1
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Hague MTJ, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. Commun Biol 2024; 7:727. [PMID: 38877196 PMCID: PMC11178894 DOI: 10.1038/s42003-024-06431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
3
|
Hague MT, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583170. [PMID: 38496649 PMCID: PMC10942406 DOI: 10.1101/2024.03.03.583170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
4
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Liu HP, Yang QY, Liu JX, Haq IU, Li Y, Zhang QY, Attia KA, Abushady AM, Liu CZ, Lv N. Host plant-mediated effects on Buchnera symbiont: implications for biological characteristics and nutritional metabolism of pea aphids ( Acyrthosiphon pisum). FRONTIERS IN PLANT SCIENCE 2023; 14:1288997. [PMID: 38126022 PMCID: PMC10731267 DOI: 10.3389/fpls.2023.1288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Introduction The pea aphid, Acyrthosiphon pisum, is a typical sap-feeding insect and an important worldwide pest. There is a primary symbiont-Buchnera aphidicola, which can synthesize and provide some essential nutrients for its host. At the same time, the hosts also can actively adjust the density of bacterial symbiosis to cope with the changes in environmental and physiological factors. However, it is still unclear how symbionts mediate the interaction between herbivorous insects' nutrient metabolism and host plants. Methods The current study has studied the effects of different host plants on the biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. This study investigated the influence of different host plants on biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. Results and discussion The titer of Buchnera was significantly higher on T. Pretense and M. officinalis, and the relative expression levels were 1.966±0.104 and 1.621±0.167, respectively. The content of soluble sugar (53.46±1.97µg/mg), glycogen (1.12±0.07µg/mg) and total energy (1341.51±39.37µg/mg) of the pea aphid on V. faba were significantly higher and showed high fecundity (143.86±11.31) and weight (10.46±0.77µg/mg). The content of total lipids was higher on P. sativum and T. pretense, which were 2.82±0.03µg/mg and 2.92±0.07µg/mg, respectively. Correlation analysis found that the difference in Buchnera titer was positively correlated with the protein content in M. officinalis and the content of total energy in T. pratense (P < 0.05). This study confirmed that host plants not only affected the biological characteristics and nutritional metabolism of pea aphids but also regulated the symbiotic density, thus interfering with the nutritional function of Buchnera. The results can provide a theoretical basis for further studies on the influence of different host plants on the development of pea aphids and other insects.
Collapse
Affiliation(s)
- Hui-ping Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiao-yan Yang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jing-xing Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yan Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiang-yan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Chang-zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Ning Lv
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
Liu W, Xia X, Hoffmann AA, Ding Y, Fang JC, Yu H. Evolution of Wolbachia reproductive and nutritional mutualism: insights from the genomes of two novel strains that double infect the pollinator of dioecious Ficus hirta. BMC Genomics 2023; 24:657. [PMID: 37914998 PMCID: PMC10621080 DOI: 10.1186/s12864-023-09726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.
Collapse
Affiliation(s)
- Wanzhen Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue Xia
- Institute of Plant Protection, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Yamei Ding
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Riparbelli MG, Pratelli A, Callaini G. Wolbachia Induces Structural Defects Harmful to Drosophila simulans Riverside Spermiogenesis. Cells 2023; 12:2337. [PMID: 37830551 PMCID: PMC10571642 DOI: 10.3390/cells12192337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
The relationship between cytoplasmic incompatibility and the obligate intracellular alphaproteobacteria Wolbachia has for a long time been reported. Although the molecular mechanisms responsible for this reproductive alteration are beginning to be understood, the effects of Wolbachia on germ cell structure and dynamics have not yet been fully investigated. We report here that the presence of Wolbachia in infected cysts of elongating spermatids is associated with major structural defects that become more evident in mature sperm. We find mitochondrial defects, an improper axoneme structure, reduced sperm numbers, and individualization failures. The large heterogeneous variety of the ultrastructural defects found in elongating spermatids and mature sperm provide the first cytological evidence for the reduced fertility associated with Wolbachia infection in Drosophila simulans males. The observed abnormalities could be the result of the mechanical stress induced by the high bacteria numbers during the process of spermatid elongation, rather than the result of the released factors affecting the proper morphogenesis of the germ cells. Moreover, high Wolbachia densities in male germ cells may not be appropriate for causing cytoplasmic incompatibility as the bacteria are harmful for spermatid differentiation, leading to abnormal sperm that is unlikely to be functional.
