1
|
Shi Y, Wan L, Jiao M, Zhong CQ, Cui H, Yuan J. Elevated NAD + drives Sir2A-mediated GCβ deacetylation and OES localization for Plasmodium ookinete gliding and mosquito infection. Nat Commun 2025; 16:2259. [PMID: 40050296 PMCID: PMC11885453 DOI: 10.1038/s41467-025-57517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
cGMP signal-activated ookinete gliding is essential for mosquito midgut infection of Plasmodium in malaria transmission. During ookinete development, cGMP synthesizer GCβ polarizes to a unique localization "ookinete extrados site" (OES) until ookinete maturation and activates cGMP signaling for initiating parasite motility. However, the mechanism underlying GCβ translocation from cytosol to OES remains elusive. Here, we use protein proximity labeling to search the GCβ-interacting proteins in ookinetes of the rodent malaria parasite P. yoelii, and find the top hit Sir2A, a NAD+-dependent sirtuin family deacetylase. Sir2A interacts with GCβ throughout ookinete development. In mature ookinetes, Sir2A co-localizes with GCβ at OES in a mutually dependent manner. Parasites lacking Sir2A lose GCβ localization at OES, ookinete gliding, and mosquito infection, phenocopying GCβ deficiency. GCβ is acetylated at gametocytes but is deacetylated by Sir2A for OES localization at mature ookinetes. We further demonstrate that the level of NAD+, an essential co-substrate for sirtuin, increases during the ookinete development. NAD+ at its maximal level in mature ookinetes promotes Sir2A-catalyzed GCβ deacetylation, ensuring GCβ localization at OES. This study highlights the spatiotemporal coordination of cytosolic NAD+ level and NAD+-dependent Sir2A in regulating GCβ deacetylation and dynamic localization for Plasmodium ookinete gliding.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lin Wan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mengmeng Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
3
|
Liu B, Liu C, Li Z, Liu W, Cui H, Yuan J. A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii. Nat Commun 2024; 15:8590. [PMID: 39366980 PMCID: PMC11452633 DOI: 10.1038/s41467-024-52970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium. The cytoplasmic dynein is the motor moving towards the minus end of microtubules (MTs) and likely be responsible for cargo transport to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain (DHC) proteins in the P. yoelii and identify DHC3 showing peripheral localization in ookinetes. DHC3 is localized at SPMTs throughout ookinete morphogenesis. We also identify five other dynein subunits localizing at SPMTs. DHC3 disruption impairs ookinete development, shape, and gliding, leading to failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes display defective formation or localization of apical organelles and structures. Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent manner, likely functioning as the receptors for the cargoes driven by SPMT-dynein. Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete morphogenesis. Our study reveals an SPMT-based dynein motor driving the transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morphogenesis of Plasmodium.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjia Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Cabral G, Ren B, Bisio H, Otey D, Soldati-Favre D, Brown KM. Orthologs of Plasmodium ICM1 are dispensable for Ca 2+ mobilization in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0122924. [PMID: 39162502 PMCID: PMC11448412 DOI: 10.1128/spectrum.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Marseille, France
| | - Dawson Otey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Lettermann L, Ziebert F, Schwarz US. A geometrical theory of gliding motility based on cell shape and surface flow. Proc Natl Acad Sci U S A 2024; 121:e2410708121. [PMID: 39028692 PMCID: PMC11287263 DOI: 10.1073/pnas.2410708121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns. Our analytical solutions and numerical simulations show that straight motion without rotation is unstable for simple shapes and that straight cell shapes tend to lead to pure rotations. This suggests that the curved shapes of Plasmodium sporozoites and Toxoplasma tachyzoites are evolutionary adaptations to avoid rotations without translation. Gliding motility is also used by certain myxo- or flavobacteria, which predominantly move on flat external surfaces and with higher control of cell surface flow through internal tracks. We extend our theory for these cases. We again find a competition between rotation and translation and predict the effect of internal track geometry on overall forward speed. While specific mechanisms might vary across species, in general, our geometrical theory predicts and explains the rotational, circular, and helical trajectories which are commonly observed for microgliders. Our theory could also be used to design synthetic microgliders.
Collapse
Affiliation(s)
- Leon Lettermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg69120, Germany
- Bioquant-Center, Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
6
|
Guan J, Wu P, Mo X, Zhang X, Liang W, Zhang X, Jiang L, Li J, Cui H, Yuan J. An axonemal intron splicing program sustains Plasmodium male development. Nat Commun 2024; 15:4697. [PMID: 38824128 PMCID: PMC11144265 DOI: 10.1038/s41467-024-49002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.
Collapse
Affiliation(s)
- Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Peijia Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wenqi Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoming Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lubin Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
8
|
Ukegbu CV, Gomes AR, Giorgalli M, Campos M, Bailey AJ, Besson TRB, Billker O, Vlachou D, Christophides GK. Identification of genes required for Plasmodium gametocyte-to-sporozoite development in the mosquito vector. Cell Host Microbe 2023; 31:1539-1551.e6. [PMID: 37708854 DOI: 10.1016/j.chom.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Malaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, the complex regulation of gene expression and genotype-phenotype associations in the mosquito vector, along with sexual reproduction, have hindered the development of screens in this critical part of the parasite life cycle. To address this, we developed a genetic approach in the rodent parasite Plasmodium berghei that, in combination with barcode sequencing, circumvents the fertilization roadblock and enables screening for gametocyte-expressed genes required for parasite infection of the mosquito Anopheles coluzzii. Our results confirm previous findings, validating our approach for scaling up, and identify genes necessary for mosquito midgut infection, oocyst development, and salivary gland infection. These findings can aid efforts to study malaria transmission biology and to develop interventions for controlling disease transmission.
