collapse
Affiliation(s)
- Simone Ciceri
- Institute for Theoretical Physics, Utrecht University, Utrecht 3584CC, Netherlands
| | - Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden 2333CA, Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam 1098XG, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Daniele Avitabile
- Amsterdam Center for Dynamics and Computation, Mathematics Department, Vrije Universiteit Amsterdam, Amsterdam 1081HV, Netherlands
- Mathneuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis 06902, France
- Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081HV, Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018WT, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| |
Collapse
|
4
|
Tang Y, Gervais C, Moffitt R, Nareddula S, Zimmermann M, Nadew YY, Quinn CJ, Saldarriaga V, Edens P, Chubykin AA. Visual experience induces 4-8 Hz synchrony between V1 and higher-order visual areas. Cell Rep 2023; 42:113482. [PMID: 37999977 PMCID: PMC10790627 DOI: 10.1016/j.celrep.2023.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Visual perceptual experience induces persistent 4-8 Hz oscillations in the mouse primary visual cortex (V1), encoding visual familiarity. Recent studies suggest that higher-order visual areas (HVAs) are functionally specialized and segregated into information streams processing distinct visual features. However, whether visual memories are processed and stored within the distinct streams is not understood. We report here that V1 and lateromedial (LM), but not V1 and anterolateral, become more phase synchronized in 4-8 Hz after the entrainment of visual stimulus that maximally induces responses in LM. Directed information analysis reveals changes in the top-down functional connectivity between V1 and HVAs. Optogenetic inactivation of LM reduces post-stimulus oscillation peaks in V1 and impairs visual discrimination behavior. Our results demonstrate that 4-8 Hz familiarity-evoked oscillations are specific for the distinct visual features and are present in the corresponding HVAs, where they may be used for the inter-areal communication with V1 during memory-related behaviors.
Collapse
Affiliation(s)
- Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Catherine Gervais
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rylann Moffitt
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Zimmermann
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yididiya Y Nadew
- Department of Computer Sciences, Iowa State University, Ames, IA 50011, USA
| | | | - Violeta Saldarriaga
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Yu H, Chen S, Ye Z, Zhang Q, Tu Y, Hua T. Top-down influence of areas 21a and 7 differently affects the surround suppression of V1 neurons in cats. Cereb Cortex 2023; 33:11047-11059. [PMID: 37724432 DOI: 10.1093/cercor/bhad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Surround suppression (SS) is a phenomenon whereby a neuron's response to stimuli in its central receptive field (cRF) is suppressed by stimuli extending to its surround receptive field (sRF). Recent evidence show that top-down influence contributed to SS in the primary visual cortex (V1). However, how the top-down influence from different high-level cortical areas affects SS in V1 has not been comparatively observed. The present study applied transcranial direct current stimulation (tDCS) to modulate the neural activity in area 21a (A21a) and area 7 (A7) of cats and examined the changes in the cRF and sRF of V1 neurons. We found that anode-tDCS at A21a reduced V1 neurons' cRF size and increased their response to visual stimuli in cRF, causing an improved SS strength. By contrast, anode-tDCS at A7 increased V1 neurons' sRF size and response to stimuli in cRF, also enhancing the SS. Modeling analysis based on DoG function indicated that the increased SS of V1 neurons after anode-tDCS at A21a could be explained by a center-only mechanism, whereas the improved SS after anode-tDCS at A7 might be mediated through a combined center and surround mechanism. In conclusion, A21a and A7 may affect the SS of V1 neurons through different mechanisms.
Collapse
Affiliation(s)
- Hao Yu
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
- School of Basic Medical Sciences, Wannan Medical College, West Wenchang Road, Yijiang District, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Beijing East Road, Jinghu District, Wuhu, Anhui 241000, China
| |
Collapse
|
6
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Ye Z, Ding J, Tu Y, Zhang Q, Chen S, Yu H, Sun Q, Hua T. Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats. Front Behav Neurosci 2023; 17:1061980. [PMID: 36844652 PMCID: PMC9944033 DOI: 10.3389/fnbeh.2023.1061980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
How top-down influence affects behavioral detection of visual signals and neuronal response sensitivity in the primary visual cortex (V1) remains poorly understood. This study examined both behavioral performance in stimulus orientation identification and neuronal response sensitivity to stimulus orientations in the V1 of cat before and after top-down influence of area 7 (A7) was modulated by non-invasive transcranial direct current stimulation (tDCS). Our results showed that cathode (c) but not sham (s) tDCS in A7 significantly increased the behavioral threshold in identifying stimulus orientation difference, which effect recovered after the tDCS effect vanished. Consistently, c-tDCS but not s-tDCS in A7 significantly decreased the response selectivity bias of V1 neurons for stimulus orientations, which effect could recover after withdrawal of the tDCS effect. Further analysis showed that c-tDCS induced reduction of V1 neurons in response selectivity was not resulted from alterations of neuronal preferred orientation, nor of spontaneous activity. Instead, c-tDCS in A7 significantly lowered the visually-evoked response, especially the maximum response of V1 neurons, which caused a decrease in response selectivity and signal-to-noise ratio. By contrast, s-tDCS exerted no significant effect on the responses of V1 neurons. These results indicate that top-down influence of A7 may enhance behavioral identification of stimulus orientations by increasing neuronal visually-evoked response and response selectivity in the V1.