Collapse
Affiliation(s)
| | | | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (A.P.)
| |
Collapse
|
9
|
Medina P, Russell SL, Corbett-Detig R. Deep data mining reveals variable abundance and distribution of microbial reproductive manipulators within and among diverse host species. PLoS One 2023; 18:e0288261. [PMID: 37432953 DOI: 10.1371/journal.pone.0288261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1-8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.
Collapse
Affiliation(s)
- Paloma Medina
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Shelbi L Russell
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Russell Corbett-Detig
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
10
|
Zhou JC, Dong QJ, Shang D, Ning SF, Zhang HH, Wang Y, Che WN, Dong H, Zhang LS. Posterior concentration of Wolbachia during the early embryogenesis of the host dynamically shapes the tissue tropism of Wolbachia in host Trichogramma wasps. Front Cell Infect Microbiol 2023; 13:1198428. [PMID: 37424778 PMCID: PMC10324615 DOI: 10.3389/fcimb.2023.1198428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The bacterial endosymbiont, Wolbachia spp. induce thelytokous parthenogenesis in certain parasitoid wasps, such as the egg parasitoid wasps Trichogramma spp. To complete the cycle of vertical transmission, Wolbachia displays efficient transovarial transmission by targeting the reproductive tissues and often exhibits strong tissue-specific tropism in their host. Method The present study aimed to describe the basic Wolbachia distribution patterns that occur during the development of Wolbachia-infected, thelytokous Trichogramma dendrolimi, and T. pretiosum. We used fluorescence in situ hybridization (FISH) to investigate Wolbachia signal dynamics during early embryogenesis (from 30 to 120 min). Wolbachia titers and distributions from the embryo to adult stages of Trichogramma after early embryogenesis were detected by absolute quantitative polymerase chain reaction (AQ-PCR) and FISH. The symmetry ratios (SR) of the Wolbachia signals were calculated using the SR odds ratios in the anterior and posterior parts of the host. The SR was determined to describe Wolbachia tropism during early embryogenesis and various developmental stages of Trichogramma. Results Wolbachia was concentrated in the posterior part of the embryo during early embryogenesis and the various developmental stages of both T. dendrolimi and T. pretiosum. Wolbachia density increased with the number of nuclei and the initial mitotic division frequency during early embryogenesis. The total Wolbachia titer increased with postembryogenesis development in both T. dendrolimi and T. pretiosum. However, the Wolbachia densities relative to body size were significantly lower at the adult and pupal stages than they were at the embryonic stage. Discussion The present work revealed that posterior Wolbachia concentration during early host embryogenesis determined Wolbachia localization in adult wasps. By this mechanism, Wolbachia exhibits efficient vertical transmission across generations by depositing only female Wolbachia-infected offspring. The results of this study describe the dynamics of Wolbachia during the development of their Trichogramma host. The findings of this investigation helped clarify Wolbachia tropism in Trichogramma wasps.
Collapse
Affiliation(s)
- Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian-Jin Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Shang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Su-Fang Ning
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huan-Huan Zhang
- Institute of Vegetable, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Ying Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wu-Nan Che
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Li-Sheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Nasonia-microbiome associations: a model for evolutionary hologenomics research. Trends Parasitol 2023; 39:101-112. [PMID: 36496327 DOI: 10.1016/j.pt.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia-microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.