Collapse
Affiliation(s)
| | - Ana Rita Gomes
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Melina Campos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexander J Bailey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
9
|
Gao H, Jiang Y, Wang L, Wang G, Hu W, Dong L, Wang S. Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nat Commun 2023; 14:5157. [PMID: 37620328 PMCID: PMC10449815 DOI: 10.1038/s41467-023-40887-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Hu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
11
|
Zhang G, Niu G, Hooker–Romera D, Shabani S, Ramelow J, Wang X, Butler NS, James AA, Li J. Targeting plasmodium α-tubulin-1 to block malaria transmission to mosquitoes. Front Cell Infect Microbiol 2023; 13:1132647. [PMID: 37009496 PMCID: PMC10064449 DOI: 10.3389/fcimb.2023.1132647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Plasmodium ookinetes use an invasive apparatus to invade mosquito midguts, and tubulins are the major structural proteins of this apical complex. We examined the role of tubulins in malaria transmission to mosquitoes. Our results demonstrate that the rabbit polyclonal antibodies (pAb) against human α-tubulin significantly reduced the number of P. falciparum oocysts in Anopheles gambiae midguts, while rabbit pAb against human β-tubulin did not. Further studies showed that pAb, specifically against P. falciparum α-tubulin-1, also significantly limited P. falciparum transmission to mosquitoes. We also generated mouse monoclonal antibodies (mAb) using recombinant P. falciparum α-tubulin-1. Out of 16 mAb, two mAb, A3 and A16, blocked P. falciparum transmission with EC50 of 12 μg/ml and 2.8 μg/ml. The epitopes of A3 and A16 were determined to be a conformational and linear sequence of EAREDLAALEKDYEE, respectively. To understand the mechanism of the antibody-blocking activity, we studied the accessibility of live ookinete α-tubulin-1 to antibodies and its interaction with mosquito midgut proteins. Immunofluorescent assays showed that pAb could bind to the apical complex of live ookinetes. Moreover, both ELISA and pull-down assays demonstrated that insect cell-expressed mosquito midgut protein, fibrinogen-related protein 1 (FREP1), interacts with P. falciparum α-tubulin-1. Since ookinete invasion is directional, we conclude that the interaction between Anopheles FREP1 protein and Plasmodium α-tubulin-1 anchors and orients the ookinete invasive apparatus towards the midgut PM and promotes the efficient parasite infection in the mosquito.
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Guodong Niu
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Diana Hooker–Romera
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Sadeq Shabani
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian Ramelow
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Xiaohong Wang
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Noah S. Butler
- Departments of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jun Li
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
12
|
Rashpa R, Klages N, Schvartz D, Pasquarello C, Brochet M. The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei. Nat Commun 2023; 14:1312. [PMID: 36898988 PMCID: PMC10006092 DOI: 10.1038/s41467-023-36999-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Malaria-causing parasites of the Plasmodium genus undergo multiple developmental phases in the human and the mosquito hosts, regulated by various post-translational modifications. While ubiquitination by multi-component E3 ligases is key to regulate a wide range of cellular processes in eukaryotes, little is known about its role in Plasmodium. Here we show that Plasmodium berghei expresses a conserved SKP1/Cullin1/FBXO1 (SCFFBXO1) complex showing tightly regulated expression and localisation across multiple developmental stages. It is key to cell division for nuclear segregation during schizogony and centrosome partitioning during microgametogenesis. It is additionally required for parasite-specific processes including gamete egress from the host erythrocyte, as well as integrity of the apical and the inner membrane complexes (IMC) in merozoite and ookinete, two structures essential for the dissemination of these motile stages. Ubiquitinomic surveys reveal a large set of proteins ubiquitinated in a FBXO1-dependent manner including proteins important for egress and IMC organisation. We additionally demonstrate an interplay between FBXO1-dependent ubiquitination and phosphorylation via calcium-dependent protein kinase 1. Altogether we show that Plasmodium SCFFBXO1 plays conserved roles in cell division and is also important for parasite-specific processes in the mammalian and mosquito hosts.
