1
|
Natahi S, Neubauer S, Tsegai ZJ, Hublin JJ, Gunz P. Cranial vault thickness, its internal organization, and its relationship with endocranial shape in Neanderthals and modern humans. J Hum Evol 2025; 204:103683. [PMID: 40359630 DOI: 10.1016/j.jhevol.2025.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025]
Abstract
Compared to the more elongated crania of Neanderthals, modern humans have a rounder, more globular cranial vault. The factors contributing to this globular cranial and endocranial morphology remain poorly understood. Cranial vault thickness (CVT) plays a role in shaping the braincase. It has been proposed that CVT variation in hominins reflects distinct stimuli influencing the cranial vault layers to different degrees. We aim to determine to what extent CVT differences could explain the well-documented endocranial shape differences between modern humans and Neanderthals. Additionally, we quantify the contributions of each cranial vault layer-the inner and outer tables and the diploë-to elucidate the processes driving CVT variation. We analyzed crania from seven Neanderthals and 75 modern humans using a ray casting method to measure cortical, diploic, and overall CVT. We generated morphometric maps of thickness distributions for each cranial vault layer. We then quantified the endocranial shape using geometric morphometrics and analyzed its relationship with CVT using two-block partial least squares analysis and regression models. Our findings reveal that Neanderthals generally have greater CVT and thicker layers of the cranial vault than modern humans. However, their ranges overlap with those of modern humans. The thicker vaults of Neanderthals are primarily driven by the diploic layer, with notable differences in thickness distribution patterns. Additionally, the inner and outer cortical tables exhibit distinct thickness distribution patterns between the two groups. Structural differences between the parietal bones of Neanderthals and modern humans are particularly pronounced. Furthermore, we observed a unique correspondence between CVT and endocranial shape in modern humans, which is not shared by Neanderthals.
Collapse
Affiliation(s)
- Sélim Natahi
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| | - Simon Neubauer
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Institute of Anatomy and Cell Biology, Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, 60637 Chicago, USA
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France; Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Yuan M, Goovaerts S, Lee MK, Devine J, Richmond S, Walsh S, Shriver MD, Shaffer JR, Marazita ML, Peeters H, Weinberg SM, Claes P. Optimized phenotyping of complex morphological traits: enhancing discovery of common and rare genetic variants. Brief Bioinform 2025; 26:bbaf090. [PMID: 40062617 PMCID: PMC11891655 DOI: 10.1093/bib/bbaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Genotype-phenotype (G-P) analyses for complex morphological traits typically utilize simple, predetermined anatomical measures or features derived via unsupervised dimension reduction techniques (e.g. principal component analysis (PCA) or eigen-shapes). Despite the popularity of these approaches, they do not necessarily reveal axes of phenotypic variation that are genetically relevant. Therefore, we introduce a framework to optimize phenotyping for G-P analyses, such as genome-wide association studies (GWAS) of common variants or rare variant association studies (RVAS) of rare variants. Our strategy is two-fold: (i) we construct a multidimensional feature space spanning a wide range of phenotypic variation, and (ii) within this feature space, we use an optimization algorithm to search for directions or feature combinations that are genetically enriched. To test our approach, we examine human facial shape in the context of GWAS and RVAS. In GWAS, we optimize for phenotypes exhibiting high heritability, estimated from either family data or genomic relatedness measured in unrelated individuals. In RVAS, we optimize for the skewness of phenotype distributions, aiming to detect commingled distributions that suggest single or few genomic loci with major effects. We compare our approach with eigen-shapes as baseline in GWAS involving 8246 individuals of European ancestry and in gene-based tests of rare variants with a subset of 1906 individuals. After applying linkage disequilibrium score regression to our GWAS results, heritability-enriched phenotypes yielded the highest SNP heritability, followed by eigen-shapes, while commingling-based traits displayed the lowest SNP heritability. Heritability-enriched phenotypes also exhibited higher discovery rates, identifying the same number of independent genomic loci as eigen-shapes with a smaller effective number of traits. For RVAS, commingling-based traits resulted in more genes passing the exome-wide significance threshold than eigen-shapes, while heritability-enriched phenotypes lead to only a few associations. Overall, our results demonstrate that optimized phenotyping allows for the extraction of genetically relevant traits that can specifically enhance discovery efforts of common and rare variants, as evidenced by their increased power in facial GWAS and RVAS.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Myoung K Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Jay Devine
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, 420 University Blvd, Indianapolis 46202, IN, United States
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, 201 Old Main, University Park, PA 16802, United States
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Murdoch Children's Research Institute, 50 Flemington Rd, Parkville VIC 3052, Australia
| |
Collapse
|
3
|
Sorrentino R, Pietrobelli A, Mameli D, Mariotti V, Nicolosi T, Belcastro MG. The Virtual Database of the Documented Human Osteological Collection (DHOC) of the Certosa Cemetery of Bologna (Italy, 19th-20th Century). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25065. [PMID: 39936186 PMCID: PMC11815355 DOI: 10.1002/ajpa.25065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 12/29/2024] [Indexed: 02/13/2025]
Abstract
This article aims to introduce a new virtual database of skeletal human remains from the Documented Human Osteological Collection (DHOC) of the Certosa Cemetery of Bologna (Emilia Romagna, northern Italy) housed at the University of Bologna. The Virtual DHOC of the Certosa Cemetery of Bologna (VirtualDHOC) is stored in the publicly accessible 3D data repository MorphoSource, and consists of 3D models or micro-Computer Tomography scans of skeletal elements of a subsample of the 425 individuals. These skeletons, mostly complete and well-preserved, pertain to individuals of different ages, ranging from fetuses/newborns to 91 years old, for which the sex is known, who died in the city of Bologna between 1898 and 1944. This collection represents an important scientific resource for the study of human skeletal remains and to test methods and techniques in the field of bioarchaeology, forensics, and paleoanthropology. The digitization of a comprehensive database of 3D scans and 3D bones is an ongoing project that will implement the Virtual DHOC of the Certosa Cemetery of Bologna over the next few years. The Virtual DHOC of the Certosa Cemetery of Bologna aims to share the data contained therein with other researchers, contributing to the dissemination of knowledge and the promotion of scientific research in anthropology, while also ensuring the virtual preservation and accessibility of this collection for future generations. This simultaneously responds to various ethical concerns and best practices about the treatment and management of human skeletal remains.
