1
|
Neitz A, Rice A, Casiraghi L, Bussi IL, Buhr ED, Neitz M, Neitz J, de la Iglesia HO, Kuchenbecker JA. Toward an Indoor Lighting Solution for Social Jet Lag. J Biol Rhythms 2024; 39:502-507. [PMID: 39082441 PMCID: PMC11416324 DOI: 10.1177/07487304241262918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
There is growing interest in developing artificial lighting that stimulates intrinsically photosensitive retinal ganglion cells (ipRGCs) to entrain circadian rhythms to improve mood, sleep, and health. Efforts have focused on stimulating the intrinsic photopigment, melanopsin; however, specialized color vision circuits have been elucidated in the primate retina that transmit blue-yellow cone-opponent signals to ipRGCs. We designed a light that stimulates color-opponent inputs to ipRGCs by temporally alternating short- and long-wavelength components that strongly modulate short-wavelength sensitive (S) cones. Two-hour exposure to this S-cone modulating light produced an average circadian phase advance of 1 h and 20 min in 6 subjects (mean age = 30 years) compared to no phase advance for the subjects after exposure to a 500 lux white light equated for melanopsin effectiveness. These results are promising for developing artificial lighting that is highly effective in controlling circadian rhythms by invisibly modulating cone-opponent circuits.
Collapse
Affiliation(s)
- Alex Neitz
- Department of Biology and The Molecular and Cellular Biology graduate program, University of Washington, Seattle, Washington, USA
| | - Alicia Rice
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Leandro Casiraghi
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ivana L. Bussi
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ethan D. Buhr
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
2
|
Barrionuevo PA, Sandoval Salinas ML, Fanchini JM. Are ipRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vision Res 2024; 217:108378. [PMID: 38458004 DOI: 10.1016/j.visres.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Germany; Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina.
| | - María L Sandoval Salinas
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Instituto de Investigaciones de Biodiversidad Argentina (PIDBA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Argentina
| | - José M Fanchini
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Departamento de Luminotecnia, Luz y Visión, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
3
|
Blume C, Cajochen C, Schöllhorn I, Slawik HC, Spitschan M. Effects of calibrated blue-yellow changes in light on the human circadian clock. Nat Hum Behav 2024; 8:590-605. [PMID: 38135734 PMCID: PMC10963261 DOI: 10.1038/s41562-023-01791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Evening exposure to short-wavelength light can affect the circadian clock, sleep and alertness. Intrinsically photosensitive retinal ganglion cells expressing melanopsin are thought to be the primary drivers of these effects. Whether colour-sensitive cones also contribute is unclear. Here, using calibrated silent-substitution changes in light colour along the blue-yellow axis, we investigated whether mechanisms of colour vision affect the human circadian system and sleep. In a 32.5-h repeated within-subjects protocol, 16 healthy participants were exposed to three different light scenarios for 1 h starting 30 min after habitual bedtime: baseline control condition (93.5 photopic lux), intermittently flickering (1 Hz, 30 s on-off) yellow-bright light (123.5 photopic lux) and intermittently flickering blue-dim light (67.0 photopic lux), all calibrated to have equal melanopsin excitation. We did not find conclusive evidence for differences between the three lighting conditions regarding circadian melatonin phase delays, melatonin suppression, subjective sleepiness, psychomotor vigilance or sleep.The Stage 1 protocol for this Registered Report was accepted in principle on 9 September 2020. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.13050215.v1 .