Collapse
Affiliation(s)
- Zheng Ye
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,School of Basic Medical, Wannan Medical College, Wuhu, Anhui, China
| | - Yanni Tu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiuyu Zhang
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingyan Sun
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,*Correspondence: Tianmiao Hua,
| |
Collapse
|
8
|
Reynaert B, Morales C, Mpodozis J, Letelier JC, Marín GJ. A blinking focal pattern of re-entrant activity in the avian tectum. Curr Biol 2023; 33:1-14.e4. [PMID: 36446352 DOI: 10.1016/j.cub.2022.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.
Collapse
Affiliation(s)
- Bryan Reynaert
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.
| |
Collapse
|
9
|
Wang H, Dey O, Lagos WN, Callaway EM. Diversity in spatial frequency, temporal frequency, and speed tuning across mouse visual cortical areas and layers. J Comp Neurol 2022; 530:3226-3247. [PMID: 36070574 PMCID: PMC9588602 DOI: 10.1002/cne.25404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
The mouse visual system consists of several visual cortical areas thought to be specialized for different visual features and/or tasks. Previous studies have revealed differences between primary visual cortex (V1) and other higher visual areas, namely, anterolateral (AL) and posteromedial (PM), and their tuning preferences for spatial and temporal frequency. However, these differences have primarily been characterized using methods that are biased toward superficial layers of cortex, such as two-photon calcium imaging. Fewer studies have investigated cell types in deeper layers of these areas and their tuning preferences. Because superficial versus deep-layer neurons and different types of deep-layer neurons are known to have different feedforward and feedback inputs and outputs, comparing the tuning preferences of these groups is important for understanding cortical visual information processing. In this study, we used extracellular electrophysiology and two-photon calcium imaging targeted toward two different layer 5 cell classes to characterize their tuning properties in V1, AL, and PM. We find that deep-layer neurons, similar to superficial layer neurons, are also specialized for different spatial and temporal frequencies, with the strongest differences between AL and V1, and AL and PM, but not V1 and PM. However, we note that the deep-layer neuron populations preferred a larger range of SFs and TFs compared to previous studies. We also find that extratelencephalically projecting layer 5 neurons are more direction selective than intratelencephalically projecting layer 5 neurons.
Collapse
Affiliation(s)
- Helen Wang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oyshi Dey
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Willian N. Lagos
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M. Callaway
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Modulation of top-down influence affects trafficking of glutamatergic receptors in the primary visual cortex. Biochem Biophys Res Commun 2022; 632:17-23. [DOI: 10.1016/j.bbrc.2022.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
|
11
|
Sihn D, Kim SP. Spatio-Temporally Efficient Coding Assigns Functions to Hierarchical Structures of the Visual System. Front Comput Neurosci 2022; 16:890447. [PMID: 35694611 PMCID: PMC9184804 DOI: 10.3389/fncom.2022.890447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hierarchical structures constitute a wide array of brain areas, including the visual system. One of the important questions regarding visual hierarchical structures is to identify computational principles for assigning functions that represent the external world to hierarchical structures of the visual system. Given that visual hierarchical structures contain both bottom-up and top-down pathways, the derived principles should encompass these bidirectional pathways. However, existing principles such as predictive coding do not provide an effective principle for bidirectional pathways. Therefore, we propose a novel computational principle for visual hierarchical structures as spatio-temporally efficient coding underscored by the efficient use of given resources in both neural activity space and processing time. This coding principle optimises bidirectional information transmissions over hierarchical structures by simultaneously minimising temporal differences in neural responses and maximising entropy in neural representations. Simulations demonstrated that the proposed spatio-temporally efficient coding was able to assign the function of appropriate neural representations of natural visual scenes to visual hierarchical structures. Furthermore, spatio-temporally efficient coding was able to predict well-known phenomena, including deviations in neural responses to unlearned inputs and bias in preferred orientations. Our proposed spatio-temporally efficient coding may facilitate deeper mechanistic understanding of the computational processes of hierarchical brain structures.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
12
|
Ding J, Ye Z, Xu F, Hu X, Yu H, Zhang S, Tu Y, Zhang Q, Sun Q, Hua T, Lu ZL. Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats. iScience 2022; 25:103683. [PMID: 35059603 PMCID: PMC8760559 DOI: 10.1016/j.isci.2021.103683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023] Open
Abstract
To explore the relative contributions of higher-order and primary visual cortex (V1) to visual perception, we compared cats' behavioral and V1 neuronal contrast sensitivity functions (CSF) and threshold versus external noise contrast (TvC) functions before and after top-down influence of area 7 (A7) was modulated with transcranial direct current stimulation (tDCS). We found that suppressing top-down influence of A7 with cathode-tDCS, but not sham-tDCS, reduced behavioral and neuronal contrast sensitivity in the same range of spatial frequencies and increased behavioral and neuronal contrast thresholds in the same range of external noise levels. The neuronal CSF and TvC functions were highly correlated with their behavioral counterparts both before and after the top-down suppression. Analysis of TvC functions using the Perceptual Template Model (PTM) indicated that top-down influence of A7 increased both behavioral and V1 neuronal contrast sensitivity by reducing internal additive noise and the impact of external noise. Top-down suppression lowers both behavioral and V1 neuronal CSF functions Top-down suppression raises both behavioral and V1 neuronal TvC functions The neuronal CSFs and TvCs are highly correlated with their behavioral counterparts Top-down influence lowers internal additive noise and impact of external noise in V1
Collapse
Affiliation(s)
- Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fei Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiangmei Hu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhong-Lin Lu
- Divison of Arts and Sciences, NYU Shanghai, Shanghai 200122, China.,Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
13
|
Zeng H, Chen S, Fink GR, Weidner R. Information Exchange between Cortical Areas: The Visual System as a Model. Neuroscientist 2022; 29:370-384. [PMID: 35057664 DOI: 10.1177/10738584211069061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As nearly all brain functions, perception, motion, and higher-order cognitive functions require coordinated neural information processing within distributed cortical networks. Over the past decades, new theories and techniques emerged that advanced our understanding of how information is transferred between cortical areas. This review surveys critical aspects of interareal information exchange. We begin by examining the brain’s structural connectivity, which provides the basic framework for interareal communication. We then illustrate information exchange between cortical areas using the visual system as an example. Next, well-studied and newly proposed theories that may underlie principles of neural communication are reviewed, highlighting recent work that offers new perspectives on interareal information exchange. We finally discuss open questions in the study of the neural mechanisms underlying interareal information exchange.