Collapse
Affiliation(s)
- Rita Sorrentino
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Annalisa Pietrobelli
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Davide Mameli
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Mariotti
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Teresa Nicolosi
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
4
|
Benítez-Burraco A. How (and why) languages became more complex as we evolved more prosocial: the human self-domestication view. Front Psychol 2025; 15:1499994. [PMID: 39895972 PMCID: PMC11782162 DOI: 10.3389/fpsyg.2024.1499994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
This paper aims to re-examine the problem of the emergence of present-day languages from the specific perspective of the self-domestication account of human evolution. According to this view, our species went through an evolutionary process that parallels the changes experienced by domesticated mammals. Relying on evidence of diverse kind (from paleogenetic to clinical), the paper argues that our self-domestication might have potentiated the cognitive and behavioral features of the human phenotype with an impact on language acquisition and use. Specifically, it might have facilitated the creation of the cultural niche that favors the complexification of languages via a cultural mechanism. The paper further proposes a model of language complexification in the past under the effects of human self-domestication, including the complexification of the structural aspects of language (grammar, prosody, and semantics) and the potentiation of its functional properties (pragmatics). The paper concludes with some suggestions for any future research aimed to test and improve this view.
Collapse
|
5
|
Relethford JH. Craniometric variation and the ancestry of modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25028. [PMID: 39288002 DOI: 10.1002/ajpa.25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES Ancient and contemporary DNA provide information about geographic variation in the ancestry of present-day humans. All living populations have ancestry from early Homo sapiens originating in sub-Saharan Africa. Populations of Eurasian descent also have a small amount of Neandertal ancestry. This study examines whether craniometric distances between recent modern human samples reflect this geographic variation in ancestry. Among recent modern humans, Eurasians are expected to be more similar to Neandertals, whereas both sub-Saharan Africans and Eurasians are expected to be equidistant from early H. sapiens. MATERIALS AND METHODS Data on 33 craniometric traits from 2524 recent modern humans were compared with data from the literature for Neandertals and early H. sapiens. Mahalanobis distances were computed for each modern specimen to both the Neandertal and early H. sapiens means. These distances were examined for differences between recent humans from sub-Saharan Africa (N = 373) and those of Eurasian descent (N = 2151). RESULTS Eurasians as a group are significantly closer than sub-Saharan Africans to Neandertals. There is no significant difference between the distances of sub-Saharan Africans and Eurasians to early H. sapiens. DISCUSSION The differences between sub-Saharan Africans and Eurasians for both Neandertals and early H. sapiens are as expected. Although there has been geographic differentiation among recent modern humans, including differences in Neandertal admixture, these differences have not affected overall similarity of recent modern sub-Saharan Africans and Eurasians to the earliest samples of H. sapiens.
Collapse
Affiliation(s)
- John H Relethford
- Department of Anthropology, State University of New York at Oneonta, Oneonta, New York, USA
| |
Collapse
|
6
|
Pauly R, Johnson L, Feltus FA, Casanova EL. Enrichment of a subset of Neanderthal polymorphisms in autistic probands and siblings. Mol Psychiatry 2024; 29:3452-3461. [PMID: 38760502 PMCID: PMC11541192 DOI: 10.1038/s41380-024-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Homo sapiens and Neanderthals underwent hybridization during the Middle/Upper Paleolithic age, culminating in retention of small amounts of Neanderthal-derived DNA in the modern human genome. In the current study, we address the potential roles Neanderthal single nucleotide polymorphisms (SNP) may be playing in autism susceptibility in samples of black non-Hispanic, white Hispanic, and white non-Hispanic people using data from the Simons Foundation Powering Autism Research (SPARK), Genotype-Tissue Expression (GTEx), and 1000 Genomes (1000G) databases. We have discovered that rare variants are significantly enriched in autistic probands compared to race-matched controls. In addition, we have identified 25 rare and common SNPs that are significantly enriched in autism on different ethnic backgrounds, some of which show significant clinical associations. We have also identified other SNPs that share more specific genotype-phenotype correlations but which are not necessarily enriched in autism and yet may nevertheless play roles in comorbid phenotype expression (e.g., intellectual disability, epilepsy, and language regression). These results strongly suggest Neanderthal-derived DNA is playing a significant role in autism susceptibility across major populations in the United States.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
| | - Layla Johnson
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA
| | - F Alex Feltus
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Clemson, SC, 29634, USA
| | - Emily L Casanova
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA.
| |
Collapse
|
7
|
Chen S, Kleiven S, Thiblin I, Li X. Quantitative morphological analysis framework of infant cranial sutures and fontanelles based on CT images. J Anat 2024; 245:377-391. [PMID: 38720634 PMCID: PMC11306764 DOI: 10.1111/joa.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 08/09/2024] Open
Abstract
Characterizing the suture morphological variation is a crucial step to investigate the influence of sutures on infant head biomechanics. This study aimed to establish a comprehensive quantitative framework for accurately capturing the cranial suture and fontanelle morphologies in infants. A total of 69 CT scans of 2-4 month-old infant heads were segmented to identify semilandmarks at the borders of cranial sutures and fontanelles. Morphological characteristics, including length, width, sinuosity index (SI), and surface area, were measured. For this, an automatic method was developed to determine the junction points between sutures and fontanelles, and thin-plate-spline (TPS) was utilized for area calculation. Different dimensionality reduction methods were compared, including nonlinear and linear principal component analysis (PCA), as well as deep-learning-based variational autoencoder (VAE). Finally, the significance of various covariates was analyzed, and regression analysis was performed to establish a statistical model relating morphological parameters with global parameters. This study successfully developed a quantitative morphological framework and demonstrate its application in quantifying morphologies of infant sutures and fontanelles, which were shown to significantly relate to global parameters of cranial size, suture SI, and surface area for infants aged 2-4 months. The developed framework proved to be reliable and applicable in extracting infant suture morphology features from CT scans. The demonstrated application highlighted its potential to provide valuable insights into the morphologies of infant cranial sutures and fontanelles, aiding in the diagnosis of suture-related skull fractures. Infant suture, Infant fontanelle, Morphological variation, Morphology analysis framework, Statistical model.