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Spitschan M, Vidafar P, Cain SW, Phillips AJK, Lambert BC. Power Analysis for Human Melatonin Suppression Experiments. Clocks Sleep 2024; 6:114-128. [PMID: 38534797 DOI: 10.3390/clockssleep6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/28/2024] Open
Abstract
In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, 80992 Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, 85748 Garching, Germany
- Max Planck Research Group Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Parisa Vidafar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ben C Lambert
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| |
Collapse
|
5
|
Najjar RP, Prayag AS, Gronfier C. Melatonin suppression by light involves different retinal photoreceptors in young and older adults. J Pineal Res 2024; 76:e12930. [PMID: 38241677 DOI: 10.1111/jpi.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Collapse
Affiliation(s)
- Raymond P Najjar
- Department of Ophthalmology, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Visual Neurosciences Group, ASPIRE Research Program, Singapore Eye Research Institute, Singapore, Singapore
- Visual Sciences and Ophthalmology Program, Duke-NUS Medical School, Singapore, Singapore
- Center for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhishek S Prayag
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
6
|
Zeng X, Soreze TSC, Ballegaard M, Petersen PM. Integrative Lighting Aimed at Patients with Psychiatric and Neurological Disorders. Clocks Sleep 2023; 5:806-830. [PMID: 38131751 PMCID: PMC10742818 DOI: 10.3390/clockssleep5040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this paper is to investigate the impact of circadian lighting-induced melatonin suppression on patients with psychiatric and neurological disorders in hospital wards by using an ad-hoc metrology framework and the subsequent metrics formalized by the CIE in 2018. A measurement scheme was conducted in hospital ward rooms in the Department of Neurology, Zealand University Hospital, at Roskilde in Denmark, to evaluate the photometric and colorimetric characteristics of the lighting system, as well as its influence on the circadian rhythm of the occupants. The measurement scheme included point measurements and data logging, using a spectrophotometer mounted on a tripod with adjustable height to assess the newly installed circadian lighting system. The measured spectra were uploaded to the Luox platform to calculate illuminance, CCT, MEDI, etc., in accordance with the CIE S026 standard. Furthermore, the MLIT based on MEDI data logging results was calculated. In addition to CIE S026, we have investigated the usefulness of melatonin suppression models for the assessment of circadian performance regarding measured light. From the results, the lighting conditions in the patient room for both minimal and abundant daylight access were evaluated and compared; we found that access to daylight is essential for both illumination and circadian entrainment. It can be concluded that the measurement scheme, together with the use of the Luox platform and Canva template, is suitable for the accurate and satisfactory measurement of integrative lighting that aligns with CIE requirements and recommendations.
Collapse
Affiliation(s)
- Xinxi Zeng
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Thierry Silvio Claude Soreze
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Martin Ballegaard
- Department of Neurology, Copenhagen University Hospital—Zealand University Hospital Roskilde, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| |
Collapse
|
7
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
8
|
Spitschan M, Joyce DS. Human-Centric Lighting Research and Policy in the Melanopsin Age. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:237-246. [PMID: 38919981 PMCID: PMC7615961 DOI: 10.1177/23727322231196896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Daniel S. Joyce
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
9
|
Tamayo E, Mouland JW, Lucas RJ, Brown TM. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC Biol 2023; 21:178. [PMID: 37605163 PMCID: PMC10441731 DOI: 10.1186/s12915-023-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Animal survival depends on the ability to adjust behaviour according to environmental conditions. The circadian system plays a key role in this capability, with diel changes in the quantity (irradiance) and spectral content ('colour') of ambient illumination providing signals of time-of-day that regulate the timing of rest and activity. Light also exerts much more immediate effects on behaviour, however, that are equally important in shaping daily activity patterns. Hence, nocturnal mammals will actively avoid light and dramatically reduce their activity when light cannot be avoided. The sensory mechanisms underlying these acute effects of light are incompletely understood, particularly the importance of colour. RESULTS To define sensory mechanisms controlling mouse behaviour, we used photoreceptor-isolating stimuli and mice with altered cone spectral sensitivity (Opn1mwR), lacking melanopsin (Opn1mwR; Opn4-/-) or cone phototransduction (Cnga3-/-) in assays of light-avoidance and activity suppression. In addition to roles for melanopsin-dependent irradiance signals, we find a major influence of spectral content in both cases. Hence, remarkably, selective increases in S-cone irradiance (producing a blue-shift in spectrum replicating twilight) drive light-seeking behaviour and promote activity. These effects are opposed by signals from longer-wavelength sensitive cones, indicating a true spectrally-opponent mechanism. Using c-Fos-mapping and multielectrode electrophysiology, we further show these effects are associated with a selective cone-opponent modulation of neural activity in the key brain site implicated in acute effects of light on behaviour, the subparaventricular zone. CONCLUSIONS Collectively, these data reveal a mechanism whereby blue-shifts in the spectrum of environmental illumination, such as during twilight, promote mouse exploratory behaviour.