Collapse
|
12
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
13
|
Faulk C. De novo sequencing, diploid assembly, and annotation of the black carpenter ant, Camponotus pennsylvanicus, and its symbionts by one person for $1000, using nanopore sequencing. Nucleic Acids Res 2022; 51:17-28. [PMID: 35724982 PMCID: PMC9841434 DOI: 10.1093/nar/gkac510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
The black carpenter ant (Camponotus pennsylvanicus) is a pest species found widely throughout North America. From a single individual I used long-read nanopore sequencing to assemble a phased diploid genome of 306 Mb and 60X coverage, with quality assessed by a 97.0% BUSCO score, improving upon other ant assemblies. The mitochondrial genome reveals minor rearrangements from other ants. The reads also allowed assembly of parasitic and symbiont genomes. I include a complete Wolbachia bacterial assembly with a size of 1.2 Mb, as well as a commensal symbiont Blochmannia pennsylvanicus, at 791 kb. DNA methylation and hydroxymethylation were measured at base-pair resolution level from the same reads and confirmed extremely low levels seen in the Formicidae family. There was moderate heterozygosity, with 0.16% of bases being biallelic from the parental haplotypes. Protein prediction yielded 14 415 amino acid sequences with 95.8% BUSCO score and 86% matching to previously known proteins. All assemblies were derived from a single MinION flow cell generating 20 Gb of sequence for a cost of $1047 including consumable reagents. Adding fixed costs for equipment brings the total for an ant-sized genome to less than $5000. All analyses were performed in 1 week on a single desktop computer.
Collapse
|
14
|
Bell K, Bordenstein SR. A Margulian View of Symbiosis and Speciation: the Nasonia Wasp System. Symbiosis 2022. [DOI: 10.1007/s13199-022-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSpecies are fundamental units of biology that exemplify lineage diversification, while symbiosis of microbes and macrobial hosts exemplify lineage unification between the domains of life. While these conceptual differences between speciation and symbiosis often dominate the narrative of the respective fields, Lynn Margulis argued for interconnection between these two subdisciplines of biology in a manner that left a legacy for scholars and students alike to pursue, detail, and discover. The Margulian perspective has always been that host evolutionary processes such as speciation are more impacted by microbial symbioses than typically appreciated. In this article, we present and review the case system that she long envisioned, one in which layers of microbial symbiosis reduce species interbreeding and assist species diversification among a closely related group of small, metallic green, parasitoid wasps from the genus Nasonia.
Collapse
|
15
|
Wybouw N, Mortier F, Bonte D. Interacting host modifier systems control
Wolbachia
‐induced cytoplasmic incompatibility in a haplodiploid mite. Evol Lett 2022; 6:255-265. [PMID: 35784453 PMCID: PMC9233175 DOI: 10.1002/evl3.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Reproductive parasites such as Wolbachia spread within host populations by inducing cytoplasmic incompatibility (CI). CI occurs when parasite‐modified sperm fertilizes uninfected eggs and is typified by great variation in strength across biological systems. In haplodiploid hosts, CI has different phenotypic outcomes depending on whether the fertilized eggs die or develop into males. Genetic conflict theories predict the evolution of host modulation of CI, which in turn influences the stability of reproductive parasitism. However, despite the ubiquity of CI‐inducing parasites in nature, there is scarce evidence for intraspecific host modulation of CI strength and phenotype. Here, we tested for intraspecific host modulation of Wolbachia‐induced CI in haplodiploid Tetranychus urticae mites. Using a single CI‐inducing Wolbachia variant and mitochondrion, a nuclear panel was created that consisted of infected and cured near‐isogenic lines. We performed a highly replicated age‐synchronized full diallel cross composed of incompatible and compatible control crosses. We uncovered host modifier systems that cause striking variation in CI strength when carried by infected T. urticae males. We observed a continuum of CI phenotypes in our crosses and identified strong intraspecific female modulation of the CI phenotype. Crosses established a recessive genetic basis for the maternal effect and were consistent with polygenic Mendelian inheritance. Both male and female modulation interacted with the genotype of the mating partner. Our findings identify spermatogenesis as an important target of selection for host modulation of CI strength and underscore the importance of maternal genetic effects for the CI phenotype. Our findings reveal that intraspecific host modulation of CI is underpinned by complex genetic architectures and confirm that the evolution of reproductive parasitism is contingent on host genetics.
Collapse
Affiliation(s)
- Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| | - Frederik Mortier
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| |
Collapse
|
16
|
Kemph A, Lynch JA. Evolution of germ plasm assembly and function among the insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100883. [PMID: 35123121 PMCID: PMC9133133 DOI: 10.1016/j.cois.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.