Collapse
Affiliation(s)
- Hang Zeng
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Siyi Chen
- Ludwig-Maximilians-Universität München, München, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne, Germany
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| |
Collapse
|
14
|
Huang T, Zhang R, Zhang L, Xu P, Shao Y, Yang W, Chen Z, Chen X, Dai N. Energy-adaptive resistive switching with controllable thresholds in insulator–metal transition. RSC Adv 2022; 12:35579-35586. [DOI: 10.1039/d2ra06866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Adaptive energy-scaling resistive switching with active response and self-regulation via controllable insulator–metal transition shows promise in energy-efficient devices.
Collapse
Affiliation(s)
- Tiantian Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lepeng Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Peiran Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunkai Shao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wanli Yang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhimin Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Dai
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Masaki Y, Yamaguchi M, Takeuchi RF, Osakada F. Monosynaptic rabies virus tracing from projection-targeted single neurons. Neurosci Res 2022; 178:20-32. [DOI: 10.1016/j.neures.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
16
|
Resulaj A. Projections of the Mouse Primary Visual Cortex. Front Neural Circuits 2021; 15:751331. [PMID: 34867213 PMCID: PMC8641241 DOI: 10.3389/fncir.2021.751331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lesion or damage to the primary visual cortex (V1) results in a profound loss of visual perception in humans. Similarly, in mice, optogenetic silencing of V1 profoundly impairs discrimination of orientated gratings. V1 is thought to have such a critical role in perception in part due to its position in the visual processing hierarchy. It is the first brain area in the neocortex to receive visual input, and it distributes this information to more than 18 brain areas. Here I review recent advances in our understanding of the organization and function of the V1 projections in the mouse. This progress is in part due to new anatomical and viral techniques that allow for efficient labeling of projection neurons. In the final part of the review, I conclude by highlighting challenges and opportunities for future research.
Collapse
Affiliation(s)
- Arbora Resulaj
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Oude Lohuis MN, Canton AC, Pennartz CMA, Olcese U. Higher Order Visual Areas Enhance Stimulus Responsiveness in Mouse Primary Visual Cortex. Cereb Cortex 2021; 32:3269-3288. [PMID: 34849636 PMCID: PMC9340391 DOI: 10.1093/cercor/bhab414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Over the past few years, the various areas that surround the primary visual cortex (V1) in the mouse have been associated with many functions, ranging from higher order visual processing to decision-making. Recently, some studies have shown that higher order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here, we studied how in vivo optogenetic inactivation of two higher order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher order visual areas similarly modulate early visual processing. In particular, these areas enhance stimulus responsiveness in the primary visual cortex, by more strongly amplifying weaker compared with stronger sensory-evoked responses (for instance specifically amplifying responses to stimuli not moving along the direction preferred by individual neurons) and by facilitating responses to stimuli entering the receptive field of single neurons. Such enhancement, however, comes at the expense of orientation and direction selectivity, which increased when the selected higher order visual areas were inactivated. Thus, feedback from higher order visual areas selectively amplifies weak sensory-evoked V1 responses, which may enable more robust processing of visual stimuli.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Alexis Cervan Canton
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Ding J, Hu X, Xu F, Yu H, Ye Z, Zhang S, Pan H, Pan D, Tu Y, Zhang Q, Sun Q, Hua T. Suppression of top-down influence decreases neuronal excitability and contrast sensitivity in the V1 cortex of cat. Sci Rep 2021; 11:16034. [PMID: 34362965 PMCID: PMC8346540 DOI: 10.1038/s41598-021-95407-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
How top-down influence affects neuronal activity and information encoding in the primary visual cortex (V1) remains elusive. This study examined changes of neuronal excitability and contrast sensitivity in cat V1 cortex after top-down influence of area 7 (A7) was modulated by transcranial direct current stimulation (tDCS). The neuronal excitability in V1 cortex was evaluated by visually evoked field potentials (VEPs), and contrast sensitivity (CS) was assessed by the inverse of threshold contrast of neurons in response to visual stimuli at different performance accuracy. We found that the amplitude of VEPs in V1 cortex lowered after top-down influence suppression with cathode-tDCS in A7, whereas VEPs in V1 did not change after sham-tDCS in A7 and nonvisual cortical area 5 (A5) or cathode-tDCS in A5 and lesioned A7. Moreover, the mean CS of V1 neurons decreased after cathode-tDCS but not sham-tDCS in A7, which could recover after tDCS effect vanished. Comparisons of neuronal contrast-response functions showed that cathode-tDCS increased the stimulus contrast required to generate the half-maximum response, with a weakly-correlated reduction in maximum response but not baseline response. Therefore, top-down influence of A7 enhanced neuronal excitability in V1 cortex and improved neuronal contrast sensitivity by both contrast gain and response gain.