Collapse
Affiliation(s)
- Siyuan Chen
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health SystemsKTH – Royal Institute of TechnologyHuddingeSweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health SystemsKTH – Royal Institute of TechnologyHuddingeSweden
| | - Ingemar Thiblin
- Forensic Medicine, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Xiaogai Li
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health SystemsKTH – Royal Institute of TechnologyHuddingeSweden
| |
Collapse
|
8
|
Hautavoine H, Arnaud J, Balzeau A, Mounier A. Quantifying hominin morphological diversity at the end of the middle Pleistocene: Implications for the origin of Homo sapiens. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24915. [PMID: 38444398 DOI: 10.1002/ajpa.24915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 01/28/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The Middle Pleistocene (MP) saw the emergence of new species of hominins: Homo sapiens in Africa, H. neanderthalensis, and possibly Denisovans in Eurasia, whose most recent common ancestor is thought to have lived in Africa around 600 ka ago. However, hominin remains from this period present a wide range of morphological variation making it difficult to securely determine their taxonomic attribution and their phylogenetic position within the Homo genus. This study proposes to reconsider the phenetic relationships between MP hominin fossils in order to clarify evolutionary trends and contacts between the populations they represent. MATERIALS AND METHODS We used a Geometric Morphometrics approach to quantify the morphological variation of the calvarium of controversial MP specimens from Africa and Eurasia by using a comparative sample that can be divided into 5 groups: H. ergaster, H. erectus, H. neanderthalensis, and H. sapiens, as well as individuals from current modern human populations. We performed a Generalized Procrustes Analysis, a Principal Component Analysis, and Multinomial Principal Component Logistic Regressions to determine the phenetic affinities of the controversial Middle Pleistocene specimens with the other groups. RESULTS MP African and Eurasian specimens represent several populations, some of which show strong affinities with H. neanderthalensis in Europe or H. sapiens in Africa, others presenting multiple affinities. DISCUSSION These MP populations might have contributed to the emergence of these two species in different proportions. This study proposes a new framework for the human evolutionary history during the MP.
Collapse
Affiliation(s)
- Hugo Hautavoine
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
| | - Julie Arnaud
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Dipartimento di Studi Umanistici, Università degli Studi di Ferrara, Ferrara, Italy
| | - Antoine Balzeau
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Département de Zoologie Africaine, Musée Royal de l'Afrique Centrale, Tervuren, Belgium
| | - Aurélien Mounier
- PaléoFED, Histoire Naturelle de l'Homme Préhistorique (HNHP, UMR 7194), MNHN/CNRS/UPVD, Paris, France
- Turkana Basin Institute, Nairobi, Kenya
| |
Collapse
|
9
|
Estrems Velazquez E, Ferton E, Colombo A. [Paleoneurology: an evolving science?]. Med Sci (Paris) 2024; 40:295-298. [PMID: 38520108 DOI: 10.1051/medsci/2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
Dans le cadre du Master 2 Sciences du Vivant de l’université EPHE-PSL (cursus IMaGHE, parcours Physiopathologie Intégrative, PPI), des étudiants se sont confrontés à la rédaction d’une Nouvelle scientifique. Selon la spécialisation choisie par les étudiants (Neurosciences ou Cancérologie), l’équipe pédagogique leur a proposé de faire une synthèse d’articles sur deux thématiques : (i) la paléoneurologie, qui permet d’analyser la transformation du cerveau de l’Homme au cours de l’évolution et (ii) la recherche bio-inspirée, qui permet de reproduire ce qui existe dans la nature pour développer des surfaces bactéricides évitant l’usage d’antibiotiques. Organisés en binôme, les étudiants ont rédigé deux Nouvelles qui soulignent l’intérêt des travaux analysés, ainsi que leur originalité. Ils se sont pleinement investis dans cette tâche et ont su faire preuve d’un bel esprit de synthèse. Ils ont apprécié cet exercice nouveau pour eux, mais qui leur a permis d’avoir un aperçu de l’exercice de la publication scientifique, inhérent au métier de chercheur auquel ils se destinent.