Collapse
Affiliation(s)
- E Tamayo
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
11
|
Neitz A, Rice A, Casiraghi L, Bussi IL, Buhr ED, Neitz M, Neitz J, de la Iglesia HO, Kuchenbecker JA. Toward an indoor lighting solution for social jet lag. RESEARCH SQUARE 2023:rs.3.rs-2649098. [PMID: 36993397 PMCID: PMC10055510 DOI: 10.21203/rs.3.rs-2649098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is growing interest in developing artificial lighting that stimulates intrinsically photosensitive retinal ganglion cells (ipRGCs) to entrain circadian rhythms to improve mood, sleep, and health. Efforts have focused on stimulating the intrinsic photopigment, melanopsin; however, recently, specialized color vision circuits have been elucidated in the primate retina that transmit blue-yellow cone-opponent signals to ipRGCs. We designed a light that stimulates color-opponent inputs to ipRGCs by temporally alternating short and longer wavelength components that strongly modulate short-wavelength sensitive (S) cones. Two-hour exposure to this S-cone modulating light produced an average circadian phase advance of one hour and twenty minutes in 6 subjects (mean age = 30 years) compared to no phase advance for the subjects after exposure to a 500-lux white light equated for melanopsin effectiveness. These results are promising for developing artificial lighting that is highly effective in controlling circadian rhythms by invisibly modulating cone-opponent circuits.
Collapse
Affiliation(s)
- Alex Neitz
- Department of Biology and The Molecular and Cellular Biology
graduate program, University of Washington, Seattle, Washington, USA
| | - Alicia Rice
- Department of Biology, University of Washington, Seattle,
Washington, USA
| | - Leandro Casiraghi
- Department of Biology, University of Washington, Seattle,
Washington, USA
| | - Ivana L. Bussi
- Department of Biology, University of Washington, Seattle,
Washington, USA
| | - Ethan D. Buhr
- Department of Ophthalmology, University of Washington, Seattle,
Washington, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle,
Washington, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle,
Washington, USA
| | | | | |
Collapse
|
12
|
Yang CC, Tsujimura SI, Yeh SL. Blue-light background impairs visual exogenous attention shift. Sci Rep 2023; 13:3794. [PMID: 36882407 PMCID: PMC9992692 DOI: 10.1038/s41598-022-24862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 03/09/2023] Open
Abstract
Previous research into the effects of blue light on visual-spatial attention has yielded mixed results due to a lack of properly controlling critical factors like S-cone stimulation, ipRGCs stimulation, and color. We adopted the clock paradigm and systematically manipulated these factors to see how blue light impacts the speed of exogenous and endogenous attention shifts. Experiments 1 and 2 revealed that, relative to the control light, exposure to the blue-light background decreased the speed of exogenous (but not endogenous) attention shift to external stimuli. To further clarify the contribution(s) of blue-light sensitive photoreceptors (i.e., S-cone and ipRGCs), we used a multi-primary system that could manipulate the stimulation of a single type of photoreceptor without changing the stimulation of other photoreceptors (i.e., the silent substitution method). Experiments 3 and 4 revealed that stimulation of S-cones and ipRGCs did not contribute to the impairment of exogenous attention shift. Our findings suggest that associations with blue colors, such as the concept of blue light hazard, cause exogenous attention shift impairment. Some of the previously documented blue-light effects on cognitive performances need to be reevaluated and reconsidered in light of our findings.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Sei-Ichi Tsujimura
- Faculty of Design and Architecture, Nagoya City University, Nagoya, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration. Proc Natl Acad Sci U S A 2022; 119:e2205301119. [PMID: 36508661 PMCID: PMC9907124 DOI: 10.1073/pnas.2205301119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.