Collapse
Affiliation(s)
- Ravish Rashpa
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| | - Natacha Klages
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland
| | - Domitille Schvartz
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Carla Pasquarello
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| |
Collapse
|
13
|
Chen K, Huang X, Distler U, Tenzer S, Günay-Esiyok Ö, Gupta N. Apically-located P4-ATPase1-Lem1 complex internalizes phosphatidylserine and regulates motility-dependent invasion and egress in Toxoplasma gondii. Comput Struct Biotechnol J 2023; 21:1893-1906. [PMID: 36936814 PMCID: PMC10015115 DOI: 10.1016/j.csbj.2023.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The membrane asymmetry regulated by P4-ATPases is crucial for the functioning of eukaryotic cells. The underlying spatial translocation or flipping of specific lipids is usually assured by respective P4-ATPases coupled to conforming non-catalytic subunits. Our previous work has identified five P4-ATPases (TgP4-ATPase1-5) and three non-catalytic partner proteins (TgLem1-3) in the intracellular protozoan pathogen, Toxoplasma gondii. However, their flipping activity, physiological relevance and functional coupling remain unknown. Herein, we demonstrate that TgP4-ATPase1 and TgLem1 work together to translocate phosphatidylserine (PtdSer) during the lytic cycle of T. gondii. Both proteins localize in the plasma membrane at the invasive (apical) end of its acutely-infectious tachyzoite stage. The genetic knockout of P4-ATPase1 and conditional depletion of Lem1 in tachyzoites severely disrupt the asexual reproduction and translocation of PtdSer across the plasma membrane. Moreover, the phenotypic analysis of individual mutants revealed a requirement of lipid flipping for the motility, egress and invasion of tachyzoites. Not least, the proximity-dependent biotinylation and reciprocal immunoprecipitation assays demonstrated the physical interaction of P4-ATPase1 and Lem1. Our findings disclose the mechanism and significance of PtdSer flipping during the lytic cycle and identify the P4-ATPase1-Lem1 heterocomplex as a potential drug target in T. gondii.
Collapse
Key Words
- BSA, bovine serum albumin
- CDC50, Cell Division Control 50
- COS, crossover sequence
- Cdc50
- DAPI, 4′,6-diamidino-2-phenylindole
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyltransferase
- IAA, indole-3-acetic acid
- LEM, Ligand Effector Module
- Lem1
- NBD, nitrobenzoxadiazole
- NBD-lipid
- P4-ATPase1
- PBS, phosphate-buffered saline
- Phosphatidylserine
- Phospholipid flipping
- PtdCho, phosphatidylcholine
- PtdEtn, phosphatidylethanolamine
- PtdSer, phosphatidylserine
- PtdThr, phosphatidylthreonine
- UTR, untranslated region
- cGMP, cyclic Guanosine Monophosphate
- mAID, (mini) auxin-inducible degron
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Xiyu Huang
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
- Corresponding author at: Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| |
Collapse
|
14
|
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol 2022; 76:113-134. [PMID: 35609946 DOI: 10.1146/annurev-micro-041320-010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom;
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom;
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
15
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. Identification of a novel AP2 transcription factor in zygotes with an essential role in Plasmodium ookinete development. PLoS Pathog 2022; 18:e1010510. [PMID: 35947628 PMCID: PMC9394825 DOI: 10.1371/journal.ppat.1010510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The sexual phase of Plasmodium represents a crucial step in malaria transmission, during which these parasites fertilize and form ookinetes to infect mosquitoes. Plasmodium development after fertilization is thought to proceed with female-stored mRNAs until the formation of a retort-form ookinete; thus, transcriptional activity in zygotes has previously been considered quiescent. In this study, we reveal the essential role of transcriptional activity in zygotes by investigating the function of a newly identified AP2 transcription factor, AP2-Z, in P. berghei. ap2-z was previously reported as a female transcriptional regulator gene whose disruption resulted in developmental arrest at the retort stage of ookinetes. In this study, although ap2-z was transcribed in females, we show that it was translationally repressed by the DOZI complex and translated after fertilization with peak expression at the zygote stage. ChIP-seq analysis of AP2-Z shows that it binds on specific DNA motifs, targeting the majority of genes known as an essential component of ookinetes, which largely overlap with the AP2-O targets, as well as genes that are unique among the targets of other sexual transcription factors. The results of this study also indicate the existence of a cascade of transcription factors, beginning with AP2-G, that proceeds from gametocytogenesis to ookinete formation. Sexual development in Plasmodium parasites, a causative agent of malaria, is essential for their transmission from vertebrate hosts to mosquitoes. This important developmental process proceeds as follows: formation of a gametocyte/gamete, fertilization and conversion of the zygote into the mosquito midgut invasive stage, called the ookinete. As a target of transmission blocking strategies, it is important to understand the mechanisms regulating Plasmodium sexual development. In this study, we assessed transcriptional regulation after fertilization by investigating the function of a novel transcription factor, AP2-Z. The results revealed the essential role of de novo transcription activated by AP2-Z in zygotes for promoting ookinete development. As transcriptional activity during the zygote stage has previously been considered silent in Plasmodium, novel genes important for ookinete formation can now be explored in the target genes of AP2-Z. Investigating the functions of these genes can help us understand the mechanisms of Plasmodium zygote/ookinete development and identify new targets for transmission blocking vaccines.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Laboratory of Medical Zoology, Department of Medicine, Mie University
| | - Izumi Kaneko
- Laboratory of Medical Zoology, Department of Medicine, Mie University
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University
| | - Masao Yuda
- Laboratory of Medical Zoology, Department of Medicine, Mie University
- * E-mail:
| |
Collapse
|
16
|
CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation. mBio 2022; 13:e0163522. [PMID: 35862778 PMCID: PMC9426505 DOI: 10.1128/mbio.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In model organisms, type IV ATPases (P4-ATPases) require cell division control protein 50 (CDC50) chaperones for their phospholipid flipping activity. In the malaria parasite Plasmodium falciparum, guanylyl cyclase alpha (GCα) is an integral membrane protein that is essential for release (egress) of merozoites from their host erythrocytes. GCα is unusual in that it contains both a C-terminal cyclase domain and an N-terminal P4-ATPase domain of unknown function. We sought to investigate whether any of the three CDC50 orthologues (termed A, B, and C) encoded by P. falciparum are required for GCα function. Using gene tagging and conditional gene disruption, we demonstrate that CDC50B and CDC50C but not CDC50A are expressed in the clinically important asexual blood stages and that CDC50B is a binding partner of GCα whereas CDC50C is the binding partner of another putative P4-ATPase, phospholipid-transporting ATPase 2 (ATP2). Our findings indicate that CDC50B has no essential role for intraerythrocytic parasite maturation but modulates the rate of parasite egress by interacting with GCα for optimal cGMP synthesis. In contrast, CDC50C is essential for blood stage trophozoite maturation. Additionally, we find that the CDC50C-ATP2 complex may influence parasite endocytosis of host cell hemoglobin and consequently hemozoin formation.