Collapse
Affiliation(s)
- Emma Estrems Velazquez
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Etudes (EPHE), 75014 Paris, France
| | - Evaëlle Ferton
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Etudes (EPHE), 75014 Paris, France
| | - Antony Colombo
- UMR 6034 Archéosciences Bordeaux, Université Bordeaux Montaigne, 33607 Pessac, France - EPHE-PSL Université, 4-14 rue Ferrus, 75014 Paris, France
| |
Collapse
|
10
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
11
|
Zhang Y, Li Z. Three-dimensional geometric morphometric study of the Xuchang 2 cranium. J Hum Evol 2023; 178:103347. [PMID: 36966596 DOI: 10.1016/j.jhevol.2023.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Results of traditional metric and nonmetric assessments suggest that the Xuchang hominin shares features with Neanderthals. To comprehensively compare the nuchal morphology of XC 2 to those of the genus Homo, we conduct a three-dimensional geometric morphometric study with 35 cranial landmarks and surface semilandmarks of XC 2, Homo erectus, Middle Pleistocene humans, Neanderthals, and early and recent modern humans. Results reveal that the centroid size of XC 2 is larger than that of early and recent modern humans and can only be compared to that of Middle Pleistocene humans and H. erectus. Early and recent modern humans share a nuchal morphology distinct from archaic hominins (Ngandong H. erectus, Middle Pleistocene humans, and Neanderthals), except for SM 3, Sangiran 17, and Asian and African H. erectus. Although Ngandong specimens differ from the other H. erectus, it is unclear whether this represents a temporal or spatial trend in the process of evolution of this species. The nuchal morphological resemblance between Middle Pleistocene humans and Neanderthals may be attributed to similar cranial architecture and cerebellar shape. The great nuchal morphological variation shared by recent modern humans may indicate a particular developmental pattern. In conclusion, the nuchal morphology of different human groups is highly variable and may be caused by different factors including brain globularization and developmental plasticity. XC 2 shares similar nuchal morphology with Middle Pleistocene humans and Neanderthals, but these results are insufficient to fully resolve the taxonomic status of XC 2.
Collapse
Affiliation(s)
- Yameng Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
| | - Zhanyang Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, 450000, China.
| |
Collapse
|
12
|
Weber GW. Quantum Leaps in Human Biocultural Evolution and the Relationship to Cranial Capacity. Life (Basel) 2023; 13:life13041030. [PMID: 37109559 PMCID: PMC10145355 DOI: 10.3390/life13041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolution of the genus Homo can only be understood by considering both of the inheritance systems that interact to shape human nature: biology and culture. While growing intellectual abilities are a key factor of human evolution, they are rarely contrasted with cultural progress. Cranial capacity data of 193 hominin fossils from the last seven million years and artefacts of increasing number and complexity in the archaeological record are used to demonstrate the concordant progression of brain-size increase and cultural development, starting approximately two million years ago. Our biocultural evolution shows a number of quantum leaps along the time axis applying to both domains. At first, humans left the canonical evolutionary pathway, which pertains to all other organisms, by enhancing their fitness using sophisticated tools and fire; secondly, they turned into a symbolic species; and finally, humanity now faces a new challenge: "intentional evolution". Chronologically, these quantum leaps correspond to cranial capacity data used here as a proxy for cognitive performance. This contribution tries to demonstrate this parallel development and argues for a simple and generalized model of human biocultural evolution. An extrapolation of the model into the future shows that humans, as biological entities, will not necessarily persist.
Collapse
Affiliation(s)
- Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
13
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
14
|
Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data. Genes (Basel) 2023; 14:genes14030727. [PMID: 36980999 PMCID: PMC10048696 DOI: 10.3390/genes14030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Ancient anatomically modern humans (AMHs) encountered other archaic human species, most notably Neanderthals and Denisovans, when they left Africa and spread across Europe and Asia ~60,000 years ago. They interbred with them, and modern human genomes retain DNA inherited from these interbreeding events. High quality (high coverage) ancient human genomes have recently been sequenced allowing for a direct estimation of individual heterozygosity, which has shown that genetic diversity in these archaic human groups was very low, indicating low population sizes. In this study, we analyze ten ancient human genome-wide data, including four sequenced with high-coverage. We screened these ancient genome-wide data for pathogenic mutations associated with monogenic diseases, and established unusual aggregation of pathogenic mutations in individual subjects, including quadruple homozygous cases of pathogenic variants in the PAH gene associated with the condition phenylketonuria in a ~120,000 years old Neanderthal. Such aggregation of pathogenic mutations is extremely rare in contemporary populations, and their existence in ancient humans could be explained by less significant clinical manifestations coupled with small community sizes, leading to higher inbreeding levels. Our results suggest that pathogenic variants associated with rare diseases might be the result of introgression from other archaic human species, and archaic admixture thus could have influenced disease risk in modern humans.
Collapse
|
15
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
Boeckx C. What made us "hunter-gatherers of words". Front Neurosci 2023; 17:1080861. [PMID: 36845441 PMCID: PMC9947416 DOI: 10.3389/fnins.2023.1080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
This paper makes three interconnected claims: (i) the "human condition" cannot be captured by evolutionary narratives that reduce it to a recent 'cognitive modernity', nor by narratives that eliminates all cognitive differences between us and out closest extinct relatives, (ii) signals from paleogenomics, especially coming from deserts of introgression but also from signatures of positive selection, point to the importance of mutations that impact neurodevelopment, plausibly leading to temperamental differences, which may impact cultural evolutionary trajectories in specific ways, and (iii) these trajectories are expected to affect the language phenotypes, modifying what is being learned and how it is put to use. In particular, I hypothesize that these different trajectories influence the development of symbolic systems, the flexible ways in which symbols combine, and the size and configurations of the communities in which these systems are put to use.
Collapse
Affiliation(s)
- Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 2023; 7:42-50. [PMID: 36604552 DOI: 10.1038/s41559-022-01933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
Collapse
|
18
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Lemaitre H, Le Guen Y, Tilot AK, Stein JL, Philippe C, Mangin JF, Fisher SE, Frouin V. Genetic variations within human gained enhancer elements affect human brain sulcal morphology. Neuroimage 2023; 265:119773. [PMID: 36442731 DOI: 10.1016/j.neuroimage.2022.119773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.