Collapse
|
14
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
15
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M, Nam S, Veitch JA. luox: validated reference open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2022; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/22/2023] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in vision science, lighting research, chronobiology, sleep research and adjacent fields to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox calculations of CIE quantities and indices have been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology & Health, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | | | | | | | | | | | | | - Somang Nam
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| | - Jennifer A. Veitch
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| |
Collapse
|
16
|
Joyce DS, Spitschan M, Zeitzer JM. Duration invariance and intensity dependence of the human circadian system phase shifting response to brief light flashes. Proc Biol Sci 2022; 289:20211943. [PMID: 35259981 PMCID: PMC8905166 DOI: 10.1098/rspb.2021.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
The melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are characterized by a delayed off-time following the cessation of light stimulation. Here, we exploited this unusual physiologic property to characterize the exquisite sensitivity of the human circadian system to flashed light. In a 34 h in-laboratory between-subjects design, we examined phase shifting in response to variable-intensity (3-9500 photopic lux) flashes at fixed duration (2 ms; n = 28 participants) and variable-duration (10 µs-10 s) flashes at fixed intensity (2000 photopic lux; n = 31 participants). Acute melatonin suppression, objective alertness and subjective sleepiness during the flash sequence were also assessed. We find a dose-response relationship between flash intensity and circadian phase shift, with an indication of a possible threshold-like behaviour. We find a slight parametric relationship between flash duration and circadian phase shift. Consistent with prior studies, we observe no dose-response relationship to either flash intensity or duration and the acute impact of light on melatonin suppression, objective alertness or subjective sleepiness. Our findings are consistent with circadian responses to a sequence of flashes being mediated by rod or cone photoreceptors via ipRGC integration.
Collapse
Affiliation(s)
- Daniel S. Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychology, University of Nevada Reno, Reno, NV, USA
| | - Manuel Spitschan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Jamie M. Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
17
|
Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, Lucas RJ, Münch M, O’Hagan JB, Peirson SN, Price LLA, Roenneberg T, Schlangen LJM, Skene DJ, Spitschan M, Vetter C, Zee PC, Wright KP. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol 2022; 20:e3001571. [PMID: 35298459 PMCID: PMC8929548 DOI: 10.1371/journal.pbio.3001571] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.
Collapse
Affiliation(s)
- Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christian Cajochen
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mirjam Münch
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - John B. O’Hagan
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Till Roenneberg
- Institutes for Medical Psychology and Occupational, Social and Environmental Medicine, Medical Faculty, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Luc J. M. Schlangen
- Human Technology Interaction Group, Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
- Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Céline Vetter
- Circadian and Sleep Epidemiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Phyllis C. Zee
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kenneth P. Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
18
|
Giménez MC, Stefani O, Cajochen C, Lang D, Deuring G, Schlangen LJM. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure. J Pineal Res 2022; 72:e12786. [PMID: 34981572 PMCID: PMC9285453 DOI: 10.1111/jpi.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Light-induced melatonin suppression data from 29 peer-reviewed publications was analysed by means of a machine-learning approach to establish which light exposure characteristics (ie photopic illuminance, five α-opic equivalent daylight illuminances [EDIs], duration and timing of the light exposure, and the dichotomous variables pharmacological pupil dilation and narrowband light source) are the main determinants of melatonin suppression. Melatonin suppression in the data set was dominated by four light exposure characteristics: (1) melanopic EDI, (2) light exposure duration, (3) pupil dilation and (4) S-cone-opic EDI. A logistic model was used to evaluate the influence of each of these parameters on the melatonin suppression response. The final logistic model was only based on the first three parameters, since melanopic EDI was the best single (photoreceptor) predictor that was only outperformed by S-cone-opic EDI for (photopic) illuminances below 21 lux. This confirms and extends findings on the importance of the metric melanopic EDI for predicting biological effects of light in integrative (human-centric) lighting applications. The model provides initial and general guidance to lighting practitioners on how to combine spectrum, duration and amount of light exposure when controlling non-visual responses to light, especially melatonin suppression. The model is a starting tool for developing hypotheses on photoreceptors' contributions to light's non-visual responses and helps identifying areas where more data are needed, like on the S-cone contribution at low illuminances.
