1
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 PMCID: PMC11759007 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Kilgard MP, Epperson JD, Adehunoluwa EA, Swank C, Porter AL, Pruitt DT, Gallaway HL, Stevens C, Gillespie J, Arnold D, Powers MB, Hamilton RG, Naftalis RC, Foreman ML, Wigginton JG, Hays SA, Rennaker RL. Closed-loop vagus nerve stimulation aids recovery from spinal cord injury. Nature 2025:10.1038/s41586-025-09028-5. [PMID: 40399668 DOI: 10.1038/s41586-025-09028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/15/2025] [Indexed: 05/23/2025]
Abstract
Decades of research have demonstrated that recovery from serious neurological injury will require synergistic therapeutic approaches. Rewiring spared neural circuits after injury is a long-standing goal of neurorehabilitation1,2. We hypothesized that combining intensive, progressive, task-focused training with real-time closed-loop vagus nerve stimulation (CLV) to enhance synaptic plasticity3 could increase strength, expand range of motion and improve hand function in people with chronic, incomplete cervical spinal cord injury. Here we report the results from a prospective, double-blinded, sham-controlled, randomized study combining gamified physical therapy using force and motion sensors to deliver sham or active CLV (ClinicalTrials.gov identifier NCT04288245). After 12 weeks of therapy composed of a miniaturized implant selectively activating the vagus nerve on successful movements, 19 people exhibited a significant beneficial effect on arm and hand strength and the ability to perform activities of daily living. CLV represents a promising therapeutic avenue for people with chronic, incomplete cervical spinal cord injury.
Collapse
Affiliation(s)
- Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| | - Joseph D Epperson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Emmanuel A Adehunoluwa
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chad Swank
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Baylor Scott and White Institute for Rehabilitation, Dallas, TX, USA
| | - Amy L Porter
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Holle L Gallaway
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Christi Stevens
- Baylor Scott and White Institute for Rehabilitation, Dallas, TX, USA
| | - Jaime Gillespie
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Baylor Scott and White Institute for Rehabilitation, Dallas, TX, USA
| | - Dannae Arnold
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Baylor Scott and White Institute for Rehabilitation, Dallas, TX, USA
| | - Mark B Powers
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Division of Trauma, Baylor University of Medical Center, Dallas, TX, USA
| | - Rita G Hamilton
- Baylor Scott and White Institute for Rehabilitation, Dallas, TX, USA
| | - Richard C Naftalis
- Department of Neurosurgery, Baylor University of Medical Center, Dallas, TX, USA
| | - Michael L Foreman
- Division of Trauma, Baylor University of Medical Center, Dallas, TX, USA
- Division of Acute Care Surgery, Baylor University Medical Center, Dallas, TX, USA
| | - Jane G Wigginton
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- XNerve Medical Inc., Plano, TX, USA
| |
Collapse
|
3
|
Pan Y, Zhang Y, Xu Z, Wei Z, Pan R, Hu G, Wang X, Yang L, Wu D, Zhang X, Wen X, Qu S, Li C, Zhu Z, Gao Y, Shi X, Zhu Y, Wu K, Wang D, Liu Y. Transcutaneous auricular vagus nerve stimulation to treat narcolepsy type 1 (TARGET-NT1): A two-arm, randomised, sham-controlled trial. Neurotherapeutics 2025:e00604. [PMID: 40335432 DOI: 10.1016/j.neurot.2025.e00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
To assess exploratorily the safety and efficacy of transcutaneous auricular vagus nerve stimulation (tVNS) as an adjunctive therapy in improving symptoms in patients with narcolepsy type 1 (NT1). The TARGET-NT1 trial, a two-arm, double-blinded, sham-controlled trial was conducted from April 2022, to June 2024 at Xijing Hospital in Xi'an, China. Participants were randomised to receive tVNS treatment or sham tVNS (stVNS) treatment. Both interventions were performed for two 30-min periods per day with the same stimulation parameters but different stimulation points, for 12 weeks. The primary outcome was the change in mean sleep onset latency of maintenance of wakefulness test (MWT) from baseline to week 12. Secondary outcomes included changes in Narcolepsy Severity Scale (NSS), Epworth Sleepiness Scale (ESS), 14-item Hamilton Anxiety Rating Scale (HAMA-14), 17-item Hamilton Depression Rating Scale (HAMD-17). Among 60 randomised participants (32 men [53.3 %] and 28 [46.7 %]; mean [SD] age, 29.9 [9.9] years), 56 were included in the modified intention-to-treat (mITT) analysis. From baseline to week 12, the difference in mean change in mean sleep onset latency of MWT was 3.09 (95 % CI, 1.00, 5.88; P = 0.0041) as compared with stVNS group. Significant improvements in NSS-EDS (-2.61 [95%CI, -4.07, -1.15; P = 0.0006]), NSS-SP (-1.11 [95%CI, -1.83, -0.38; P = 0.0030]), NSS-HH (-2.71 [95%CI, -3.36, -2.05; P < 0.0001]), NSS- DNS (-0.52 [95%CI, -0.87, -0.17; P = 0.0036]), ESS (-3.03 [95%CI, -4.30, -1.75; P < 0.0001]) and HAMD-17 (-2.50 [95%CI, -4.30, -0.70; P = 0.0069]) were observed in the tVNS group as compared with stVNS group. This exploratory study supported the efficacy and safety of tVNS in patients with NT1 and provided insights into the mechanisms underlying tVNS treatment for NT1. The findings highlight tVNS as a potential non-pharmacological adjunctive therapy for patients with NT1. This trial was registered with the Chinese Clinical Trial Registry, ChiCTR2400094550.