Collapse
Affiliation(s)
- Herve Lemaitre
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France.
| | - Yann Le Guen
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Jason L Stein
- Department of Genetics and the UNC Neuroscience Center, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Cathy Philippe
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vincent Frouin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
21
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
22
|
Harvati K, Reyes-Centeno H. Evolution of Homo in the Middle and Late Pleistocene. J Hum Evol 2022; 173:103279. [PMID: 36375244 PMCID: PMC9703123 DOI: 10.1016/j.jhevol.2022.103279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
The Middle and Late Pleistocene is arguably the most interesting period in human evolution. This broad period witnessed the evolution of our own lineage, as well as that of our sister taxon, the Neanderthals, and related Denisovans. It is exceptionally rich in both fossil and archaeological remains, and uniquely benefits from insights gained through molecular approaches, such as paleogenetics and paleoproteomics, that are currently not widely applicable in earlier contexts. This wealth of information paints a highly complex picture, often described as 'the Muddle in the Middle,' defying the common adage that 'more evidence is needed' to resolve it. Here we review competing phylogenetic scenarios and the historical and theoretical developments that shaped our approaches to the fossil record, as well as some of the many remaining open questions associated with this period. We propose that advancing our understanding of this critical time requires more than the addition of data and will necessitate a major shift in our conceptual and theoretical framework.
Collapse
Affiliation(s)
- Katerina Harvati
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 19-23, Tübingen 72070, Germany; DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Rümelinstrasse 19-23, Tübingen 72070, Germany.
| | - Hugo Reyes-Centeno
- Department of Anthropology, University of Kentucky, 211 Lafferty Hall, Lexington, KY 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, 1020 Export St, Lexington, KY 40504, USA
| |
Collapse
|
23
|
Harvati K, Ackermann RR. Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins. Nat Ecol Evol 2022; 6:1573-1585. [PMID: 36064759 DOI: 10.1038/s41559-022-01875-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2022] [Indexed: 11/09/2022]
Abstract
Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive group. However, recent research has shown that the process underlying our origins was considerably more complex. While archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have shaped the human past, beyond what is currently visible with the lens of ancient DNA.
Collapse
Affiliation(s)
- K Harvati
- Paleoanthropology section, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - R R Ackermann
- Human Evolution Research Institute, University of Cape Town, Cape Town, South Africa.
- Department of Archaeology, University of Cape Town, Cape Town, South Africa.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Pinson A, Xing L, Namba T, Kalebic N, Peters J, Oegema CE, Traikov S, Reppe K, Riesenberg S, Maricic T, Derihaci R, Wimberger P, Pääbo S, Huttner WB. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 2022; 377:eabl6422. [PMID: 36074851 DOI: 10.1126/science.abl6422] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Riesenberg
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Razvan Derihaci
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
26
|
Miller JA, Weiner KS. Unfolding the evolution of human cognition. Trends Cogn Sci 2022; 26:735-737. [PMID: 35909020 DOI: 10.1016/j.tics.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
Recent findings spanning fields, from braincases in paleoneurobiology to invivo measurements in cognitive neuroscience, provide insights into the evolution of cognition. Here, we integrate these findings and propose that studying small, evolutionarily new cortical structures has significant implications for identifying new links between neuroanatomical substrates and human-specific aspects of cognition.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
27
|
Can a Neandertal meditate? An evolutionary view of attention as a core component of general intelligence. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Meneganzin A, Pievani T, Manzi G. Pan-Africanism vs. single-origin of Homo sapiens: Putting the debate in the light of evolutionary biology. Evol Anthropol 2022; 31:199-212. [PMID: 35848454 PMCID: PMC9540121 DOI: 10.1002/evan.21955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The scenario of Homo sapiens origin/s within Africa has become increasingly complex, with a pan-African perspective currently challenging the long-established single-origin hypothesis. In this paper, we review the lines of evidence employed in support of each model, highlighting inferential limitations and possible terminological misunderstandings. We argue that the metapopulation scenario envisaged by pan-African proponents well describes a mosaic diversification among late Middle Pleistocene groups. However, this does not rule out a major contribution that emerged from a single population where crucial derived features-notably, a globular braincase-appeared as the result of a punctuated, cladogenetic event. Thus, we suggest that a synthesis is possible and propose a scenario that, in our view, better reconciles with consolidated expectations in evolutionary theory. These indicate cladogenesis in allopatry as an ordinary pattern for the origin of a new species, particularly during phases of marked climatic and environmental instability.
Collapse
Affiliation(s)
| | | | - Giorgio Manzi
- Department of Environmental BiologySapienza University of RomeRomeItaly
| |
Collapse
|
29
|
Andirkó A, Boeckx C. Brain region-specific effects of nearly fixed sapiens-derived alleles. BMC Genom Data 2022; 23:36. [PMID: 35546225 PMCID: PMC9097168 DOI: 10.1186/s12863-022-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥90%) alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database. We show that regulation by these derived variants targets regions under positive selection more often than expected by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation. Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.
Collapse
Affiliation(s)
- Alejandro Andirkó
- University of Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- University of Barcelona, Barcelona, Spain. .,University of Barcelona Institute of Complex Systems, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
30
|
Buisan R, Moriano J, Andirkó A, Boeckx C. A Brain Region-Specific Expression Profile for Genes Within Large Introgression Deserts and Under Positive Selection in Homo sapiens. Front Cell Dev Biol 2022; 10:824740. [PMID: 35557944 PMCID: PMC9086289 DOI: 10.3389/fcell.2022.824740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Analyses of ancient DNA from extinct hominins have provided unique insights into the complex evolutionary history of Homo sapiens, intricately related to that of the Neanderthals and the Denisovans as revealed by several instances of admixture events. These analyses have also allowed the identification of introgression deserts: genomic regions in our species that are depleted of "archaic" haplotypes. The presence of genes like FOXP2 in these deserts has been taken to be suggestive of brain-related functional differences between Homo species. Here, we seek a deeper characterization of these regions and the specific expression trajectories of genes within them, taking into account signals of positive selection in our lineage. Analyzing publicly available transcriptomic data from the human brain at different developmental stages, we found that structures outside the cerebral neocortex, in particular the cerebellum, the striatum and the mediodorsal nucleus of the thalamus show the most divergent transcriptomic profiles when considering genes within large introgression deserts and under positive selection.