Collapse
|
17
|
Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr Biol 2022; 32:878-888.e8. [PMID: 34919808 PMCID: PMC8891084 DOI: 10.1016/j.cub.2021.11.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Endosymbioses influence host physiology, reproduction, and fitness, but these relationships require efficient microbe transmission between host generations to persist. Maternally transmitted Wolbachia are the most common known endosymbionts,1 but their frequencies vary widely within and among host populations for unknown reasons.2,3 Here, we integrate genomic, cellular, and phenotypic analyses with mathematical models to provide an unexpectedly simple explanation for global wMel Wolbachia prevalence in Drosophila melanogaster. Cooling temperatures decrease wMel cellular abundance at a key stage of host oogenesis, producing temperature-dependent variation in maternal transmission that plausibly explains latitudinal clines of wMel frequencies on multiple continents. wMel sampled from a temperate climate targets the germline more efficiently in the cold than a recently differentiated tropical variant (∼2,200 years ago), indicative of rapid wMel adaptation to climate. Genomic analyses identify a very narrow list of wMel alleles-most notably, a derived stop codon in the major Wolbachia surface protein WspB-that underlie thermal sensitivity of cellular Wolbachia abundance and covary with temperature globally. Decoupling temperate wMel and host genomes further reduces transmission in the cold, a pattern that is characteristic of host-microbe co-adaptation to a temperate climate. Complex interactions among Wolbachia, hosts, and the environment (GxGxE) mediate wMel cellular abundance and maternal transmission, implicating temperature as a key determinant of Wolbachia spread and equilibrium frequencies, in conjunction with Wolbachia effects on host fitness and reproduction.4,5 Our results motivate the strategic use of locally selected wMel variants for Wolbachia-based biocontrol efforts, which protect millions of individuals from arboviruses that cause human disease.6.
Collapse
|
18
|
Røed ES, Engelstädter J. Cytoplasmic incompatibility in hybrid zones: infection dynamics and resistance evolution. J Evol Biol 2021; 35:240-253. [PMID: 34953157 DOI: 10.1111/jeb.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
Cytoplasmic incompatibility is an endosymbiont-induced mating incompatibility common in arthropods. Unidirectional cytoplasmic incompatibility impairs crosses between infected males and uninfected females, whereas bidirectional cytoplasmic incompatibility occurs when two host lineages are infected with reciprocally in compatible endosymbionts. Bidirectional cytoplasmic incompatibility is unstable in unstructured populations, but may be stable in hybrid zones. Stable coexistence of incompatible host lineages should generate frequent incompatible crosses. Therefore, hosts are expected to be under selection to resist their endosymbionts. Here, we for mulate a mathematical model of hybrid zones where two bidirectionally incompatible host lineages meet. We expand this model to consider the invasion of a hypothetical resistance allele. To corroborate our mathematical predictions, we test each prediction with stochastic, individual-based simulations. Our models suggest that hybrid zones may sustain stable coinfections of bidirectionally incompatible endosymbiont strains. Over a range of conditions, host are under selection for resistance against cytoplasmic incompatibility. Under asymetric migration, a resistance allele can facilitate infection turnover and subsequently either persist or become lost. The predictions we present may inform our understanding of the cophylogenetic relationship between the endosym biont Wolbachia and its hosts.
Collapse
Affiliation(s)
- Erik Sandertun Røed
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4702, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4702, Australia
| |
Collapse
|
19
|
Male Age and Wolbachia Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. mBio 2021; 12:e0299821. [PMID: 34903056 PMCID: PMC8686834 DOI: 10.1128/mbio.02998-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene (cif) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia-density variation in two classic CI systems. wRi CI strength decreases slowly with Drosophila simulans male age (6%/day), but wMel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as wRi-infected males age, but both surprisingly increase as wMel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts wMel density), or host immune expression covary with age-dependent wMel densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence.