Collapse
Affiliation(s)
- Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xiangmei Hu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Fei Xu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
19
|
Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annu Rev Neurosci 2021; 44:517-546. [PMID: 33914591 PMCID: PMC9925090 DOI: 10.1146/annurev-neuro-102320-085825] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.
Collapse
Affiliation(s)
- Cristopher M. Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Massimo Scanziani
- Department of Physiology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
20
|
Kirchberger L, Mukherjee S, Schnabel UH, van Beest EH, Barsegyan A, Levelt CN, Heimel JA, Lorteije JAM, van der Togt C, Self MW, Roelfsema PR. The essential role of recurrent processing for figure-ground perception in mice. SCIENCE ADVANCES 2021; 7:eabe1833. [PMID: 34193411 PMCID: PMC8245045 DOI: 10.1126/sciadv.abe1833] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/17/2021] [Indexed: 05/15/2023]
Abstract
The segregation of figures from the background is an important step in visual perception. In primary visual cortex, figures evoke stronger activity than backgrounds during a delayed phase of the neuronal responses, but it is unknown how this figure-ground modulation (FGM) arises and whether it is necessary for perception. Here, we show, using optogenetic silencing in mice, that the delayed V1 response phase is necessary for figure-ground segregation. Neurons in higher visual areas also exhibit FGM and optogenetic silencing of higher areas reduced FGM in V1. In V1, figures elicited higher activity of vasoactive intestinal peptide-expressing (VIP) interneurons than the background, whereas figures suppressed somatostatin-positive interneurons, resulting in an increased activation of pyramidal cells. Optogenetic silencing of VIP neurons reduced FGM in V1, indicating that disinhibitory circuits contribute to FGM. Our results provide insight into how lower and higher areas of the visual cortex interact to shape visual perception.
Collapse
Affiliation(s)
- Lisa Kirchberger
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Sreedeep Mukherjee
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Ulf H Schnabel
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Areg Barsegyan
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - J Alexander Heimel
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Jeannette A M Lorteije
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, 1098XH Amsterdam, Netherlands
| | - Chris van der Togt
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
21
|
Morimoto MM, Uchishiba E, Saleem AB. Organization of feedback projections to mouse primary visual cortex. iScience 2021; 24:102450. [PMID: 34113813 PMCID: PMC8169797 DOI: 10.1016/j.isci.2021.102450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down, context-dependent modulation of visual processing has been a topic of wide interest, including in mouse primary visual cortex (V1). However, the organization of feedback projections to V1 is relatively unknown. Here, we investigated inputs to mouse V1 by injecting retrograde tracers. We developed a software pipeline that maps labeled cell bodies to corresponding brain areas in the Allen Reference Atlas. We identified more than 24 brain areas that provide inputs to V1 and quantified the relative strength of their projections. We also assessed the organization of the projections, based on either the organization of cell bodies in the source area (topography) or the distribution of projections across V1 (bias). Projections from most higher visual and some nonvisual areas to V1 showed both topography and bias. Such organization of feedback projections to V1 suggests that parts of the visual field are differentially modulated by context, which can be ethologically relevant for a navigating animal.
Collapse
Affiliation(s)
- Mai M. Morimoto
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Emi Uchishiba
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
22
|
Salinas KJ, Huh CYL, Zeitoun JH, Gandhi SP. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience. J Neurosci 2021; 41:1470-1488. [PMID: 33376158 PMCID: PMC7896022 DOI: 10.1523/jneurosci.0548-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual cortex contains multiple retinotopically defined areas that process distinct features of the visual scene. Little is known about what guides the functional differentiation of visual cortical areas during development. Recent studies in mice have revealed that visual input from the two eyes provides spatiotemporally distinct signals to primary visual cortex (V1), such that contralateral eye-dominated V1 neurons respond to higher spatial frequencies than ipsilateral eye-dominated neurons. To test whether binocular visual input drives the differentiation of visual cortical areas, we used two-photon calcium imaging to characterize the effects of juvenile monocular deprivation (MD) on the responses of neurons in V1 and two higher visual areas, LM (lateromedial) and PM (posteromedial). In adult mice of either sex, we find that MD prevents the emergence of distinct spatiotemporal tuning in V1, LM, and PM. We also find that, within each of these areas, MD reorganizes the distinct spatiotemporal tuning properties driven by the two eyes. Moreover, we find a relationship between speed tuning and ocular dominance in all three areas that MD preferentially disrupts in V1, but not in LM or PM. Together, these results reveal that balanced binocular vision during development is essential for driving the functional differentiation of visual cortical areas. The higher visual areas of mouse visual cortex may provide a useful platform for investigating the experience-dependent mechanisms that set up the specialized processing within neocortical areas during postnatal development.SIGNIFICANCE STATEMENT Little is known about the factors guiding the emergence of functionally distinct areas in the brain. Using in vivo Ca2+ imaging, we recorded visually evoked activity from cells in V1 and higher visual areas LM (lateromedial) and PM (posteromedial) of mice. Neurons in these areas normally display distinct spatiotemporal tuning properties. We found that depriving one eye of normal input during development prevents the functional differentiation of visual areas. Deprivation did not disrupt the degree of speed tuning, a property thought to emerge in higher visual areas. Thus, some properties of visual cortical neurons are shaped by binocular experience, while others are resistant. Our study uncovers the fundamental role of binocular experience in the formation of distinct areas in visual cortex.