Collapse
Affiliation(s)
- Yuanhang Pan
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Yingchi Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Ziliang Xu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Zihan Wei
- Department of Neurosurgery, General Hospital of Southern Theatre Command, Guangzhou, PR China.
| | - Rui Pan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China.
| | - Gengyao Hu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Xiaoli Wang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Lei Yang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Dianwei Wu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Xinbo Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Xinyu Wen
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Shuyi Qu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Chenwei Li
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Zhe Zhu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Yuwen Gao
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Xiaodan Shi
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| | - Kejian Wu
- Department of Mathematics and Physics, Basic Medical Science Academy, Air Force Medical University, Xi'an, PR China.
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.
| |
Collapse
|
4
|
Mauney E, King F, Burton-Murray H, Kuo B. Psychedelic-assisted Therapy as a Promising Treatment for Irritable Bowel Syndrome. J Clin Gastroenterol 2025; 59:385-392. [PMID: 39998940 DOI: 10.1097/mcg.0000000000002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Irritable bowel syndrome (IBS) is prevalent and can be disabling. Many patients remain symptomatic despite behavioral and medical therapies. Psychedelic-assisted therapy (PAT), in which serotonergic agents like psilocybin are administered in a psychotherapeutic context, has shown promise for refractory psychiatric disorders, including major depressive disorder and post-traumatic stress disorder. Emerging evidence suggests PAT may also be beneficial for chronic pain conditions, including fibromyalgia, low back pain, and migraines. IBS is highly comorbid with depression, anxiety, and other chronic pain disorders, suggesting shared cognitive and neurological roots and potentially shared therapeutic targets. In this editorial, we discuss 3 lines of evidence for PAT as a treatment for IBS, under the overarching themes of (1) psychological mechanisms (the findings from historic studies of psychedelics for chronic pain and the elements of psychobiological dysfunction targeted by PAT), (2) central nervous system mechanisms (default mode network modulation and induction of neuroplasticity), and (3) the neurointestinal pathophysiology of IBS that may be modified by PAT. We argue that this evidence suggests PAT is worthy of study as a new therapy for IBS, and potentially for other disorders of gut-brain interaction (DGBI). Successful application of PAT to gastrointestinal disease would represent a major step beyond mind-body dualism, with potential implications for other functional somatic disorders.
Collapse
Affiliation(s)
- Erin Mauney
- Pediatric Gastroenterology and Nutrition Program, Massachusetts General Hospital for Children
| | | | - Helen Burton-Murray
- Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Braden Kuo
- Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Powers MB, Hays SA, Rosenfield D, Porter AL, Gallaway H, Chauvette G, Smits JAJ, Warren AM, Douglas M, Naftalis R, Wigginton JG, Foreman M, Kilgard MP, Rennaker RL. Vagus nerve stimulation therapy for treatment-resistant PTSD. Brain Stimul 2025; 18:665-675. [PMID: 40097094 DOI: 10.1016/j.brs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is common and debilitating, and many individuals do not respond to existing therapies. We developed a fundamentally novel neuromodulation-based therapy for treatment-resistant PTSD. This approach is premised on coupling prolonged exposure therapy, a first-line evidence-based cognitive behavioral therapy that directs changes within fear networks, with concurrent delivery of short bursts of vagus nerve stimulation (VNS), which enhance synaptic plasticity. METHODS We performed a first-in-human prospective open-label early feasibility study (EFS) using a next-generation miniaturized system to deliver VNS therapy in nine individuals with moderate to severe treatment-resistant PTSD. All individuals received a standard 12-session course of prolonged exposure therapy combined with VNS. Assessments were performed before, 1 week after, and 1, 3, and 6 months after the completion of therapy. CLINICALTRIALS gov registration: NCT04064762. RESULTS VNS therapy resulted in significant, clinically-meaningful improvements in multiple metrics of PTSD symptoms and severity compared to baseline (CAPS-5, PCL-5, and HADS all p < 0.001 after therapy). These benefits persisted at 6 months after the cessation of therapy, suggesting lasting improvements. All participants showed loss of PTSD diagnosis after completing treatment. No serious or unexpected device-related adverse events were observed. CONCLUSIONS These findings provide a demonstration of the safety and feasibility of VNS therapy for PTSD and highlight the potential of this approach. Collectively, these support the validation of VNS therapy for PTSD in a rigorous randomized controlled trial.