Collapse
Affiliation(s)
| | - Juan Moriano
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Alejandro Andirkó
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
32
|
Weasel L. How Neanderthals became White: The introgression of race into contemporary human evolutionary genomics. Am Nat 2022; 200:129-139. [DOI: 10.1086/720130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
DeCasien AR, Barton RA, Higham JP. Understanding the human brain: insights from comparative biology. Trends Cogn Sci 2022; 26:432-445. [DOI: 10.1016/j.tics.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
|
34
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Caparros M, Prat S. A Phylogenetic Networks perspective on reticulate human evolution. iScience 2021; 24:102359. [PMID: 33898948 PMCID: PMC8054162 DOI: 10.1016/j.isci.2021.102359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/04/2020] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
We present a methodological phylogenetic reconstruction approach combining Maximum Parsimony and Phylogenetic Networks methods for the study of human evolution applied to phenotypic craniodental characters of 22 hominin species. The approach consists in selecting and validating a tree-like most parsimonious scenario out of several parsimony runs based on various numerical constraints. An intermediate step from tree to network methods is implemented by running an analysis with a reduced apomorphous character dataset that generates multiple parsimonious trees. These most parsimonious trees are then used as input for a Phylogenetic Networks analysis that results in consensus and reticulate networks. We show here that the phylogenetic tree-like definition of the genus Homo is a relative concept linked to craniodental characters that come in support of hypothetical Last Common Ancestors of the most parsimonious scenario and infer that the Homo reticulate network concords with recent findings in paleogenomic research regarding its mode of evolution.
Collapse
Affiliation(s)
- Miguel Caparros
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| | - Sandrine Prat
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| |
Collapse
|
36
|
Weiss CV, Harshman L, Inoue F, Fraser HB, Petrov DA, Ahituv N, Gokhman D. The cis-regulatory effects of modern human-specific variants. eLife 2021; 10:e63713. [PMID: 33885362 PMCID: PMC8062137 DOI: 10.7554/elife.63713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.
Collapse
Affiliation(s)
- Carly V Weiss
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Hunter B Fraser
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David Gokhman
- Department of Biology, Stanford University, StanfordStanfordUnited States
| |
Collapse
|
37
|
Tilot AK, Khramtsova EA, Liang D, Grasby KL, Jahanshad N, Painter J, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Liu S, Brotman SM, Thompson PM, Medland SE, Macciardi F, Stranger BE, Davis LK, Fisher SE, Stein JL. The Evolutionary History of Common Genetic Variants Influencing Human Cortical Surface Area. Cereb Cortex 2021; 31:1873-1887. [PMID: 33290510 PMCID: PMC7945014 DOI: 10.1093/cercor/bhaa327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000-3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure.
Collapse
Affiliation(s)
- Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, Netherlands
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ekaterina A Khramtsova
- Department of Medicine, Section of Genetic Medicine & Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Computational Sciences, Janssen Pharmaceuticals, Spring House, PA 19477, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Jodie Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janita Bralten
- Radboud University Medical Center, 6525 XZ Nijmegen, Netherlands
| | | | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Siyao Liu
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Barbara E Stranger
- Department of Medicine, Section of Genetic Medicine & Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lea K Davis
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN 37232, USA
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HB, Netherlands
| | - Jason L Stein
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021; 289:1524-1535. [PMID: 33638923 DOI: 10.1111/febs.15793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023]
Abstract
Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
39
|
Gregory MD, Kippenhan JS, Kohn P, Eisenberg DP, Callicott JH, Kolachana B, Berman KF. Neanderthal-Derived Genetic Variation is Associated with Functional Connectivity in the Brains of Living Humans. Brain Connect 2020; 11:38-44. [PMID: 33218283 DOI: 10.1089/brain.2020.0809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Aim: To determine whether Neanderthal-derived genetic variation relates to functional connectivity patterns in the brains of living modern humans. Introduction: Nearly 50,000 years ago, Neanderthals interbred with ancestors of modern humans, imparting a genetic legacy that lives on today. The vestiges of this Neanderthal-derived genetic variation have been previously shown to be enriched in genes coding for neurogenesis and myelination and to alter skull shape and brain structure in living people. Materials and Methods: Using two independent cohorts totaling 553 healthy individuals, we employed multivariate distance matrix regression (MDMR) to determine whether any brain areas exhibited whole-brain functional connectivity patterns that significantly related to the degree of Neanderthal introgression. Identified clusters were then used as regions of interest in follow-up seed-based functional connectivity analyses to determine the connectivity patterns driving the relationships. Results: The MDMR analysis revealed that the percentage of Neanderthal-originating polymorphisms was significantly associated with the functional connectivity patterns of an area of the intraparietal sulcus (IPS) that was nearly identical in both cohorts. Using these IPS clusters as regions of interest in seed-based connectivity analyses, we found, again in both cohorts, that individuals with a higher proportion of Neanderthal-derived genetic variation showed increased IPS functional connectivity with visual processing regions, but decreased IPS connectivity with regions underlying social cognition. Conclusions: These findings demonstrate that the remnants of Neanderthal admixture continue to influence human brain function today, in ways that are consistent with anthropological conceptualizations of Neanderthal phenotypes, including the possibility that Neanderthals may have depended upon visual processing capabilities at the expense of social cognition, and this may have contributed to the extinction of this species through reduced cultural maintenance and inability to cope with fluctuating resources. This and other studies capitalizing on the emerging science surrounding ancient DNA provide a window through which to view an ancient lineage long past.