Collapse
Affiliation(s)
- Kirstie J Salinas
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Carey Y L Huh
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Jack H Zeitoun
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
23
|
Young H, Belbut B, Baeta M, Petreanu L. Laminar-specific cortico-cortical loops in mouse visual cortex. eLife 2021; 10:e59551. [PMID: 33522479 PMCID: PMC7877907 DOI: 10.7554/elife.59551] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many theories propose recurrent interactions across the cortical hierarchy, but it is unclear if cortical circuits are selectively wired to implement looped computations. Using subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared feedforward (FF) or feedback (FB) cortico-cortical (CC) synaptic input to cells projecting back to the input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons than with other projection types in layer (L)5 and L6, but not in L2/3, resulting in selective modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that CC connections are selectively wired to form monosynaptic excitatory loops and support a differential role of supragranular and infragranular neurons in hierarchical recurrent computations.
Collapse
Affiliation(s)
- Hedi Young
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Beatriz Belbut
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Margarida Baeta
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| |
Collapse
|
24
|
Federer F, Ta'afua S, Merlin S, Hassanpour MS, Angelucci A. Stream-specific feedback inputs to the primate primary visual cortex. Nat Commun 2021; 12:228. [PMID: 33431862 PMCID: PMC7801467 DOI: 10.1038/s41467-020-20505-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, here we show that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. This suggests that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle potentially extending to feedback pathways in other sensory systems.
Collapse
Affiliation(s)
- Frederick Federer
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Seminare Ta'afua
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84132, USA
| | - Sam Merlin
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW, 2560, Australia
| | - Mahlega S Hassanpour
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
25
|
Pan H, Zhang S, Pan D, Ye Z, Yu H, Ding J, Wang Q, Sun Q, Hua T. Characterization of Feedback Neurons in the High-Level Visual Cortical Areas That Project Directly to the Primary Visual Cortex in the Cat. Front Neuroanat 2021; 14:616465. [PMID: 33488364 PMCID: PMC7820340 DOI: 10.3389/fnana.2020.616465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat's high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II-III, IV, V, and VI, with a higher proportion in layer II-III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support "reverse hierarchy theory" or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.
Collapse
Affiliation(s)
- Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qin Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
26
|
Flossmann T, Rochefort NL. Spatial navigation signals in rodent visual cortex. Curr Opin Neurobiol 2020; 67:163-173. [PMID: 33360769 DOI: 10.1016/j.conb.2020.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
During navigation, animals integrate sensory information with body movements to guide actions. The impact of both navigational and movement-related signals on cortical visual information processing remains largely unknown. We review recent studies in awake rodents that have revealed navigation-related signals in the primary visual cortex (V1) including speed, distance travelled and head-orienting movements. Both cortical and subcortical inputs convey self-motion related information to V1 neurons: for example, top-down inputs from secondary motor and retrosplenial cortices convey information about head movements and spatial expectations. Within V1, subtypes of inhibitory neurons are critical for the integration of navigation-related and visual signals. We conclude with potential functional roles of navigation-related signals in V1 including gain control, motor error signals and predictive coding.
Collapse
Affiliation(s)
- Tom Flossmann
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom.
| |
Collapse
|
27
|
Pan D, Pan H, Zhang S, Yu H, Ding J, Ye Z, Hua T. Top-down influence affects the response adaptation of V1 neurons in cats. Brain Res Bull 2020; 167:89-98. [PMID: 33333174 DOI: 10.1016/j.brainresbull.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The visual system lowers its perceptual sensitivity to a prolonged presentation of the same visual signal. This brain plasticity, called visual adaptation, is generally attributed to the response adaptation of neurons in the visual cortex. Although well-studied in the neurons of the primary visual cortex (V1), the contribution of high-level visual cortical regions to the response adaptation of V1 neurons is unclear. In the present study, we measured the response adaptation strength of V1 neurons before and after the top-down influence of the area 21a (A21a), a higher-order visual cortex homologous to the primate V4 area, was modulated with a noninvasive tool of transcranial direct current stimulation (tDCS). Our results showed that the response adaptation of V1 neurons enhanced significantly after applying anode (a-) tDCS in A21a when compared with that before a-tDCS, whereas the response adaptation of V1 neurons weakened after cathode (c-) tDCS relative to before c-tDCS in A21a. By contrast, sham (s-) tDCS in A21a had no significant impact on the response adaptation of V1 neurons. Further analysis indicated that a-tDCS in A21a significantly increased both the initial response (IR) of V1 neurons to the first several (five) trails of visual stimulation and the plateau response (PR) to the prolonged visual stimulation; the increase in PR was lower than in IR, which caused an enhancement in response adaptation. Conversely, c-tDCS significantly decreased both IR and PR of V1 neurons; the reduction in PR was smaller than in IR, which resulted in a weakness in response adaptation. Furthermore, the tDCS-induced changes of V1 neurons in response and response adaptation could recover after tDCS effect vanished, but did not occur after the neuronal activity in A21a was silenced by electrolytic lesions. These results suggest that the top-down influence of A21a may alter the response adaptation of V1 neurons through activation of local inhibitory circuitry, which enhances network inhibition in the V1 area upon an increased top-down input, weakens inhibition upon a decreased top-down input, and thus maintains homeostasis of V1 neurons in response to the long-presenting visual signals.