Collapse
|
17
|
Zeeshan M, Rashpa R, Ferguson DJP, Abel S, Chahine Z, Brady D, Vaughan S, Moores CA, Le Roch KG, Brochet M, Holder AA, Tewari R. Genome-wide functional analysis reveals key roles for kinesins in the mammalian and mosquito stages of the malaria parasite life cycle. PLoS Biol 2022; 20:e3001704. [PMID: 35900985 PMCID: PMC9333250 DOI: 10.1371/journal.pbio.3001704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Ravish Rashpa
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - David J P Ferguson
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory Science, Oxford, United Kingdom
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Declan Brady
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Anthony A Holder
- The Francis Crick Institute, Malaria Parasitology Laboratory, London, United Kingdom
| | - Rita Tewari
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| |
Collapse
|
18
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Bisio H, Krishnan A, Marq JB, Soldati-Favre D. Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathog 2022; 18:e1010438. [PMID: 35325010 PMCID: PMC8982854 DOI: 10.1371/journal.ppat.1010438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/05/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis. Biological membranes display diverse functions, including membrane fusion, which are conferred by a defined composition and organization of proteins and lipids. Apicomplexan parasites possess specialized secretory organelles (micronemes), implicated in motility, invasion and egress from host cells. Microneme exocytosis is already known to depend on phosphatidic acid for its fusion with the plasma membrane. Here we identify a type P4-ATPase and its CDC50 chaperone (ATP2B-CDC50.4) that act as a flippase and contribute to the enrichment of phosphatidylserine (PS) in the inner leaflet of the parasite plasma membrane. The disruption of PS asymmetric distribution at the plasma membrane impacts microneme exocytosis. Overall, our results shed light on the importance of membrane homeostasis and lipid composition in controlling microneme secretion.
Collapse
Affiliation(s)
- Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
20
|
5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc Natl Acad Sci U S A 2022; 119:2110713119. [PMID: 35210361 PMCID: PMC8892369 DOI: 10.1073/pnas.2110713119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.
Collapse
|
21
|
Abstract
Toxoplasma motility is both activated and suppressed by 3′,5′-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma’s virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.
Collapse
|
22
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
23
|
Ressurreição M, van Ooij C. Lipid transport proteins in malaria, from Plasmodium parasites to their hosts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159047. [PMID: 34461309 DOI: 10.1016/j.bbalip.2021.159047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic unicellular pathogens from the genus Plasmodium are the etiological agents of malaria, a disease that persists over a wide range of vertebrate species, including humans. During its dynamic lifecycle, survival in the different hosts depends on the parasite's ability to establish a suitable environmental milieu. To achieve this, specific host processes are exploited to support optimal growth, including extensive modifications to the infected host cell. These modifications include the formation of novel membranous structures, which are induced by the parasite. Consequently, to maintain a finely tuned and dynamic lipid environment, the organisation and distribution of lipids to different cell sites likely requires specialised lipid transfer proteins (LTPs). Indeed, several parasite and host-derived LTPs have been identified and shown to be essential at specific stages. Here we describe the roles of LTPs in parasite development and adaptation to its host including how the latest studies are profiting from the improved genetic, lipidomic and imaging toolkits available to study Plasmodium parasites. Lastly, a list of predicted Plasmodium LTPs is provided to encourage research in this field.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
24
|
Lamy A, Macarini-Bruzaferro E, Dieudonné T, Perálvarez-Marín A, Lenoir G, Montigny C, le Maire M, Vázquez-Ibar JL. ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit. Emerg Microbes Infect 2021; 10:132-147. [PMID: 33372863 PMCID: PMC7832587 DOI: 10.1080/22221751.2020.1870413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene targeting approaches have demonstrated the essential role for the malaria parasite of membrane transport proteins involved in lipid transport and in the maintenance of membrane lipid asymmetry, representing emerging oportunites for therapeutical intervention. This is the case of ATP2, a Plasmodium-encoded 4 P-type ATPase (P4-ATPase or lipid flippase), whose activity is completely irreplaceable during the asexual stages of the parasite. Moreover, a recent chemogenomic study has situated ATP2 as the possible target of two antimalarial drug candidates. In eukaryotes, P4-ATPases assure the asymmetric phospholipid distribution in membranes by translocating phospholipids from the outer to the inner leaflet. In this work, we have used a recombinantly-produced P. chabaudi ATP2 (PcATP2), to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 associates with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A. Purified PcATP2/PcCdc50B complex displays ATPase activity in the presence of either phosphatidylserine or phosphatidylethanolamine. In addition, this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work describes the first biochemical characterization of a Plasmodium lipid flippase, a first step towards the understanding of the essential physiological role of this transporter and towards its validation as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Anaïs Lamy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ewerton Macarini-Bruzaferro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Clinical Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Thibaud Dieudonné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cédric Montigny