Collapse
Affiliation(s)
- Michael D Gregory
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip Kohn
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel P Eisenberg
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph H Callicott
- Psychosis and Cognitive Studies Section, Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging and Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.,Psychosis and Cognitive Studies Section, Clinical and Translational Neurosciences Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Cofran Z, Boone M, Petticord M. Virtually estimated endocranial volumes of the Krapina Neandertals. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:117-128. [PMID: 33111974 DOI: 10.1002/ajpa.24165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The Krapina rock shelter has yielded a large assemblage of early Neandertals. Although endocranial volume (ECV) has been estimated for four individuals from the site, several published values that appear in the literature warrant revisiting. MATERIALS AND METHODS We used virtual methods, including high-resolution surface models of fossils and 3D geometric morphometrics, to reconstruct endocasts and estimate ECV for five Krapina crania. We generated 10 reconstructions of each endocast to quantify missing data uncertainty. To assess the method and our ECV estimates, we applied these techniques to the Spy II Neandertal, and estimated ECV of a human reference endocast simulating the missing data of the Krapina fossils. RESULTS We obtained an average ECV estimate of 1,526 cm3 for Spy II, consistent with previous research. Estimated ECV of juveniles Krapina 1 and 2 average 1,419 and 1,286 cm3 , respectively. Estimates for the relatively complete adults Krapina 3 and 6 range from 1,247 to 1,310 cm3 and 1,135 to 1,207 cm3 , respectively, while the more fragmentary Krapina 5 averaged 1,397 cm3 . The missing data simulation suggests more fragmentary crania yield more uncertain and possibly overestimated ECVs. CONCLUSIONS We have provided new estimates of brain size of the Krapina Neandertals, including the first estimates for Krapina 2. Brain size at Krapina was similar to other pre-Würm Neandertals, within the range of but lower than the average of later Neandertals. Although the virtual approach overcomes many challenges of fossil preservation, our results are nevertheless subject to future revision.
Collapse
Affiliation(s)
- Zachary Cofran
- Anthropology Department, Vassar College, Poughkeepsie, New York, USA
| | - Madeleine Boone
- Anthropology Department, Vassar College, Poughkeepsie, New York, USA
| | - Marisa Petticord
- Anthropology Department, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
41
|
Landi F, Profico A, Veneziano A, De Groote I, Manzi G. Locomotion, posture, and the foramen magnum in primates: Reliability of indices and insights into hominin bipedalism. Am J Primatol 2020; 82:e23170. [PMID: 32639073 DOI: 10.1002/ajp.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 11/06/2022]
Abstract
The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion-prosthion (OP-PR) and the opisthocranion-glabella (OP-GL) indices, the basion-biporion (BA-BP) and basion-bicarotid chords, the foramen magnum angle (FMA), and the basion-sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA-BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP-PR, OP-GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings.
Collapse
Affiliation(s)
- Federica Landi
- CAHS, Centre for Anatomical and Human Sciences, Hull York Medical School, York, UK
| | - Antonio Profico
- Department of Archaeology, PalaeoHub, University of York, York, UK
| | - Alessio Veneziano
- SYRMEP, SYnchrotron Radiation for MEdical Physics, Elettra-Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
| | - Isabelle De Groote
- Department of Archaeology, Section Prehistory of Western Europe, Ghent University, Ghent, Belgium
| | - Giorgio Manzi
- Department of Environmental Biology, Faculty of Mathematics Physics and Natural Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Schroeder L. Revolutionary Fossils, Ancient Biomolecules, and Reflections in Ethics and Decolonization: Paleoanthropology in 2019. AMERICAN ANTHROPOLOGIST 2020. [DOI: 10.1111/aman.13410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology University of Toronto Mississauga Mississauga ON Canada
- Human Evolution Research Institute University of Cape Town Rondebosch Western Cape South Africa
| |
Collapse
|
43
|
Pereira-Pedro AS, Bruner E, Gunz P, Neubauer S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 2020; 142:102770. [DOI: 10.1016/j.jhevol.2020.102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
44
|
d'Errico F, Pitarch Martí A, Shipton C, Le Vraux E, Ndiema E, Goldstein S, Petraglia MD, Boivin N. Trajectories of cultural innovation from the Middle to Later Stone Age in Eastern Africa: Personal ornaments, bone artifacts, and ocher from Panga ya Saidi, Kenya. J Hum Evol 2020; 141:102737. [PMID: 32163764 DOI: 10.1016/j.jhevol.2019.102737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
African Middle Stone Age (MSA) populations used pigments, manufactured and wore personal ornaments, made abstract engravings, and produced fully shaped bone tools. However, ongoing research across Africa reveals variability in the emergence of cultural innovations in the MSA and their subsequent development through the Later Stone Age (LSA). When present, it appears that cultural innovations manifest regional variability, suggestive of distinct cultural traditions. In eastern Africa, several Late Pleistocene sites have produced evidence for novel activities, but the chronologies of key behavioral innovations remain unclear. The 3 m deep, well-dated, Panga ya Saidi sequence in eastern Kenya, encompassing 19 layers covering a time span of 78 kyr beginning in late Marine Isotope Stage 5, is the only known African site recording the interplay between cultural and ecological diversity in a coastal forested environment. Excavations have yielded worked and incised bones, ostrich eggshell beads (OES), beads made from seashells, worked and engraved ocher pieces, fragments of coral, and a belemnite fossil. Here, we provide, for the first time, a detailed analysis of this material. This includes a taphonomic, archeozoological, technological, and functional study of bone artifacts; a technological and morphometric analysis of personal ornaments; and a technological and geochemical analysis of ocher pieces. The interpretation of the results stemming from the analysis of OES beads is guided by an ethnoarcheological perspective and field observations. We demonstrate that key cultural innovations on the eastern African coast are evident by 67 ka and exhibit remarkable diversity through the LSA and Iron Age. We suggest the cultural trajectories evident at Panga ya Saidi were shaped by both regional traditions and cultural/demic diffusion.
