1
|
Guérin C, N'Diaye AB, Gressin L, Mogilner A, Théry M, Blanchoin L, Colin A. Balancing limited resources in actin network competition. Curr Biol 2025; 35:500-513.e5. [PMID: 39793569 DOI: 10.1016/j.cub.2024.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.
Collapse
Affiliation(s)
- Christophe Guérin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Anne-Betty N'Diaye
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Laurène Gressin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Manuel Théry
- Cytomorpholab, Institut Chimie Biologie Innovation, Institut Pierre-Gilles de Gennes, Université Paris Sciences et Lettres, CEA, ESPCI, 6 rue Jean Calvin, 75005 Paris, France.
| | - Laurent Blanchoin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France; Cytomorpholab, Institut Chimie Biologie Innovation, Institut Pierre-Gilles de Gennes, Université Paris Sciences et Lettres, CEA, ESPCI, 6 rue Jean Calvin, 75005 Paris, France.
| | - Alexandra Colin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
2
|
Mirfakhar FS, Castanheira J, Domingues R, Ramalho JS, Guimas Almeida C. The Alzheimer's Disease Risk Gene CD2AP Functions in Dendritic Spines by Remodeling F-Actin. J Neurosci 2024; 44:e1734232024. [PMID: 39406515 PMCID: PMC11604147 DOI: 10.1523/jneurosci.1734-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 11/29/2024] Open
Abstract
CD2-associated protein (CD2AP) was identified as a genetic risk factor for late-onset Alzheimer's disease (LOAD). However, it is unclear how CD2AP contributes to LOAD synaptic dysfunction underlying AD memory deficits. We have shown that loss of CD2AP function increases β-amyloid (Aβ) endocytic production, but it is unknown whether it contributes to synapse dysfunction. As CD2AP is an actin-binding protein, it may also function in F-actin-rich dendritic spines, which are the excitatory postsynaptic compartments. Here, we demonstrate that CD2AP colocalizes with F-actin in dendritic spines of primary mouse cortical neurons of both sexes. Cell-autonomous depletion of CD2AP specifically reduces spine density and volume, resulting in a functional decrease in synapse formation and neuronal network activity. Postsynaptic reexpression of CD2AP, but not blocking Aβ production, is sufficient to rescue spine density. CD2AP overexpression increases spine density, volume, and synapse formation, while a rare LOAD CD2AP mutation induces aberrant F-actin spine-like protrusions without functional synapses. CD2AP controls postsynaptic actin turnover, with the LOAD mutation in CD2AP decreasing F-actin dynamicity. Our data support that CD2AP risk variants could contribute to LOAD synapse dysfunction by disrupting spine formation and growth by deregulating actin dynamics.
Collapse
Affiliation(s)
- Farzaneh S Mirfakhar
- iNOVA4Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Jorge Castanheira
- iNOVA4Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Raquel Domingues
- iNOVA4Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - José S Ramalho
- iNOVA4Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| |
Collapse
|
3
|
Domingues N, Catarino S, Cristóvão B, Rodrigues L, Carvalho FA, Sarmento MJ, Zuzarte M, Almeida J, Ribeiro-Rodrigues T, Correia-Rodrigues Â, Fernandes F, Rodrigues-Santos P, Aasen T, Santos NC, Korolchuk VI, Gonçalves T, Milosevic I, Raimundo N, Girão H. Connexin43 promotes exocytosis of damaged lysosomes through actin remodelling. EMBO J 2024; 43:3627-3649. [PMID: 39044100 PMCID: PMC11377567 DOI: 10.1038/s44318-024-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
A robust and efficient cellular response to lysosomal membrane damage prevents leakage from the lysosome lumen into the cytoplasm. This response is understood to happen through either lysosomal membrane repair or lysophagy. Here we report exocytosis as a third response mechanism to lysosomal damage, which is further potentiated when membrane repair or lysosomal degradation mechanisms are impaired. We show that Connexin43 (Cx43), a protein canonically associated with gap junctions, is recruited from the plasma membrane to damaged lysosomes, promoting their secretion and accelerating cell recovery. The effects of Cx43 on lysosome exocytosis are mediated by a reorganization of the actin cytoskeleton that increases plasma membrane fluidity and decreases cell stiffness. Furthermore, we demonstrate that Cx43 interacts with the actin nucleator Arp2, the activity of which was shown to be necessary for Cx43-mediated actin rearrangement and lysosomal exocytosis following damage. These results define a novel mechanism of lysosomal quality control whereby Cx43-mediated actin remodelling potentiates the secretion of damaged lysosomes.