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marc le Maire
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - José Luis Vázquez-Ibar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
25
|
Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. A malaria parasite phospholipid flippase safeguards midgut traversal of ookinetes for mosquito transmission. SCIENCE ADVANCES 2021; 7:7/30/eabf6015. [PMID: 34301597 PMCID: PMC8302136 DOI: 10.1126/sciadv.abf6015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Mosquito midgut epithelium traversal is essential for malaria parasite transmission. Phospholipid flippases are eukaryotic type 4 P-type adenosine triphosphatases (P4-ATPases), which, in association with CDC50, translocate phospholipids across the membrane lipid bilayers. In this study, we investigated the function of a putative P4-ATPase, ATP7, from the rodent malaria parasite Plasmodium yoelii Disruption of ATP7 blocks the parasite infection of mosquitoes. ATP7 is localized on the ookinete plasma membrane. While ATP7-depleted ookinetes are capable of invading the midgut, they are eliminated within the epithelial cells by a process independent from the mosquito complement-like immunity. ATP7 colocalizes and interacts with the flippase cofactor CDC50C. Depletion of CDC50C phenocopies ATP7 deficiency. ATP7-depleted ookinetes fail to uptake phosphatidylcholine across the plasma membrane. Ookinete microinjection into the mosquito hemocoel reverses the ATP7 deficiency phenotype. Our study identifies Plasmodium flippase as a mechanism of parasite survival in the midgut epithelium that is required for mosquito transmission.
Collapse
Affiliation(s)
- Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
26
|
A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat Microbiol 2021; 6:806-817. [PMID: 33958765 PMCID: PMC9793891 DOI: 10.1038/s41564-021-00899-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The stalling global progress in the fight against malaria prompts the urgent need to develop new intervention strategies. Whilst engineered symbiotic bacteria have been shown to confer mosquito resistance to parasite infection, a major challenge for field implementation is to address regulatory concerns. Here, we report the identification of a Plasmodium-blocking symbiotic bacterium, Serratia ureilytica Su_YN1, isolated from the midgut of wild Anopheles sinensis in China that inhibits malaria parasites via secretion of an antimalarial lipase. Analysis of Plasmodium vivax epidemic data indicates that local malaria cases in Tengchong (Yunnan province, China) are significantly lower than imported cases and importantly, that the local vector A. sinensis is more resistant to infection by P. vivax than A. sinensis from other regions. Analysis of the gut symbiotic bacteria of mosquitoes from Yunnan province led to the identification of S. ureilytica Su_YN1. This bacterium renders mosquitoes resistant to infection by the human parasite Plasmodium falciparum or the rodent parasite Plasmodium berghei via secretion of a lipase that selectively kills parasites at various stages. Importantly, Su_YN1 rapidly disseminates through mosquito populations by vertical and horizontal transmission, providing a potential tool for blocking malaria transmission in the field.
Collapse
|
27
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Li Z, Cui H, Guan J, Liu C, Yang Z, Yuan J. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes. EMBO Rep 2021; 22:e51660. [PMID: 33665945 PMCID: PMC8097350 DOI: 10.15252/embr.202051660] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Male and female gametocytes are sexual precursor cells essential for mosquito transmission of malaria parasite. Differentiation of gametocytes into fertile gametes (known as gametogenesis) relies on the gender‐specific transcription program. How the parasites establish distinct repertoires of transcription in the male and female gametocytes remains largely unknown. Here, we report that an Apetala2 family transcription factor AP2‐O3 operates as a transcription repressor in the female gametocytes. AP2‐O3 is specifically expressed in the female gametocytes. AP2‐O3‐deficient parasites produce apparently normal female gametocytes. Nevertheless, these gametocytes fail to differentiate into fully fertile female gametes, leading to developmental arrest in fertilization and early development post‐fertilization. AP2‐O3 disruption causes massive upregulation of transcriptionally dormant male genes and simultaneously downregulation of highly transcribed female genes in the female gametocytes. AP2‐O3 targets a substantial proportion of the male genes by recognizing an 8‐base DNA motif. In addition, the maternal AP2‐O3 is removed after fertilization, which is required for the zygote to ookinete development. Therefore, the global transcriptional repression of the male genes in the female gametocytes is required for safeguarding female‐specific transcriptome and essential for the mosquito transmission of Plasmodium.