Collapse
Affiliation(s)
- Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
28
|
Nabel EM, Garkun Y, Koike H, Sadahiro M, Liang A, Norman KJ, Taccheri G, Demars MP, Im S, Caro K, Lopez S, Bateh J, Hof PR, Clem RL, Morishita H. Adolescent frontal top-down neurons receive heightened local drive to establish adult attentional behavior in mice. Nat Commun 2020; 11:3983. [PMID: 32770078 PMCID: PMC7414856 DOI: 10.1038/s41467-020-17787-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Frontal top-down cortical neurons projecting to sensory cortical regions are well-positioned to integrate long-range inputs with local circuitry in frontal cortex to implement top-down attentional control of sensory regions. How adolescence contributes to the maturation of top-down neurons and associated local/long-range input balance, and the establishment of attentional control is poorly understood. Here we combine projection-specific electrophysiological and rabies-mediated input mapping in mice to uncover adolescence as a developmental stage when frontal top-down neurons projecting from the anterior cingulate to visual cortex are highly functionally integrated into local excitatory circuitry and have heightened activity compared to adulthood. Chemogenetic suppression of top-down neuron activity selectively during adolescence, but not later periods, produces long-lasting visual attentional behavior deficits, and results in excessive loss of local excitatory inputs in adulthood. Our study reveals an adolescent sensitive period when top-down neurons integrate local circuits with long-range connectivity to produce attentional behavior.
Collapse
Affiliation(s)
- Elisa M Nabel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Hiroyuki Koike
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Masato Sadahiro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ana Liang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kevin J Norman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Giulia Taccheri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Susanna Im
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Keaven Caro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Sarah Lopez
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Julia Bateh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Roger L Clem
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
29
|
Apparent Motion Induces Activity Suppression in Early Visual Cortex and Impairs Visual Detection. J Neurosci 2020; 40:5471-5479. [PMID: 32513825 DOI: 10.1523/jneurosci.0563-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022] Open
Abstract
Apparent motion (AM) is induced when two stationary visual stimuli are presented in alternating sequence. Intriguingly, AM leads to an impaired detectability of stimuli along the AM path (i.e., AM-induced masking). It has been hypothesized that AM triggers an internal representation of a moving object in early visual cortex, which competes with stimulus-evoked representations of visual stimuli on the motion path in early visual cortex of 25 human adults (16 female). We tested this hypothesis by measuring BOLD responses in early visual cortex during the process of AM-induced masking, using fMRI and population receptive field methods. Surprisingly, and counter to our hypothesis, we showed that AM suppressed, rather than increased, BOLD responses along early visual (V1 and V2) representations of the AM path, including regions that were not directly activated by the AM inducer stimuli. This activity suppression of the visual response predicted the subsequent reduction in detectability of the target that appeared in the middle of the AM path. Our data thereby provide direct empirical evidence for suppressive neural mechanisms underlying AM and suggest that illusory motion can render us blind to objects on the motion path by suppressing neural activity at the earliest cortical stages of visual perception.SIGNIFICANCE STATEMENT When two spatially distinct visual objects are presented in alternating sequence, apparent motion (AM) occurs and impairs detectability of stimuli along its path. The underlying mechanism is thought to be that increased activation in human early visual cortex evoked by AM interferes with the representation of the stimulus. Strikingly, however, we show that AM suppresses neural activity along the motion path, and the strength of activity suppression predicts the subsequent behavioral performance decrement in terms of detecting a stimulus along the AM path. Our findings provide empirical evidence for a suppressive, rather than faciliatory, mechanism underlying AM.
Collapse
|
30
|
Kim EJ, Zhang Z, Huang L, Ito-Cole T, Jacobs MW, Juavinett AL, Senturk G, Hu M, Ku M, Ecker JR, Callaway EM. Extraction of Distinct Neuronal Cell Types from within a Genetically Continuous Population. Neuron 2020; 107:274-282.e6. [PMID: 32396852 DOI: 10.1016/j.neuron.2020.04.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Single-cell transcriptomics of neocortical neurons have revealed more than 100 clusters corresponding to putative cell types. For inhibitory and subcortical projection neurons (SCPNs), there is a strong concordance between clusters and anatomical descriptions of cell types. In contrast, cortico-cortical projection neurons (CCPNs) separate into surprisingly few transcriptomic clusters, despite their diverse anatomical projection types. We used projection-dependent single-cell transcriptomic analyses and monosynaptic rabies tracing to compare mouse primary visual cortex CCPNs projecting to different higher visual areas. We find that layer 2/3 CCPNs with different anatomical projections differ systematically in their gene expressions, despite forming only a single genetic cluster. Furthermore, these neurons receive feedback selectively from the same areas to which they project. These findings demonstrate that gene-expression analysis in isolation is insufficient to identify neuron types and have important implications for understanding the functional role of cortical feedback circuits.
Collapse
Affiliation(s)
- Euiseok J Kim
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Ito-Cole
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Matthew W Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ashley L Juavinett
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gokhan Senturk
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mo Hu
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Manching Ku
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Walsh KS, McGovern DP, Clark A, O'Connell RG. Evaluating the neurophysiological evidence for predictive processing as a model of perception. Ann N Y Acad Sci 2020; 1464:242-268. [PMID: 32147856 PMCID: PMC7187369 DOI: 10.1111/nyas.14321] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
For many years, the dominant theoretical framework guiding research into the neural origins of perceptual experience has been provided by hierarchical feedforward models, in which sensory inputs are passed through a series of increasingly complex feature detectors. However, the long-standing orthodoxy of these accounts has recently been challenged by a radically different set of theories that contend that perception arises from a purely inferential process supported by two distinct classes of neurons: those that transmit predictions about sensory states and those that signal sensory information that deviates from those predictions. Although these predictive processing (PP) models have become increasingly influential in cognitive neuroscience, they are also criticized for lacking the empirical support to justify their status. This limited evidence base partly reflects the considerable methodological challenges that are presented when trying to test the unique predictions of these models. However, a confluence of technological and theoretical advances has prompted a recent surge in human and nonhuman neurophysiological research seeking to fill this empirical gap. Here, we will review this new research and evaluate the degree to which its findings support the key claims of PP.