Collapse
Affiliation(s)
- Francesco d'Errico
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Centre for Early Sapiens Behaviour, Øysteinsgate 3, Postboks 7805, 5020 University of Bergen, Norway.
| | - Africa Pitarch Martí
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Ceri Shipton
- Centre of Excellence for Australian Biodiversity and Heritage, College of Asia and the Pacific, The Australian National University, ACT 0200, Australia
| | - Emma Le Vraux
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France
| | - Emmanuel Ndiema
- National Museums of Kenya, Department of Earth Sciences, Box 40658 - 00100, Nairobi, Kenya
| | - Steven Goldstein
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; Human Origins Program, Smithsonian Institution, Washington, D.C., 20560, USA; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW Washington, D.C. 20560, USA
| |
Collapse
|
45
|
Neubauer S, Gunz P, Scott NA, Hublin JJ, Mitteroecker P. Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. SCIENCE ADVANCES 2020; 6:eaax9935. [PMID: 32110727 PMCID: PMC7021492 DOI: 10.1126/sciadv.aax9935] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nadia A. Scott
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
46
|
Tilot AK, Vino A, Kucera KS, Carmichael DA, van den Heuvel L, den Hoed J, Sidoroff-Dorso AV, Campbell A, Porteous DJ, St Pourcain B, van Leeuwen TM, Ward J, Rouw R, Simner J, Fisher SE. Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190026. [PMID: 31630655 PMCID: PMC6834005 DOI: 10.1098/rstb.2019.0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme-colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.
Collapse
Affiliation(s)
- Amanda K. Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Katerina S. Kucera
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Duncan A. Carmichael
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Loes van den Heuvel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | | | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Tessa M. van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Romke Rouw
- Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
47
|
Admixture in Mammals and How to Understand Its Functional Implications. Bioessays 2019; 41:e1900123. [DOI: 10.1002/bies.201900123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 12/13/2022]
|
48
|
Pitarch Martí A, d’Errico F, Turq A, Lebraud E, Discamps E, Gravina B. Provenance, modification and use of manganese-rich rocks at Le Moustier (Dordogne, France). PLoS One 2019; 14:e0218568. [PMID: 31314755 PMCID: PMC6636720 DOI: 10.1371/journal.pone.0218568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
The use of colouring materials by Neanderthals has attracted a great deal of attention in recent years. Here we present a taphonomic, technological, chemical-mineralogical and functional analysis of fifty-four manganese rich lumps recovered during past and on-going excavations at the lower rockshelter of Le Moustier (Dordogne, France). We compare compositional data for archaeological specimens with the same information for twelve potential geological sources. Morphometric analysis shows that material from Peyrony’s excavations before the First World War provides a highly biased picture of the importance of these materials for Mousterian groups. These early excavations almost exclusively recovered large modified pieces, while Mn-rich lumps from the on-going excavations predominantly consist of small pieces, only half of which bear traces of modification. We estimate that at least 168 pieces were not recovered during early work at the site. Neanderthals developed a dedicated technology for processing Mn-rich fragments, which involved a variety of tools and motions. Processing techniques were adapted to the size and density of the raw material, and evidence exists for the successive or alternating use of different techniques. Morphological, textural and chemical differences between geological and archaeological samples suggest that Neanderthals did not collect Mn-rich lumps at the outcrops we sampled. The association and variability in Mn, Ni, As, Ba content, compared to that observed at the sampled outcrops, suggests that either the Le Moustier lumps come from a unique source with a broad variation in composition, associating Mn, Ni, As, Ba, or that they were collected at different sources, characterized either by Mn-Ni-As or Mn-Ba. In the latter case, changes in raw material composition across the stratigraphy support the idea that Neanderthal populations bearing different stone tool technologies collected Mn fragments from different outcrops. Our results favour a use of these materials for multiple utilitarian and symbolic purposes.
Collapse
Affiliation(s)
- Africa Pitarch Martí
- UMR 5199 CNRS, De la Préhistoire à l’Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Pessac, France
- Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Montalegre, Barcelona, Spain
- * E-mail:
| | - Francesco d’Errico
- UMR 5199 CNRS, De la Préhistoire à l’Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Pessac, France
- SSF Centre for Early Sapiens Behavior (SapienCe), University of Bergen, Bergen, Norway
| | - Alain Turq
- UMR 5199 CNRS, De la Préhistoire à l’Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Pessac, France
- Musée de Préhistoire, Sauveterre-la-Lémance, Lot-et-Garonne, France
| | - Eric Lebraud
- UMR 5026 CNRS, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux, Pessac, France
| | - Emmanuel Discamps
- UMR 5608 CNRS, Travaux et Recherches Archéologiques sur les Espaces, les Cultures et les Sociétés (TRACES), Université Toulouse Jean Jaurès Maison de la Recherche, Toulouse, France
| | - Brad Gravina
- UMR 5199 CNRS, De la Préhistoire à l’Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Pessac, France
| |
Collapse
|
49
|
Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 2019; 571:500-504. [PMID: 31292546 DOI: 10.1038/s41586-019-1376-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
Abstract
Two fossilized human crania (Apidima 1 and Apidima 2) from Apidima Cave, southern Greece, were discovered in the late 1970s but have remained enigmatic owing to their incomplete nature, taphonomic distortion and lack of archaeological context and chronology. Here we virtually reconstruct both crania, provide detailed comparative descriptions and analyses, and date them using U-series radiometric methods. Apidima 2 dates to more than 170 thousand years ago and has a Neanderthal-like morphological pattern. By contrast, Apidima 1 dates to more than 210 thousand years ago and presents a mixture of modern human and primitive features. These results suggest that two late Middle Pleistocene human groups were present at this site-an early Homo sapiens population, followed by a Neanderthal population. Our findings support multiple dispersals of early modern humans out of Africa, and highlight the complex demographic processes that characterized Pleistocene human evolution and modern human presence in southeast Europe.
Collapse
|
50
|
Neanderthal clues to brain evolution in humans. Nature 2019; 571:S10-S11. [DOI: 10.1038/d41586-019-02210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|