Collapse
Affiliation(s)
- Zhenkui Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
32
|
Liu C, Yang Z, Cai M, Shi Y, Cui H, Yuan J. Generation of Plasmodium yoelii malaria parasite for conditional degradation of proteins. Mol Biochem Parasitol 2020; 241:111346. [PMID: 33307135 DOI: 10.1016/j.molbiopara.2020.111346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
The auxin-inducible degron (AID) system is a robust chemical-genetic method for manipulating endogenous protein level by conditional proteasomal degradation via a small molecule. So far, this system has not been adapted in the P. yoelii, an important and widely used Plasmodium rodent parasite model for malaria biology. Here, using the CRISPR/Cas9 genome editing method, we generated two marker-free transgenic P. yoelii parasite lines (eef1a-Tir1 and soap-Tir1) stably expressing the Oryza sativa gene tir1 under the promoters of eef1a and soap respectively. These two lines develop normally during the parasite life cycle. In these backgrounds, we used the CRISPR/Cas9 method to tag two genes (cdc50c and fbxo1) with the AID motif and interrogate the expression of these two proteins with auxin. The eef1a-Tir1 line allows efficient degradation of the AID-tagged endogenous protein in the asexual schizont and sexual gametocyte stages, while the soap-Tir1 line allows protein degradation in the ookinetes. These two lines will be a useful resource for studying the Plasmodium parasite biology based on the P. yoelii.
Collapse
Affiliation(s)
- Chuanyuan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
33
|
Vo KC, Günay-Esiyok Ö, Liem N, Gupta N. The protozoan parasite Toxoplasma gondii encodes a gamut of phosphodiesterases during its lytic cycle in human cells. Comput Struct Biotechnol J 2020; 18:3861-3876. [PMID: 33335684 PMCID: PMC7720076 DOI: 10.1016/j.csbj.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Toxoplasma genome harbors at least 18 phosphodiesterases encoded by distinct genes. Most parasite PDEs lack regulatory modules and are quite divergent from their human orthologs. Acutely-infectious tachyzoite stage of T. gondii expresses 11 PDEs with varied localizations. PDE8 and PDE9 are closely-related dual-substrate specific proteins residing in the apical pole. Homology modeling of PDE8 and PDE9 reveals a conserved 3D topology and substrate pocket. PDE9 is dispensable in tachyzoites, signifying a functional redundancy with PDE8.
Cyclic nucleotide signaling is pivotal to the asexual reproduction of Toxoplasma gondii, however little do we know about the phosphodiesterase enzymes in this widespread obligate intracellular parasite. Here, we identified 18 phosphodiesterases (TgPDE1-18) in the parasite genome, most of which form apicomplexan-specific clades and lack archetypal regulatory motifs often found in mammalian PDEs. Genomic epitope-tagging in the tachyzoite stage showed the expression of 11 phosphodiesterases with diverse subcellular distributions. Notably, TgPDE8 and TgPDE9 are located in the apical plasma membrane to regulate cAMP and cGMP signaling, as suggested by their dual-substrate catalysis and structure modeling. TgPDE9 expression can be ablated with no apparent loss of growth fitness in tachyzoites. Likewise, the redundancy in protein expression, subcellular localization and predicted substrate specificity of several other PDEs indicate significant plasticity and spatial control of cyclic nucleotide signaling during the lytic cycle. Our findings shall enable a rational dissection of signaling in tachyzoites by combinatorial mutagenesis. Moreover, the phylogenetic divergence of selected Toxoplasma PDEs from human counterparts can be exploited to develop parasite-specific inhibitors and therapeutics.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- AC, adenylate cyclase
- Apicomplexa
- Bradyzoite
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- EES, entero-epithelial stages
- FPKM, fragments per kilobase of exon model per million
- GC, guanylate cyclase
- GMQE, Global Model Quality Estimation
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyltransferase
- IMC, inner membrane complex
- Lytic cycle
- MAEBL, merozoite adhesive erythrocytic binding ligand
- MOI, multiplicity of infection
- OCRE, octamer repeat
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- QMEAN, Quality Model Energy Analysis
- Tachyzoite
- cAMP and cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nicolas Liem
- Experimental Biophysics, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
34
|
Brochet M, Balestra AC, Brusini L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol Microbiol 2020; 115:829-838. [PMID: 33112460 DOI: 10.1111/mmi.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
The Riveting Cellular Structures of Apicomplexan Parasites. Trends Parasitol 2020; 36:979-991. [PMID: 33011071 DOI: 10.1016/j.pt.2020.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Parasitic protozoa of the phylum Apicomplexa cause a range of human and animal diseases. Their complex life cycles - often heteroxenous with sexual and asexual phases in different hosts - rely on elaborate cytoskeletal structures to enable morphogenesis and motility, organize cell division, and withstand diverse environmental forces. This review primarily focuses on studies using Toxoplasma gondii and Plasmodium spp. as the best studied apicomplexans; however, many cytoskeletal adaptations are broadly conserved and predate the emergence of the parasitic phylum. After decades cataloguing the constituents of such structures, a dynamic picture is emerging of the assembly and maintenance of apicomplexan cytoskeletons, illuminating how they template and orient critical processes during infection. These observations impact our view of eukaryotic diversity and offer future challenges for cell biology.