Collapse
Affiliation(s)
- Marina C. Giménez
- Chronobiology UnitGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Oliver Stefani
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | - Christian Cajochen
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | | | - Gunnar Deuring
- Forensic DepartmentUniversity Psychiatric Clinics BaselBaselSwitzerland
| | - Luc J. M. Schlangen
- Department of Industrial Engineering and Innovation SciencesHuman‐Technology Interaction Group and Intelligent Lighting InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
19
|
Zauner J, Plischke H, Strasburger H. Spectral dependency of the human pupillary light reflex. Influences of pre-adaptation and chronotype. PLoS One 2022; 17:e0253030. [PMID: 35020744 PMCID: PMC8754338 DOI: 10.1371/journal.pone.0253030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022] Open
Abstract
Non-visual photoreceptors (ipRGCs) and rods both exert a strong influence on the human pupil, yet pupil models regularly use cone-derived sensitivity as their basis. This inconsistency is further exacerbated by the fact that circadian effects can modulate the wavelength sensitivity. We assessed the pupillary reaction to narrowband light stimuli in the mesopic range. Pupil size for eighty-three healthy participants with normal color vision was measured in nine experimental protocols with varying series of continuous or discontinuous light stimuli under Ganzfeld conditions, presented after 90 seconds of dark adaptation. One hundred and fifty series of stimulation were conducted across three experiments, and were analyzed for wavelength-dependency on the normalized pupillary constriction (nPC), conditional on experimental settings and individual traits. Traits were surveyed by questionnaire; color vision was tested by Ishihara plates or the Lanthony D15 test. Data were analyzed with generalized additive mixed models (GAMM). The normalized pupillary constriction response is consistent with L+M-cone derived sensitivity when the series of light stimuli is continuous, i.e., is not interrupted by periods of darkness, but not otherwise. The results also show that a mesopic illuminance weighing led to an overall best prediction of pupillary constriction compared to other types of illuminance measures. IpRGC influence on nPC is not readily apparent from the results. When we explored the interaction of chronotype and time of day on the wavelength dependency, differences consistent with ipRGC influence became apparent. The models indicate that subjects of differing chronotype show a heightened or lowered sensitivity to short wavelengths, depending on their time of preference. IpRGC influence is also seen in the post-illumination pupil reflex if the prior light-stimulus duration is one second. However, shorter wavelengths than expected become more important if the light-stimulus duration is fifteen or thirty seconds. The influence of sex on nPC was present, but showed no interaction with wavelength. Our results help to define the conditions, under which the different wavelength sensitivities in the literature hold up for narrowband light settings. The chronotype effect might signify a mechanism for strengthening the individual´s chronotype. It could also be the result of the participant’s prior exposure to light (light history). Our explorative findings for this effect demand replication in a controlled study.
Collapse
Affiliation(s)
- Johannes Zauner
- Munich University of Applied Sciences, Munich, Germany
- * E-mail:
| | | | - Hans Strasburger
- Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
20
|
Mason BJ, Tubbs AS, Fernandez FX, Grandner MA. Spectrophotometric properties of commercially available blue blockers across multiple lighting conditions. Chronobiol Int 2022; 39:653-664. [PMID: 34983271 PMCID: PMC9106867 DOI: 10.1080/07420528.2021.2021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lenses that filter short-wavelength ("blue") light are commercially marketed to improve sleep and circadian health. Despite their widespread use, minimal data are available regarding their comparative efficacy in curtailing blue light exposure while maintaining visibility. Fifty commercial lenses were evaluated using five light sources: a blue LED array, a computer tablet display, an incandescent lamp, a fluorescent overhead luminaire, and sunlight. Absolute irradiance was measured at baseline and for each lens across the visual spectrum (380-780 nm), which allowed calculation of percent transmission. Transmission specificity was also calculated to determine whether light transmission was predominantly circadian-proficient (455-560 nm) or non-proficient (380-454 nm and 561-780 nm). Lenses were grouped by tint and metrics were compared between groups. Red-tinted lenses exhibited the lowest transmission of circadian-proficient light, while reflective blue lenses had the highest transmission. Orange-tinted lenses transmitted similar circadian-proficient light as red-tinted lenses but transmitted more non-circadian-proficient light, resulting in higher transmission specificity. Orange-tinted lenses had the highest transmission specificity while limiting biologically active light exposure in ordinary lighting conditions. Glasses incorporating these lenses currently have the greatest potential to support circadian sleep-wake rhythms.