Collapse
Affiliation(s)
- Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Beatriz Cristóvão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Jani Almeida
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Ânia Correia-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Trond Aasen
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Teresa Gonçalves
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Center for Neurosciences and Cell Biology (CNC), Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- University of Oxford, Centre for Human Genetics, Nuffield Department of Medicine, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal.
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Homa KE, Hocky GM, Suarez C, Kovar DR. Arp2/3 complex- and formin-mediated actin cytoskeleton networks facilitate actin binding protein sorting in fission yeast. Eur J Cell Biol 2024; 103:151404. [PMID: 38493594 PMCID: PMC11211059 DOI: 10.1016/j.ejcb.2024.151404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
While it is well-established that F-actin networks with specific organizations and dynamics are tightly regulated by distinct sets of associated actin-binding proteins (ABPs), how ABPs self-sort to particular F-actin networks remains largely unclear. We report that actin assembly factors Arp2/3 complex and formin Cdc12 tune the association of ABPs fimbrin Fim1 and tropomyosin Cdc8 to different F-actin networks in fission yeast. Genetic and pharmacological disruption of F-actin networks revealed that Fim1 is preferentially directed to Arp2/3-complex mediated actin patches, whereas Cdc8 is preferentially targeted to formin Cdc12-mediated filaments in the contractile ring. To investigate the role of Arp2/3 complex- and formin Cdc12-mediated actin assembly, we used four-color TIRF microscopy to observe the in vitro reconstitution of ABP sorting with purified proteins. Fim1 or Cdc8 alone bind similarly well to filaments assembled by either assembly factor. However, in 'competition' reactions containing both actin assembly factors and both ABPs, ∼2.0-fold more Fim1 and ∼3.5-fold more Cdc8 accumulates on Arp2/3 complex branch points and formin Cdc12-assembled actin filaments, respectively. These findings indicate that F-actin assembly factors Arp2/3 complex and formin Cdc12 help facilitate the recruitment of specific ABPs, thereby tuning ABP sorting and subsequently establishing the identity of F-actin networks in fission yeast.
Collapse
Affiliation(s)
- Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, United States
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Sirotkin V. Cappin' or formin': Formin and capping protein competition for filament ends shapes actin networks. J Cell Biol 2023; 222:e202302009. [PMID: 36928466 PMCID: PMC10039713 DOI: 10.1083/jcb.202302009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
How cells assemble distinct actin networks from shared cytoplasmic components remains an important unresolved question. In this issue, Wirshing et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202209105) demonstrate how capping protein and formin competition for actin filament barbed ends controls the assembly of branched and linear actin networks.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Ray S, Agarwal P, Nitzan A, Nédélec F, Zaidel-Bar R. Actin-capping protein regulates actomyosin contractility to maintain germline architecture in C. elegans. Development 2023; 150:dev201099. [PMID: 36897576 PMCID: PMC10112912 DOI: 10.1242/dev.201099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.
Collapse
Affiliation(s)
- Shinjini Ray
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Graduate Program, Mechanobiology Institute, National University of Singapore,117411, Singapore
| | - Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
8
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
9
|
A focus on yeast mating: From pheromone signaling to cell-cell fusion. Semin Cell Dev Biol 2023; 133:83-95. [PMID: 35148940 DOI: 10.1016/j.semcdb.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.