Collapse
|
20
|
Cohen LB, Jewell R, Moody D, Arsala D, Werren JH, Lynch JA. Genetic, morphometric, and molecular analyses of interspecies differences in head shape and hybrid developmental defects in the wasp genus Nasonia. G3 GENES|GENOMES|GENETICS 2021; 11:6362889. [PMID: 34580730 PMCID: PMC8664464 DOI: 10.1093/g3journal/jkab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Males in the parasitoid wasp genus Nasonia have distinct, species-specific, head shapes. The availability of fertile hybrids among the species, along with obligate haploidy of males, facilitates analysis of complex gene interactions in development and evolution. Previous analyses showed that both the divergence in head shape between Nasonia vitripennis and Nasonia giraulti, and the head-specific developmental defects of F2 haploid hybrid males, are governed by multiple changes in networks of interacting genes. Here, we extend our understanding of the gene interactions that affect morphogenesis in male heads. Use of artificial diploid male hybrids shows that alleles mediating developmental defects are recessive, while there are diverse dominance relationships among other head shape traits. At the molecular level, the sex determination locus doublesex plays a major role in male head shape differences, but it is not the only important factor. Introgression of a giraulti region on chromsome 2 reveals a recessive locus that causes completely penetrant head clefting in both males and females in a vitripennis background. Finally, a third species (N. longicornis) was used to investigate the timing of genetic changes related to head morphology, revealing that most changes causing defects arose after the divergence of N. vitripennis from the other species, but prior to the divergence of N. giraulti and N. longicornis from each other. Our results demonstrate that developmental gene networks can be dissected using interspecies crosses in Nasonia, and set the stage for future fine-scale genetic dissection of both head shape and hybrid developmental defects.
Collapse
Affiliation(s)
- Lorna B Cohen
- Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Optical Imaging Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rachel Jewell
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dyese Moody
- Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deanna Arsala
- Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Jeremy A Lynch
- Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
21
|
Parker BJ. Mechanisms and Evolution of Heritable Microbial Density in Insect Hosts. mSystems 2021; 6:e0072821. [PMID: 34463570 PMCID: PMC8441989 DOI: 10.1128/msystems.00728-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within-host density is a critically important aspect of vertically transmitted symbioses that influences the fitness of both hosts and microbes. I review recent studies of symbiont density in insects, including my laboratory's work on pea aphids and maternally transmitted bacteria. These studies used systems approaches to uncover the molecular mechanisms of how both hosts and microbes influence symbiont density, and they shed light on whether optimal density is different from the perspective of host and microbial fitness. Mounting empirical evidence suggests that antagonistic coevolution shapes vertically transmitted symbioses even when microbes provide clear benefits to hosts. This is potentially because of differing selective pressures at the host and within-host levels. Considering these contrasting evolutionary pressures will be critically important in efforts to use vertically transmitted symbionts for biocontrol and as lessons from model systems are applied to the study of more complex microbiomes.
Collapse
Affiliation(s)
- Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
22
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021. [PMID: 33945798 DOI: 10.20944/preprints202103.0338.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
23
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
24
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
25
|
Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathog 2021; 17:e1009552. [PMID: 33901257 PMCID: PMC8102006 DOI: 10.1371/journal.ppat.1009552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes. Insects frequently form beneficial partnerships with heritable microbes that are passed from mothers to offspring. Natural populations exhibit a great deal of variation in the frequency of heritable microbes and in the within-host density of these infections. Uncovering the mechanisms underlying variation in host-microbe interactions is key to understanding how they evolve. We study a model host-microbe interaction: the pea aphid and a heritable bacterium that makes aphids resistant to fungal pathogens. We show that aphids harboring bacteria show sharply reduced expression of innate immune system genes, and that this leads to increased densities of symbionts. We further show that populations of aphids that live on different species of plants vary in differential immune gene expression and in the density of their symbiont infections. This study contributes to our mechanistic understanding of an important model of host-microbe symbiosis and suggests that hosts and heritable microbes are evolving antagonistically. This work also sheds light on how invertebrate immune systems evolve to manage the complex task of combatting harmful pathogens while accommodating potentially beneficial microbes.
Collapse
|
26
|
Dittmer J, Brucker RM. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. MICROBIOME 2021; 9:85. [PMID: 33836829 PMCID: PMC8035746 DOI: 10.1186/s40168-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid wasp Nasonia vitripennis, a model organism for host-microbiome interactions. RESULTS Our results demonstrate that the microbiome is essential for host nutrient allocation during diapause in N. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member, Providencia sp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance. CONCLUSION This work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment. Video Abstract.