Collapse
Affiliation(s)
- Brooke J Mason
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Andrew S Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Fabian-Xosé Fernandez
- Light Algorithms Laboratory, Department of Psychology, University of Arizona College of Science, Tucson, Arizona, USA
| | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| |
Collapse
|
21
|
Fernandez FX. Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment. Nat Sci Sleep 2022; 14:25-39. [PMID: 35023979 PMCID: PMC8747801 DOI: 10.2147/nss.s251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
This perspective considers the possibility that daytime's intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.
Collapse
|
22
|
Beyond irradiance: Visual signals influencing mammalian circadian function. PROGRESS IN BRAIN RESEARCH 2022; 273:145-169. [DOI: 10.1016/bs.pbr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics 2021; 13:pharmaceutics13122008. [PMID: 34959290 PMCID: PMC8704788 DOI: 10.3390/pharmaceutics13122008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.
Collapse
|
24
|
Spitschan M. [(Intrinsically photosensitive retinal ganglion cells. The physiological non-visual effects of light)]. ZEITSCHRIFT FUR PRAKTISCHE AUGENHEILKUNDE & AUGENARZTLICHE FORTBILDUNG : ZPA 2021; 42:431-435. [PMID: 39669977 PMCID: PMC7617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In addition to enabling us to see, light fundamentally impacts on our physiology and behaviour through the non-visual pathways in the brain that control our circadian clock. These effects are largely mediated by the intrisically photosensitive retinal ganglion cells (ipRGCs) which express the short-wavelength-sensitive photopigment melanopsin. The non-visual effects of light and the underlying sensory and central mechanisms are an active and open area of investigation.
Collapse
|
25
|
Brown TM, Thapan K, Arendt J, Revell VL, Skene DJ. S-cone contribution to the acute melatonin suppression response in humans. J Pineal Res 2021; 71:e12719. [PMID: 33512714 DOI: 10.1111/jpi.12719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/06/2023]
Abstract
Light influences diverse aspects of human physiology and behaviour including neuroendocrine function, the circadian system and sleep. A role for melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) in driving such effects is well established. However, rod and/or cone signals routed through ipRGCs could also influence "non-visual" spectral sensitivity. In humans, this has been most extensively studied for acute, light-dependent, suppression of nocturnal melatonin production. Of the published action spectra for melatonin suppression, one demonstrates a spectral sensitivity consistent with that expected for melanopsin while our own (using briefer 30 minute light exposures) displays very high sensitivity to short wavelength light, suggesting a contribution of S-cones. To clarify that possibility, six healthy young male participants were each exposed to 30 minutes of five irradiances of 415 nm monochromatic light (1-40 µW/cm2 ) across different nights. These data were then combined with the original action spectrum. The aggregated data are incompatible with the involvement of any single-opsin and multi-opsin models based on the original action spectrum (including Circadian Stimulus) fail to predict the responses to 415 nm stimuli. Instead, the extended action spectrum can be most simply approximated by an ~2:1 combination of melanopsin and S-cone signals. Such a model also better describes the magnitude of melatonin suppression observed in other studies using an equivalent 30 minute mono- or polychromatic light paradigm but not those using longer (90 minute) light exposures. In sum, these data provide evidence for an initial S-cone contribution to melatonin suppression that rapidly decays under extended light exposure.