Collapse
Affiliation(s)
- Kevin S. Walsh
- Trinity College Institute of Neuroscience and School of PsychologyTrinity College DublinDublinIreland
| | - David P. McGovern
- Trinity College Institute of Neuroscience and School of PsychologyTrinity College DublinDublinIreland
- School of PsychologyDublin City UniversityDublinIreland
| | - Andy Clark
- Department of PhilosophyUniversity of SussexBrightonUK
- Department of InformaticsUniversity of SussexBrightonUK
| | - Redmond G. O'Connell
- Trinity College Institute of Neuroscience and School of PsychologyTrinity College DublinDublinIreland
| |
Collapse
|
32
|
Top-Down Feedback Controls the Cortical Representation of Illusory Contours in Mouse Primary Visual Cortex. J Neurosci 2019; 40:648-660. [PMID: 31792152 DOI: 10.1523/jneurosci.1998-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023] Open
Abstract
Visual systems have evolved to recognize and extract features from complex scenes using limited sensory information. Contour perception is essential to this process and can occur despite breaks in the continuity of neighboring features. Such robustness of the animal visual system to degraded or occluded shapes may also give rise to an interesting phenomenon of optical illusions. These illusions provide a great opportunity to decipher neural computations underlying contour integration and object detection. Kanizsa illusory contours have been shown to evoke responses in the early visual cortex despite the lack of direct receptive field activation. Recurrent processing between visual areas has been proposed to be involved in this process. However, it is unclear whether higher visual areas directly contribute to the generation of illusory responses in the early visual cortex. Using behavior, in vivo electrophysiology, and optogenetics, we first show that the primary visual cortex (V1) of male mice responds to Kanizsa illusory contours. Responses to Kanizsa illusions emerge later than the responses to the contrast-defined real contours in V1. Second, we demonstrate that illusory responses are orientation-selective. Finally, we show that top-down feedback controls the neural correlates of illusory contour perception in V1. Our results suggest that higher-order visual areas may fill in the missing information in the early visual cortex necessary for illusory contour perception.SIGNIFICANCE STATEMENT Perception of the Kanizsa illusory contours is impaired in neurodevelopmental disorders such as schizophrenia, autism, and Williams syndrome. However, the mechanism of the illusory contour perception is poorly understood. Here we describe the behavioral and neural correlates of Kanizsa illusory contours perception in mice, a genetically tractable model system. We show that top-down feedback controls the neural responses to Kanizsa illusion in V1. To our knowledge, this is the first description of the neural correlates of the Kanizsa illusion in mice and the first causal demonstration of their regulation by top-down feedback.
Collapse
|
33
|
Vangeneugden J, van Beest EH, Cohen MX, Lorteije JAM, Mukherjee S, Kirchberger L, Montijn JS, Thamizharasu P, Camillo D, Levelt CN, Roelfsema PR, Self MW, Heimel JA. Activity in Lateral Visual Areas Contributes to Surround Suppression in Awake Mouse V1. Curr Biol 2019; 29:4268-4275.e7. [PMID: 31786063 DOI: 10.1016/j.cub.2019.10.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 11/18/2022]
Abstract
Neuronal response to sensory stimuli depends on the context. The response in primary visual cortex (V1), for instance, is reduced when a stimulus is surrounded by a similar stimulus [1-3]. The source of this surround suppression is partially known. In mouse, local horizontal integration by somatostatin-expressing interneurons contributes to surround suppression [4]. In primates, however, surround suppression arises too quickly to come from local horizontal integration alone, and myelinated axons from higher visual areas, where cells have larger receptive fields, are thought to provide additional surround suppression [5, 6]. Silencing higher visual areas indeed decreased surround suppression in the awake primate by increasing responses to large stimuli [7, 8], although not under anesthesia [9, 10]. In smaller mammals, like mice, fast surround suppression could be possible without feedback. Recent studies revealed a small reduction in V1 responses when silencing higher areas [11, 12] but have not investigated surround suppression. To determine whether higher visual areas contribute to V1 surround suppression, even when this is not necessary for fast processing, we inhibited the areas lateral to V1, particularly the lateromedial area (LM), a possible homolog of primate V2 [13], while recording in V1 of awake and anesthetized mice. We found that part of the surround suppression depends on activity from lateral visual areas in the awake, but not anesthetized, mouse. Inhibiting the lateral visual areas specifically increased responses in V1 to large stimuli. We present a model explaining how excitatory feedback to V1 can have these suppressive effects for large stimuli.
Collapse
Affiliation(s)
- Joris Vangeneugden
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Enny H van Beest
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Michael X Cohen
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jeannette A M Lorteije
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Sreedeep Mukherjee
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Lisa Kirchberger
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jorrit S Montijn
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Premnath Thamizharasu
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Daniela Camillo
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Psychiatry Department, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Matthew W Self
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal L, Cho A, Feiner A, Feng D, Gaudreault N, Gerfen CR, Graddis N, Groblewski PA, Henry AM, Ho A, Howard R, Knox JE, Kuan L, Kuang X, Lecoq J, Lesnar P, Li Y, Luviano J, McConoughey S, Mortrud MT, Naeemi M, Ng L, Oh SW, Ouellette B, Shen E, Sorensen SA, Wakeman W, Wang Q, Wang Y, Williford A, Phillips JW, Jones AR, Koch C, Zeng H. Hierarchical organization of cortical and thalamic connectivity. Nature 2019; 575:195-202. [PMID: 31666704 PMCID: PMC8433044 DOI: 10.1038/s41586-019-1716-z] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
Abstract
The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.