Collapse
Affiliation(s)
- Jessica Dittmer
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
- Present Address: Dipartimento di Scienze agrarie e ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| | - Robert M Brucker
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
| |
Collapse
|
27
|
Parker BJ, Hrček J, McLean AHC, Brisson JA, Godfray HCJ. Intraspecific variation in symbiont density in an insect-microbe symbiosis. Mol Ecol 2021; 30:1559-1569. [PMID: 33512733 DOI: 10.1111/mec.15821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
Many insects host vertically transmitted microbes, which can confer benefits to their hosts but are costly to maintain and regulate. A key feature of these symbioses is variation: for example, symbiont density can vary among host and symbiont genotypes. However, the evolutionary forces maintaining this variation remain unclear. We studied variation in symbiont density using the pea aphid (Acyrthosiphon pisum) and the bacterium Regiella insecticola, a symbiont that can protect its host against fungal pathogens. We found that relative symbiont density varies both between two Regiella phylogenetic clades and among aphid "biotypes." Higher density symbiont infections are correlated with stronger survival costs, but variation in density has little effect on the protection Regiella provides against fungi. Instead, we found that in some aphid genotypes, a dramatic decline in symbiont density precedes the loss of a symbiont infection. Together, our data suggest that the optimal density of a symbiont infection is likely different from the perspective of aphid and microbial fitness. Regiella might prevent loss by maintaining high within-host densities, but hosts do not appear to benefit from higher symbiont numbers and may be advantaged by losing costly symbionts in certain environments. The standing variation in symbiont density observed in natural populations could therefore be maintained by antagonistic coevolutionary interactions between hosts and their symbiotic microbes.
Collapse
Affiliation(s)
- Benjamin J Parker
- Department of Zoology, University of Oxford, Oxford, UK.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jan Hrček
- Department of Zoology, University of Oxford, Oxford, UK.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
28
|
Xia X, Peng CW, Cui JR, Jin PY, Yang K, Hong XY. Wolbachia affects reproduction in the spider mite Tetranychus truncatus (Acari: Tetranychidae) by regulating chorion protein S38-like and Rop. INSECT MOLECULAR BIOLOGY 2021; 30:18-29. [PMID: 32945029 DOI: 10.1111/imb.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia-induced reproductive regulation in hosts has been used to control pest populations, but little is known about the molecular mechanism underlying Wolbachia regulation of host genes. Here, reproductive regulation by Wolbachia in the spider mite Tetranychus truncatus was studied at the molecular level. Infection with Wolbachia resulted in decreasing oviposition and cytoplasmic incompatibility in T. truncatus. Further RNA-seq revealed genes regulated by Wolbachia in T. truncatus. Real-time quantitative polymerase chain reaction (qPCR) showed that genes, including chorion protein S38-like and Rop were down-regulated by Wolbachia. RNA interference (RNAi) of chorion protein S38-like and Rop in Wolbachia-uninfected T. truncatus decreased oviposition, which was consistent with Wolbachia-induced oviposition decrease. Interestingly, suppressing Rop in Wolbachia-infected T. truncatus led to increased Wolbachia titres in eggs; however, this did not occur after RNAi of chorion protein S38-like. This is the first study to show that chorion protein S38-like and Rop facilitate Wolbachia-mediated changes in T. truncatus fertility. In addition, RNAi of Rop turned the body colour of Wolbachia-uninfected T. truncatus black, which indicates that the role of Rop is not limited to the reproductive regulation of T. truncatus.
Collapse
Affiliation(s)
- X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-W Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-R Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Hou HX, Zhao D, Xiao JH, Huang DW. Transcriptomic Analysis Reveals the Sexually Divergent Host- Wolbachia Interaction Patterns in a Fig Wasp. Microorganisms 2021; 9:microorganisms9020288. [PMID: 33572512 PMCID: PMC7912686 DOI: 10.3390/microorganisms9020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Wolbachia are widely distributed in arthropods and nematodes, acquiring nutrients from the hosts, and inducing remarkable reproductive modulations on the hosts. To investigate the interaction of Wolbachia and insects, Wolbachia are often artificially eliminated from Wolbachia-infected hosts, which may produce negative effects of antibiotics. In the present study, based on the transcriptomic data of a fig wasp species Ceratosolen solmsi with two sibling lineages, one natively infected and the other noninfected with Wolbachia, we investigated the expression patterns of genes. The comparison results of differently expressed genes (DEGs) between Wolbachia infected and noninfected samples show that males have many more DEGs than females. The male unique upregulated genes are enriched in biological processes mainly related to biosynthesis, transport, positive regulation of I-kappaB kinase/NF-kappaB signaling, MAPK cascade, and pathogenesis; the male unique downregulated genes are enriched in biological processes mainly related to transport, oxidation–reduction, cellular responses to oxidative stress, lipid oxidation, cytoskeleton organization, actin filament-based process, and localization. In addition, for the Wolbachia’s gene expression, the number of genes up-regulated in males is higher than that in females. The results revealed divergent patterns of the host–Wolbachia interactions between males and females in the fig wasp species.