Collapse
Affiliation(s)
- Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kavita Thapan
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Josephine Arendt
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Victoria L Revell
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
26
|
Zandi B, Lode M, Herzog A, Sakas G, Khanh TQ. PupilEXT: Flexible Open-Source Platform for High-Resolution Pupillometry in Vision Research. Front Neurosci 2021; 15:676220. [PMID: 34220432 PMCID: PMC8249868 DOI: 10.3389/fnins.2021.676220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The human pupil behavior has gained increased attention due to the discovery of the intrinsically photosensitive retinal ganglion cells and the afferent pupil control path's role as a biomarker for cognitive processes. Diameter changes in the range of 10-2 mm are of interest, requiring reliable and characterized measurement equipment to accurately detect neurocognitive effects on the pupil. Mostly commercial solutions are used as measurement devices in pupillometry which is associated with high investments. Moreover, commercial systems rely on closed software, restricting conclusions about the used pupil-tracking algorithms. Here, we developed an open-source pupillometry platform consisting of hardware and software competitive with high-end commercial stereo eye-tracking systems. Our goal was to make a professional remote pupil measurement pipeline for laboratory conditions accessible for everyone. This work's core outcome is an integrated cross-platform (macOS, Windows and Linux) pupillometry software called PupilEXT, featuring a user-friendly graphical interface covering the relevant requirements of professional pupil response research. We offer a selection of six state-of-the-art open-source pupil detection algorithms (Starburst, Swirski, ExCuSe, ElSe, PuRe and PuReST) to perform the pupil measurement. A developed 120-fps pupillometry demo system was able to achieve a calibration accuracy of 0.003 mm and an averaged temporal pupil measurement detection accuracy of 0.0059 mm in stereo mode. The PupilEXT software has extended features in pupil detection, measurement validation, image acquisition, data acquisition, offline pupil measurement, camera calibration, stereo vision, data visualization and system independence, all combined in a single open-source interface, available at https://github.com/openPupil/Open-PupilEXT.
Collapse
Affiliation(s)
- Babak Zandi
- Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Moritz Lode
- Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alexander Herzog
- Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Georgios Sakas
- Interactive Graphic Systems, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Tran Quoc Khanh
- Laboratory of Lighting Technology, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
27
|
Soler R, Voss E. Biologically Relevant Lighting: An Industry Perspective. Front Neurosci 2021; 15:637221. [PMID: 34163318 PMCID: PMC8215265 DOI: 10.3389/fnins.2021.637221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Innovations in LED lighting technology have led to tremendous adoption rates and vastly improved the metrics by which they are traditionally evaluated-including color quality, longevity, and energy efficiency to name a few. Additionally, scientific insight has broadened with respect to the biological impact of light, specifically our circadian rhythm. Indoor electric lighting, despite its many attributes, fails to specifically address the biological responses to light. Traditional electric lighting environments are biologically too dim during the day, too bright at night, and with many people spending much of their lives in these environments, it can lead to circadian dysfunction. The lighting industry's biological solution has been to create bluer days and yellower nights, but the technology created to do so caters primarily to the cones. A better call to action is to provide biologically brighter days and biologically darker nights within the built environment. However, current lighting design practices have specified the comfort and utility of electric light. Brighter intensity during the day can often be uncomfortable or glary, and reduced light intensity at night may compromise visual comfort and safety, both of which will affect user compliance. No single lighting solution will effectively create biologically brighter days and biologically darker nights, but rather a variety of parameters need to be considered. This paper discusses the contributions of spectral power distribution, hue or color temperature, spatial distribution, as well as architectural geometry and surface reflectivity, to achieve biologically relevant lighting.
Collapse
Affiliation(s)
| | - Erica Voss
- BIOS Lighting, Carlsbad, CA, United States
| |
Collapse
|
28
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox has been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [DOI: 10.12688/wellcomeopenres.16595.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities.