Collapse
|
36
|
Dos Santos Pacheco N, Tosetti N, Koreny L, Waller RF, Soldati-Favre D. Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa. Trends Parasitol 2020; 36:688-704. [DOI: 10.1016/j.pt.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
|
37
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
38
|
Wang X, Qian P, Cui H, Yao L, Yuan J. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium. EMBO J 2020; 39:e104168. [PMID: 32395856 PMCID: PMC7327484 DOI: 10.15252/embj.2019104168] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Morphogenesis of many protozoans depends on a polarized establishment of cytoskeletal structures. In malaria-causing parasites, this can be observed when a round zygote develops into an elongated motile ookinete within the mosquito stomach. This morphogenesis is mediated by the pellicle cytoskeletal structures, including the inner membrane complex (IMC) and the underlying subpellicular microtubules (SPMs). How the parasite maintains the IMC-SPM connection and establishes a dome-like structure of SPM to support cell elongation is unclear. Here, we show that palmitoylation of N-terminal cysteines of two IMC proteins (ISP1/ISP3) regulates the IMC localization of ISP1/ISP3 and zygote-to-ookinete differentiation. Palmitoylation of ISP1/ISP3 is catalyzed by an IMC-residing palmitoyl-S-acyl-transferase (PAT) DHHC2. Surprisingly, DHHC2 undergoes self-palmitoylation at C-terminal cysteines via its PAT activity, which controls DHHC2 localization in IMC after zygote formation. IMC-anchored ISP1 and ISP3 interact with microtubule component β-tubulin, serving as tethers to maintain the proper structure of SPM during zygote elongation. This study identifies the first PAT-substrate pair in malaria parasites and uncovers a protein palmitoylation cascade regulating microtubule cytoskeleton.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Jiang Y, Wei J, Cui H, Liu C, Zhi Y, Jiang Z, Li Z, Li S, Yang Z, Wang X, Qian P, Zhang C, Zhong C, Su XZ, Yuan J. An intracellular membrane protein GEP1 regulates xanthurenic acid induced gametogenesis of malaria parasites. Nat Commun 2020; 11:1764. [PMID: 32273496 PMCID: PMC7145802 DOI: 10.1038/s41467-020-15479-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/14/2020] [Indexed: 11/09/2022] Open
Abstract
Gametocytes differentiation to gametes (gametogenesis) within mosquitos is essential for malaria parasite transmission. Both reduction in temperature and mosquito-derived XA or elevated pH are required for triggering cGMP/PKG dependent gametogenesis. However, the parasite molecule for sensing or transducing these environmental signals to initiate gametogenesis remains unknown. Here we perform a CRISPR/Cas9-based functional screening of 59 membrane proteins expressed in the gametocytes of Plasmodium yoelii and identify that GEP1 is required for XA-stimulated gametogenesis. GEP1 disruption abolishes XA-stimulated cGMP synthesis and the subsequent signaling and cellular events, such as Ca2+ mobilization, gamete formation, and gametes egress out of erythrocytes. GEP1 interacts with GCα, a cGMP synthesizing enzyme in gametocytes. Both GEP1 and GCα are expressed in cytoplasmic puncta of both male and female gametocytes. Depletion of GCα impairs XA-stimulated gametogenesis, mimicking the defect of GEP1 disruption. The identification of GEP1 being essential for gametogenesis provides a potential new target for intervention of parasite transmission.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jun Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chuanyuan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yuan Zhi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - ZhengZheng Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhenkui Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Shaoneng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Cui Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, 510642, Guangzhou, China.
| |
Collapse
|
40
|
Günay-Esiyok Ö, Gupta N. Chimeras of P4-ATPase and Guanylate Cyclase in Pathogenic Protists. Trends Parasitol 2020; 36:382-392. [DOI: 10.1016/j.pt.2020.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
|
41
|
Siden-Kiamos I, Goosmann C, Buscaglia CA, Brinkmann V, Matuschewski K, Montagna GN. Polarization of MTIP is a signature of gliding locomotion in Plasmodium ookinetes and sporozoites. Mol Biochem Parasitol 2019; 235:111247. [PMID: 31874192 DOI: 10.1016/j.molbiopara.2019.111247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
Abstract
Gliding motility and cell invasion are essential for the successful transmission of Plasmodium parasites. These processes rely on an acto-myosin motor located underneath the parasite plasma membrane. The Myosin A-tail interacting protein (MTIP) connects the class XIV myosin A (MyoA) to the gliding-associated proteins and is essential for assembly of the motor at the inner membrane complex. Here, we assessed the subcellular localization of MTIP in Plasmodium berghei motile stages from wild-type parasites and mutants that lack MyoA or the small heat shock protein 20 (HSP20). We demonstrate that MTIP is recruited to the apical end of motile ookinetes independently of the presence of MyoA. We also show that infective sporozoites displayed a polarized MTIP distribution during gliding, and that this distribution was abrogated in mutant parasites with an aberrant locomotion.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, 700 13 Heraklion, Crete, Greece
| | | | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio), UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Kai Matuschewski
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10117 Berlin, Germany
| | - Georgina N Montagna
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde' (IIBio), UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 049032, SP, Brazil..
| |
Collapse
|
42
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
43
|
Brochet M. cGMP Signalling: Malarial Guanylyl Cyclase Leads the Way. Curr Biol 2019; 28:R939-R941. [PMID: 30205065 DOI: 10.1016/j.cub.2018.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
When ingested by a mosquito, the malaria parasite relies on an unusual form of gliding motility to escape from the rapidly deteriorating blood meal. A new study on an atypical malaria guanylyl cyclase reveals the importance of spatiotemporal regulation of cGMP production in this process.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, CH-1211 Switzerland.
| |
Collapse
|
44
|
Billker O. CRISPRing the Elephant in the Room. Cell Host Microbe 2019; 24:754-755. [PMID: 30543773 DOI: 10.1016/j.chom.2018.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The importance of guanylyl-cyclases (GCs) in apicomplexa has remained elusive due to the large size of the genes. Two recent studies, including Brown and Sibley, 2018 in this issue of Cell Host & Microbe, make elegant use of genome editing with CRISPR-Cas9 to characterize roles of GCs in Toxoplasma and Plasmodium.