Collapse
Affiliation(s)
| | | | - Jin-Hua Xiao
- Correspondence: (J.-H.X.); (D.-W.H.); Tel.: +86-185-2245-2108 (J.-H.X.); +86-139-1025-6670 (D.-W.H.)
| | - Da-Wei Huang
- Correspondence: (J.-H.X.); (D.-W.H.); Tel.: +86-185-2245-2108 (J.-H.X.); +86-139-1025-6670 (D.-W.H.)
| |
Collapse
|
30
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
31
|
Hague MTJ, Caldwell CN, Cooper BS. Pervasive Effects of Wolbachia on Host Temperature Preference. mBio 2020; 11:e01768-20. [PMID: 33024036 PMCID: PMC7542361 DOI: 10.1128/mbio.01768-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Heritable symbionts can modify a range of ecologically important host traits, including behavior. About half of all insect species are infected with maternally transmitted Wolbachia, a bacterial endosymbiont known to alter host reproduction, nutrient acquisition, and virus susceptibility. Here, we broadly test the hypothesis that Wolbachia modifies host behavior by assessing the effects of eight different Wolbachia strains on the temperature preference of six Drosophila melanogaster subgroup species. Four of the seven host genotypes infected with A-group Wolbachia strains (wRi in Drosophila simulans, wHa in D. simulans, wSh in Drosophila sechellia, and wTei in Drosophila teissieri) prefer significantly cooler temperatures relative to uninfected genotypes. Contrastingly, when infected with divergent B-group wMau, Drosophila mauritiana prefers a warmer temperature. For most strains, changes to host temperature preference do not alter Wolbachia titer. However, males infected with wSh and wTei tend to experience an increase in titer when shifted to a cooler temperature for 24 h, suggesting that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results indicate that Wolbachia modifications to host temperature preference are likely widespread, which has important implications for insect thermoregulation and physiology. Understanding the fitness consequences of these Wolbachia effects is crucial for predicting evolutionary outcomes of host-symbiont interactions, including how Wolbachia spreads to become common.IMPORTANCE Microbes infect a diversity of species, influencing the performance and fitness of their hosts. Maternally transmitted Wolbachia bacteria infect most insects and other arthropods, making these bacteria some of the most common endosymbionts in nature. Despite their global prevalence, it remains mostly unknown how Wolbachia influence host physiology and behavior to proliferate. We demonstrate pervasive effects of Wolbachia on Drosophila temperature preference. Most hosts infected with A-group Wolbachia prefer cooler temperatures, whereas the one host species infected with divergent B-group Wolbachia prefers warmer temperatures, relative to uninfected genotypes. Changes to host temperature preference generally do not alter Wolbachia abundance in host tissues, but for some A-group strains, adult males have increased Wolbachia titer when shifted to a cooler temperature. This suggests that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results help elucidate the impact of endosymbionts on their hosts amid the global Wolbachia pandemic.