Collapse
|
10
|
Billault-Chaumartin I, Muriel O, Michon L, Martin SG. Condensation of the fusion focus by the intrinsically disordered region of the formin Fus1 is essential for cell-cell fusion. Curr Biol 2022; 32:4752-4761.e10. [PMID: 36202103 PMCID: PMC9671092 DOI: 10.1016/j.cub.2022.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Secretory vesicle clusters transported on actin filaments by myosin V motors for local secretion underlie various cellular processes, such as neurotransmitter release at neuronal synapses,1 hyphal steering in filamentous fungi,2,3 and local cell wall digestion preceding the fusion of yeast gametes.4 During fission yeast Schizosaccharomyces pombe gamete fusion, the actin fusion focus assembled by the formin Fus1 concentrates secretory vesicles carrying cell wall digestive enzymes.5,6,7 The position and coalescence of the vesicle focus are controlled by local signaling and actin-binding proteins to prevent inappropriate cell wall digestion that would cause lysis,6,8,9,10 but the mechanisms of focusing have been elusive. Here, we show that the regulatory N terminus of Fus1 contains an intrinsically disordered region (IDR) that mediates Fus1 condensation in vivo and forms dense assemblies that exclude ribosomes. Fus1 lacking its IDR fails to concentrate in a tight focus and causes cell lysis during attempted cell fusion. Remarkably, the replacement of Fus1 IDR with a heterologous low-complexity region that forms molecular condensates fully restores Fus1 focusing and function. By contrast, the replacement of Fus1 IDR with a domain that forms more stable oligomers restores focusing but poorly supports cell fusion, suggesting that condensation is tuned to yield a selectively permeable structure. We propose that condensation of actin structures by an IDR may be a general mechanism for actin network organization and the selective local concentration of secretory vesicles.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Olivia Muriel
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Antagonistic Activities of Fmn2 and ADF Regulate Axonal F-Actin Patch Dynamics and the Initiation of Collateral Branching. J Neurosci 2022; 42:7355-7369. [PMID: 36481742 PMCID: PMC9525169 DOI: 10.1523/jneurosci.3107-20.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Interstitial collateral branching of axons is a critical component in the development of functional neural circuits. Axon collateral branches are established through a series of cellular processes initiated by the development of a specialized, focal F-actin network in axons. The formation, maintenance and remodeling of this F-actin patch is critical for the initiation of axonal protrusions that are subsequently consolidated to form a collateral branch. However, the mechanisms regulating F-actin patch dynamics are poorly understood. Fmn2 is a formin family member implicated in multiple neurodevelopmental disorders. We find that Fmn2 regulates the initiation of axon collateral protrusions in chick spinal neurons and in zebrafish motor neurons. Fmn2 localizes to the protrusion-initiating axonal F-actin patches and regulates the lifetime and size of these F-actin networks. The F-actin nucleation activity of Fmn2 is necessary for F-actin patch stability but not for initiating patch formation. We show that Fmn2 insulates the F-actin patches from disassembly by the actin-depolymerizing factor, ADF, and promotes long-lived, larger patches that are competent to initiate axonal protrusions. The regulation of axonal branching can contribute to the neurodevelopmental pathologies associated with Fmn2 and the dynamic antagonism between Fmn2 and ADF may represent a general mechanism of formin-dependent protection of Arp2/3-initiated F-actin networks from disassembly.SIGNIFICANCE STATEMENT Axonal branching is a key process in the development of functional circuits and neural plasticity. Axon collateral branching is initiated by the elaboration of F-actin filaments from discrete axonal F-actin networks. We show that the neurodevelopmental disorder-associated formin, Fmn2, is a critical regulator of axon collateral branching. Fmn2 localizes to the collateral branch-inducing F-actin patches in axons and regulates the stability of these actin networks. The F-actin nucleation activity of Fmn2 protects the patches from ADF-mediated disassembly. Opposing activities of Fmn2 and ADF exert a dynamic regulatory control on axon collateral branch initiation and may underly the neurodevelopmental defects associated with Fmn2.
Collapse
|
12
|
Hatano T, Lim TC, Billault-Chaumartin I, Dhar A, Gu Y, Massam-Wu T, Scott W, Adishesha S, Chapa-y-Lazo B, Springall L, Sivashanmugam L, Mishima M, Martin SG, Oliferenko S, Palani S, Balasubramanian MK. mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells. J Cell Sci 2022; 135:jcs260288. [PMID: 36148799 PMCID: PMC9592052 DOI: 10.1242/jcs.260288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Tzer Chyn Lim
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sushmitha Adishesha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bernardo Chapa-y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Luke Springall
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| |
Collapse
|
13
|
Yan VT, Narayanan A, Wiegand T, Jülicher F, Grill SW. A condensate dynamic instability orchestrates actomyosin cortex activation. Nature 2022; 609:597-604. [PMID: 35978196 PMCID: PMC9477739 DOI: 10.1038/s41586-022-05084-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
Collapse
Affiliation(s)