Collapse
Affiliation(s)
- Oliver Billker
- Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden.
| |
Collapse
|
45
|
Günay-Esiyok Ö, Scheib U, Noll M, Gupta N. An unusual and vital protein with guanylate cyclase and P4-ATPase domains in a pathogenic protist. Life Sci Alliance 2019; 2:2/3/e201900402. [PMID: 31235476 PMCID: PMC6592433 DOI: 10.26508/lsa.201900402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii harbors an alveolate-specific guanylate cyclase linked to P-type ATPase motifs, which is an essential actuator of cGMP-dependent gliding motility, egress, and invasion during acute infection. cGMP signaling is one of the master regulators of diverse functions in eukaryotes; however, its architecture and functioning in protozoans remain poorly understood. Herein, we report an exclusive guanylate cyclase coupled with N-terminal P4-ATPase in a common parasitic protist, Toxoplasma gondii. This bulky protein (477-kD), termed TgATPaseP-GC to fairly reflect its envisaged multifunctionality, localizes in the plasma membrane at the apical pole of the parasite, whereas the corresponding cGMP-dependent protein kinase (TgPKG) is distributed in the cytomembranes. TgATPaseP-GC is refractory to genetic deletion, and its CRISPR/Cas9–assisted disruption aborts the lytic cycle of T. gondii. Besides, Cre/loxP–mediated knockdown of TgATPaseP-GC reduced the synthesis of cGMP and inhibited the parasite growth due to impairments in the motility-dependent egress and invasion events. Equally, repression of TgPKG by a similar strategy recapitulated phenotypes of the TgATPaseP-GC–depleted mutant. Notably, despite a temporally restricted function, TgATPaseP-GC is expressed constitutively throughout the lytic cycle, entailing a post-translational regulation of cGMP signaling. Not least, the occurrence of TgATPaseP-GC orthologs in several other alveolates implies a divergent functional repurposing of cGMP signaling in protozoans, and offers an excellent drug target against the parasitic protists.
Collapse
Affiliation(s)
- Özlem Günay-Esiyok
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ulrike Scheib
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Matthias Noll
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| |
Collapse
|
46
|
Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, Jacot D. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. eLife 2019; 8:e42669. [PMID: 30753127 PMCID: PMC6372287 DOI: 10.7554/elife.42669] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii possesses a limited set of actin-regulatory proteins and relies on only three formins (FRMs) to nucleate and polymerize actin. We combined filamentous actin (F-actin) chromobodies with gene disruption to assign specific populations of actin filaments to individual formins. FRM2 localizes to the apical juxtanuclear region and participates in apicoplast inheritance. Restricted to the residual body, FRM3 maintains the intravacuolar cell-cell communication. Conoidal FRM1 initiates a flux of F-actin crucial for motility, invasion and egress. This flux depends on myosins A and H and is controlled by phosphorylation via PKG (protein kinase G) and CDPK1 (calcium-dependent protein kinase 1) and by methylation via AKMT (apical lysine methyltransferase). This flux is independent of microneme secretion and persists in the absence of the glideosome-associated connector (GAC). This study offers a coherent model of the key players controlling actin polymerization, stressing the importance of well-timed post-translational modifications to power parasite motility.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| | | | | | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
47
|
Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat Microbiol 2019; 4:420-428. [DOI: 10.1038/s41564-018-0339-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
48
|
Brown KM, Sibley LD. Essential cGMP Signaling in Toxoplasma Is Initiated by a Hybrid P-Type ATPase-Guanylate Cyclase. Cell Host Microbe 2018; 24:804-816.e6. [PMID: 30449726 DOI: 10.1016/j.chom.2018.10.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022]
Abstract
Apicomplexan parasites rely on cyclic nucleotide-dependent kinases for host cell infection, yet the mechanisms that control their activation remain unknown. Here we show that an apically localized guanylate cyclase (GC) controls microneme secretion and lytic growth in the model apicomplexan Toxoplasma gondii. Cell-permeable cGMP reversed the block in microneme secretion seen in a knockdown of TgGC, linking its function to production of cGMP. TgGC possesses an N-terminal P-type ATPase domain fused to a C-terminal heterodimeric guanylate cyclase domain, an architecture found only in Apicomplexa and related protists. Complementation with a panel of mutants revealed a critical requirement for the P-type ATPase domain for maximum GC function. We further demonstrate that knockdown of TgGC in vivo protects mice from lethal infection by blocking parasite expansion and dissemination. Collectively, this work demonstrates that cGMP-mediated signaling in Toxoplasma relies on a multi-domain architecture, which may serve a conserved role in related parasites.
Collapse
Affiliation(s)
- Kevin M Brown
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|