Collapse
Affiliation(s)
- Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Chelsey N Caldwell
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
32
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
33
|
Hague MTJ, Mavengere H, Matute DR, Cooper BS. Environmental and Genetic Contributions to Imperfect wMel-Like Wolbachia Transmission and Frequency Variation. Genetics 2020; 215:1117-1132. [PMID: 32546497 PMCID: PMC7404227 DOI: 10.1534/genetics.120.303330] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Maternally transmitted Wolbachia bacteria infect about half of all insect species. They usually show imperfect maternal transmission and often produce cytoplasmic incompatibility (CI). Irrespective of CI, Wolbachia frequencies tend to increase when rare only if they benefit host fitness. Several Wolbachia, including wMel that infects Drosophila melanogaster, cause weak or no CI and persist at intermediate frequencies. On the island of São Tomé off West Africa, the frequencies of wMel-like Wolbachia infecting Drosophila yakuba (wYak) and Drosophila santomea (wSan) fluctuate, and the contributions of imperfect maternal transmission, fitness effects, and CI to these fluctuations are unknown. We demonstrate spatial variation in wYak frequency and transmission on São Tomé. Concurrent field estimates of imperfect maternal transmission do not predict spatial variation in wYak frequencies, which are highest at high altitudes where maternal transmission is the most imperfect. Genomic and genetic analyses provide little support for D. yakuba effects on wYak transmission. Instead, rearing at cool temperatures reduces wYak titer and increases imperfect transmission to levels observed on São Tomé. Using mathematical models of Wolbachia frequency dynamics and equilibria, we infer that temporally variable imperfect transmission or spatially variable effects on host fitness and reproduction are required to explain wYak frequencies. In contrast, spatially stable wSan frequencies are plausibly explained by imperfect transmission, modest fitness effects, and weak CI. Our results provide insight into causes of wMel-like frequency variation in divergent hosts. Understanding this variation is crucial to explain Wolbachia spread and to improve wMel biocontrol of human disease in transinfected mosquito systems.
Collapse
Affiliation(s)
- Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Heidi Mavengere
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| |
Collapse
|
34
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
35
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
36
|
Becking T, Chebbi MA, Giraud I, Moumen B, Laverré T, Caubet Y, Peccoud J, Gilbert C, Cordaux R. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLoS Biol 2019; 17:e3000438. [PMID: 31600190 PMCID: PMC6805007 DOI: 10.1371/journal.pbio.3000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.
Collapse
Affiliation(s)
- Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Tiffany Laverré
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Yves Caubet
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
37
|
The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog 2019; 15:e1007936. [PMID: 31504075 PMCID: PMC6736233 DOI: 10.1371/journal.ppat.1007936] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.
Collapse
|
38
|
Guo Y, Gong JT, Mo PW, Huang HJ, Hong XY. Wolbachia localization during Laodelphax striatellus embryogenesis. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:125-133. [PMID: 31128084 DOI: 10.1016/j.jinsphys.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Wolbachia are intracellular bacteria carried by thousands of arthropod species. The success of Wolbachia is due to efficient vertical transmission by the host maternal germline. Wolbachia's behavior during host oogenesis is well characterized, although their behavior during embryogenesis is unclear. Vertical transmission of Wolbachia wStri in the small brown planthopper, Laodelphax striatellus is extraordinarily efficient. To understand why, we investigated its localization and dynamics in L. striatellus embryos. Microscopic observations indicated that the Wolbachia were mainly localized at the anterior region of the embryo during early embryogenesis. The distribution of Wolbachia within the anterior region was established during oogenesis, and according to a phylogenetic analysis, may be due to intrinsic factors in Wolbachia. We observed that wStri migrated to the posterior part cells during late embryogenesis, in the region where gonads were formed. An expression profile of Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos, while other development genes mRNAs were significantly more abundant in the posterior region of 6-day-old embryos. These genes thus appear to be associated with the localization of Wolbachia wStri in the anterior region, although their functions remain unclear. These results can explain Wolbachia wStri high prevalence in L. striatellus.
Collapse
Affiliation(s)
- Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China.
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Pei-Wen Mo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
39
|
Reveillaud J, Bordenstein SR, Cruaud C, Shaiber A, Esen ÖC, Weill M, Makoundou P, Lolans K, Watson AR, Rakotoarivony I, Bordenstein SR, Eren AM. The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat Commun 2019; 10:1051. [PMID: 30837458 PMCID: PMC6401122 DOI: 10.1038/s41467-019-08973-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, 34398, France.
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie François Jacob, Genoscope, Evry, 91057, France
| | - Alon Shaiber
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Andrea R Watson
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | | | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, 37235, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, 37235, TN, USA
| | - A Murat Eren
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, 02543, MA, USA.
| |
Collapse
|