Collapse
|
30
|
Eto T, Ohashi M, Nagata K, Shin N, Motomura Y, Higuchi S. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults. Ophthalmic Physiol Opt 2021; 41:900-910. [PMID: 33772847 DOI: 10.1111/opo.12809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the contributions of ocular crystalline lens transmittance spectra and pupil size on age-related differences in the magnitude of light-induced melatonin suppression at night. The first aim was to demonstrate that spectral lens transmittance in children can be measured in vivo with a Purkinje image-based system. The second aim was to test the hypothesis that the magnitude of melatonin suppression in children is enhanced by larger pupils and higher lens transmittance of short wavelengths. METHODS Fourteen healthy children and 14 healthy adults participated in this study. The experiment was conducted for two nights in our laboratory. On the first night, the participants spent time under dim light conditions (<10 lux) until one hour after their habitual bedtime (BT+1.0). On the second night, the participants spent time under dim light conditions until 30 min before their habitual bedtime (BT-0.5). They were then exposed to LED light for 90 min up to BT+1.0. Individual pupil sizes were measured between BT and BT+1.0 for both conditions. Lens transmittance spectra were measured in vivo using the Purkinje image-based system during the daytime. Non-visual photoreception was calculated from lens transmittance and pupil size. This was taken as an index of the influence of age-related ocular changes on the non-visual photopigment melanopsin. RESULTS Measured lens transmittance in children was found to be higher than for adults, especially in the short wavelength region (p < 0.001). Pupil size in children was significantly larger than that of adults under both dim (p = 0.003) and light (p < 0.001) conditions. Children's non-visual photoreception was 1.48 times greater than that of adults, which was very similar to the finding that melatonin suppression was 1.52 times greater in children (n = 9) than adults (n = 9). CONCLUSIONS Our Purkinje image-based system can measure children's lens transmittance spectra in vivo. Lens transmittance and pupil size may contribute to differences in melatonin suppression between primary school children and middle-aged adults.
Collapse
Affiliation(s)
- Taisuke Eto
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Michihiro Ohashi
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Kotaro Nagata
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Motomura
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Zandi B, Khanh TQ. Deep learning-based pupil model predicts time and spectral dependent light responses. Sci Rep 2021; 11:841. [PMID: 33436693 PMCID: PMC7803766 DOI: 10.1038/s41598-020-79908-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil's time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 [Formula: see text] 1 K, 4983 [Formula: see text] 3 K, 10,138 [Formula: see text] 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m2. This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
32
|
Mouland JW, Martial F, Watson A, Lucas RJ, Brown TM. Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight. Curr Biol 2020; 29:4260-4267.e4. [PMID: 31846668 PMCID: PMC6926481 DOI: 10.1016/j.cub.2019.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
In humans, short-wavelength light evokes larger circadian responses than longer wavelengths [1-3]. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm [4-8] and gives rise to the popular view that "blue" light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation between perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals [9], the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian system. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing "blue"), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin ("yellow"). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3-/-) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift [9-11]. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.
Collapse
Affiliation(s)
- Joshua W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Franck Martial
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alex Watson
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
33
|
Brown TM. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J Pineal Res 2020; 69:e12655. [PMID: 32248548 DOI: 10.1111/jpi.12655] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Ocular light drives a range of nonvisual responses in humans including suppression of melatonin secretion and circadian phase resetting. These responses are driven by intrinsically photosensitive retinal ganglion cells (ipRGCs) which combine intrinsic, melanopsin-based, phototransduction with extrinsic rod/cone-mediated signals. As a result of this arrangement, it has remained unclear how best to quantify light to predict its nonvisual effects. To address this, we analysed data from nineteen different laboratory studies that measured melatonin suppression, circadian phase resetting and/or alerting responses in humans to a wide array of stimulus types, intensities and durations with or without pupil dilation. Using newly established SI-compliant metrics to quantify ipRGC-influenced responses to light, we show that melanopic illuminance consistently provides the best available predictor for responses of the human circadian system. In almost all cases, melanopic illuminance is able to fully account for differences in sensitivity to stimuli of varying spectral composition, acting to drive responses that track variations in illumination characteristic of those encountered over civil twilight (~1-1000 lux melanopic equivalent daylight illuminance). Collectively, our data demonstrate widespread utility of melanopic illuminance as a metric for predicting the circadian impact of environmental illumination. These data therefore provide strong support for the use of melanopic illuminance as the basis for guidelines that seek to regulate light exposure to benefit human health and to inform future lighting design.
Collapse
Affiliation(s)
- Timothy M Brown
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|