- Victoria Tianjing Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Arjun Narayanan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Biotechnology Center, TU Dresden, Dresden, Germany. .,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Billault-Chaumartin I, Michon L, Anderson CA, Yde SE, Suarez C, Iwaszkiewicz J, Zoete V, Kovar DR, Martin SG. Actin assembly requirements of the formin Fus1 to build the fusion focus. J Cell Sci 2022; 135:jcs260289. [PMID: 35673994 PMCID: PMC9377709 DOI: 10.1242/jcs.260289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Caitlin A. Anderson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah E. Yde
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University of Lausanne, Ludwig Institute for Cancer Research, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Three Diverse Granule Preparation Methods for Proteomic Analysis of Mature Rice (Oryza sativa L.) Starch Grain. Molecules 2022; 27:molecules27103307. [PMID: 35630784 PMCID: PMC9144640 DOI: 10.3390/molecules27103307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Starch is the primary form of reserve carbohydrate storage in plants. Rice (Oryza sativa L.) is a monocot whose reserve starch is organized into compounded structures within the amyloplast, rather than a simple starch grain (SG). The mechanism governing the assembly of the compound SG from polyhedral granules in apposition, however, remains unknown. To further characterize the proteome associated with these compounded structures, three distinct methods of starch granule preparation (dispersion, microsieve, and flotation) were performed. Phase separation of peptides (aqueous trypsin-shaving and isopropanol solubilization of residual peptides) isolated starch granule-associated proteins (SGAPs) from the distal proteome of the amyloplast and the proximal ‘amylome’ (the amyloplastic proteome), respectively. The term ‘distal proteome’ refers to SGAPs loosely tethered to the amyloplast, ones that can be rapidly proteolyzed, while proximal SGAPs are those found closer to the remnant amyloplast membrane fragments, perhaps embedded therein—ones that need isopropanol solvent to be removed from the mature organelle surface. These two rice starch-associated peptide samples were analyzed using nano-liquid chromatography–tandem mass spectrometry (Nano-HPLC-MS/MS). Known and novel proteins, as well as septum-like structure (SLS) proteins, in the mature rice SG were found. Data mining and gene ontology software were used to categorize these putative plastoskeletal components as a variety of structural elements, including actins, tubulins, tubulin-like proteins, and cementitious elements such as reticulata related-like (RER) proteins, tegument proteins, and lectins. Delineating the plastoskeletal proteome begins by understanding how each starch granule isolation procedure affects observed cytoplasmic and plastid proteins. The three methods described herein show how the technique used to isolate SGs differentially impacts the subsequent proteomic analysis and results obtained. It can thus be concluded that future investigations must make judicious decisions regarding the methodology used in extracting proteomic information from the compound starch granules being assessed, since different methods are shown to yield contrasting results herein. Data are available via ProteomeXchange with identifier PXD032314.
Collapse
|
16
|
Muriel O, Michon L, Kukulski W, Martin SG. Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. J Cell Biol 2021; 220:e202103142. [PMID: 34382996 PMCID: PMC8366684 DOI: 10.1083/jcb.202103142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
18
|
Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, Evert M, Calvisi DF, Dupont S. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol 2021; 4:763. [PMID: 34155338 PMCID: PMC8217270 DOI: 10.1038/s42003-021-02286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.
Collapse
Affiliation(s)
- Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Gloria Scattolin
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Matthias Evert
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
19
|
New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacol Res 2021; 169:105635. [PMID: 33930530 DOI: 10.1016/j.phrs.2021.105635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by an inexorable decline in lung function. The development of IPF involves multiple positive feedback loops; and a strong support role of the Hippo/YAP signalling pathway, which is essential for regulating cell proliferation and organ size, in IPF pathogenesis has been unveiled recently in cell and animal models. YAP/TAZ contributes to both pulmonary fibrosis and alveolar regeneration via the conventional Hippo/YAP signalling pathway, G protein-coupled receptor signalling, and mechanotransduction. Selectively inhibiting YAP/TAZ in lung fibroblasts may inhibit fibroblast proliferation and extracellular matrix deposition, while activating YAP/TAZ in alveolar epithelial cells may promote alveolar regeneration. In this review, we explore, for the first time, the bidirectional and cell-specific regulation of the Hippo/YAP pathway in IPF pathogenesis and discuss recent research progress and future prospects of IPF treatment based on Hippo/YAP signalling, thus providing a basis for the development of new therapeutic strategies to alleviate or even reverse IPF.
Collapse
|
20
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
21
|
Vještica A, Marek M, Nkosi PJ, Merlini L, Liu G, Bérard M, Billault-Chaumartin I, Martin SG. A toolbox of stable integration vectors in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2020; 133:jcs.240754. [PMID: 31801797 DOI: 10.1242/jcs.240754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Magdalena Marek
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|