Collapse
Affiliation(s)
| | | | | | | | - Hannah Choi
- Allen Institute for Brain Science, Seattle, WA, USA
- University of Washington, Department of Applied Mathematics, Seattle, WA, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Linzy Casal
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Andrew Cho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aaron Feiner
- Allen Institute for Brain Science, Seattle, WA, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex M Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiuli Kuang
- Wenzhou Medical University, Wenzhou, P. R. China
| | - Jerome Lecoq
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yaoyao Li
- Wenzhou Medical University, Wenzhou, P. R. China
| | | | | | | | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Elise Shen
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
35
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
36
|
Hishida R, Horie M, Tsukano H, Tohmi M, Yoshitake K, Meguro R, Takebayashi H, Yanagawa Y, Shibuki K. Feedback inhibition derived from the posterior parietal cortex regulates the neural properties of the mouse visual cortex. Eur J Neurosci 2019; 50:2970-2987. [PMID: 31012509 DOI: 10.1111/ejn.14424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
Feedback regulation from the higher association areas is thought to control the primary sensory cortex, contribute to the cortical processing of sensory information, and work for higher cognitive functions such as multimodal integration and attentional control. However, little is known about the underlying neural mechanisms. Here, we show that the posterior parietal cortex (PPC) persistently inhibits the activity of the primary visual cortex (V1) in mice. Activation of the PPC causes the suppression of visual responses in V1 and induces the short-term depression, which is specific to visual stimuli. In contrast, pharmacological inactivation of the PPC or disconnection of cortical pathways from the PPC to V1 results in an effect of transient enhancement of visual responses in V1. Two-photon calcium imaging demonstrated that the cortical disconnection caused V1 excitatory neurons an enhancement of visual responses and a reduction of orientation selectivity index (OSI). These results show that the PPC regulates the response properties of V1 excitatory neurons. Our findings reveal one of the functions of the PPC, which may contribute to higher brain functions in mice.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masao Horie
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kohei Yoshitake
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Reiko Meguro
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
37
|
Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane JC, McKnight DJ, Yoshizawa S, Kato HE, Ganguli S, Deisseroth K. Cortical layer-specific critical dynamics triggering perception. Science 2019; 365:eaaw5202. [PMID: 31320556 PMCID: PMC6711485 DOI: 10.1126/science.aaw5202] [Citation(s) in RCA: 364] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
Abstract
Perceptual experiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouse neocortex during visual discrimination using a red-shifted channelrhodopsin (ChRmine, discovered through structure-guided genome mining) alongside multiplexed multiphoton-holography (MultiSLM), achieving control of individually specified neurons spanning large cortical volumes with millisecond precision. Stimulating a critical number of stimulus-orientation-selective neurons drove widespread recruitment of functionally related neurons, a process enhanced by (but not requiring) orientation-discrimination task learning. Optogenetic targeting of orientation-selective ensembles elicited correct behavioral discrimination. Cortical layer-specific dynamics were apparent, as emergent neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting orientation discrimination behavior. Population dynamics emerging after optogenetic stimulation both correctly predicted behavior and resembled natural internal representations of visual stimuli at cellular resolution over volumes of cortex.
Collapse
Affiliation(s)
- James H Marshel
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy A Machado
- CNC Department, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sean Quirin
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Brandon Benson
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Kadmon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Cephra Raja
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | - Susumu Yoshizawa
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8564, Japan
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- CNC Department, Stanford University, Stanford, CA 94305, USA.
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex. Neuron 2018; 100:1313-1321.e6. [DOI: 10.1016/j.neuron.2018.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
|
39
|
Pakan JM, Francioni V, Rochefort NL. Action and learning shape the activity of neuronal circuits in the visual cortex. Curr Opin Neurobiol 2018; 52:88-97. [PMID: 29727859 PMCID: PMC6562203 DOI: 10.1016/j.conb.2018.04.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Arousal and locomotion modulate neuronal activity in primary visual cortex. Neurons in primary visual cortex respond to visuomotor mismatch. Experience shapes neuronal responses to familiar stimuli, reward and object location. Neuronal representations of visual stimuli are modulated according to the behavioural relevance of the stimuli. Neuromodulatory, top-down and thalamocortical inputs convey arousal-related and motor-related signals to primary visual cortex.
Nonsensory variables strongly influence neuronal activity in the adult mouse primary visual cortex. Neuronal responses to visual stimuli are modulated by behavioural state, such as arousal and motor activity, and are shaped by experience. This dynamic process leads to neural representations in the visual cortex that reflect stimulus familiarity, expectations of reward and object location, and mismatch between self-motion and visual-flow. The recent development of genetic tools and recording techniques in awake behaving mice has enabled the investigation of the circuit mechanisms underlying state-dependent and experience-dependent neuronal representations in primary visual cortex. These neuronal circuits involve neuromodulatory, top-down cortico-cortical and thalamocortical pathways. The functions of nonsensory signals at this early stage of visual information processing are now beginning to be unravelled.
Collapse
Affiliation(s)
- Janelle Mp Pakan
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Valerio Francioni
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, Edinburgh, United Kingdom
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, Edinburgh, United Kingdom; Simons Initiative for the Developing Brain, Edinburgh, United Kingdom.
| |
Collapse
|