Collapse
Affiliation(s)
- Mark B Powers
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA.
| | - Seth A Hays
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA; Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX 75275, USA
| | - Amy L Porter
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Holle Gallaway
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Greg Chauvette
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Jasper A J Smits
- Department of Psychology and Institute for Mental Health Research, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Megan Douglas
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Richard Naftalis
- Department of Surgery, Baylor Scott & White Health, Dallas, TX 75246, USA
| | - Jane G Wigginton
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA
| | - M Foreman
- Department of Surgery, Baylor Scott & White Health, Dallas, TX 75246, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Wang H, Guo J, Zhang Y, Fu Z, Yao Y. Closed-loop rehabilitation of upper-limb dyskinesia after stroke: from natural motion to neuronal microfluidics. J Neuroeng Rehabil 2025; 22:87. [PMID: 40253334 PMCID: PMC12008995 DOI: 10.1186/s12984-025-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
This review proposes an innovative closed-loop rehabilitation strategy that integrates multiple subdomains of stroke science to address the global challenge of upper-limb dyskinesia post-stroke. Despite advancements in neural remodeling and rehabilitation research, the compartmentalization of subdomains has limited the effectiveness of current rehabilitation strategies. Our approach unites key areas-including the post-stroke brain, upper-limb rehabilitation robotics, motion sensing, metrics, neural microfluidics, and neuroelectronics-into a cohesive framework designed to enhance upper-limb motion rehabilitation outcomes. By leveraging cutting-edge technologies such as lightweight rehabilitation robotics, advanced motion sensing, and neural microfluidic models, this strategy enables real-time monitoring, adaptive interventions, and personalized rehabilitation plans. Furthermore, we explore the potential of closed-loop systems to drive neural plasticity and functional recovery, offering a transformative perspective on stroke rehabilitation. Finally, we discuss future directions, emphasizing the integration of emerging technologies and interdisciplinary collaboration to advance the field. This review highlights the promise of closed-loop strategies in achieving unprecedented integration of subdomains and improving post-stroke upper-limb rehabilitation outcomes.
Collapse
Affiliation(s)
- Honggang Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Junlong Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yangqi Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Ze Fu
- Institute of Biological and Medical Technology, Harbin Institute of Technology (Weihai), Weihai, 264200, China
| | - Yufeng Yao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
7
|
Kumagai S, Shiramatsu TI, Kawai K, Takahashi H. Vagus nerve stimulation as a predictive coding modulator that enhances feedforward over feedback transmission. Front Neural Circuits 2025; 19:1568655. [PMID: 40297016 PMCID: PMC12034665 DOI: 10.3389/fncir.2025.1568655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Vagus nerve stimulation (VNS) has emerged as a promising therapeutic intervention across various neurological and psychiatric conditions, including epilepsy, depression, and stroke rehabilitation; however, its mechanisms of action on neural circuits remain incompletely understood. Here, we present a novel theoretical framework based on predictive coding that conceptualizes VNS effects through differential modulation of feedforward and feedback neural circuits. Based on recent evidence, we propose that VNS shifts the balance between feedforward and feedback processing through multiple neuromodulatory systems, resulting in enhanced feedforward signal transmission. This framework integrates anatomical pathways, receptor distributions, and physiological responses to explain the influence of the VNS on neural dynamics across different spatial and temporal scales. Vagus nerve stimulation may facilitate neural plasticity and adaptive behavior through acetylcholine and noradrenaline (norepinephrine), which differentially modulate feedforward and feedback signaling. This mechanistic understanding serves as a basis for interpreting the cognitive and therapeutic outcomes across different clinical conditions. Our perspective provides a unified theoretical framework for understanding circuit-specific VNS effects and suggests new directions for investigating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Pervaz I, Thurn L, Vezzani C, Kaluza L, Kühnel A, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis. Brain Stimul 2025; 18:148-157. [PMID: 39884386 DOI: 10.1016/j.brs.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (tVNS) has emerged as a promising technique to modulate autonomic functions, and pupil dilation has been recognized as a promising biomarker for tVNS-induced monoaminergic release. Nevertheless, studies on the effectiveness of various tVNS protocols have produced heterogeneous results on pupil dilation to date. METHODS Here, we synthesize the existing evidence and compare conventional ("continuous") and pulsed stimulation protocols using a Bayesian meta-analysis. To maintain a living version, we developed a Shiny App with the possibility to incorporate newly published studies in the future. Based on a systematic review, we included 18 studies (N = 771) applying either conventional or pulsed stimulation protocols. RESULTS Across studies, we found anecdotal evidence for the null hypothesis, showing that taVNS does not increase pupil size (g = 0.15, 95 % CI = [0.03, 0.27], BF01 = 1.0). Separating studies according to conventional vs. pulsed protocols revealed that studies using pulsed taVNS provide strong evidence for the alternative hypothesis(g = 0.36, 95 % CI = [0.19, 0.53], BF10 = 50.8) while conventional taVNS studies provide strong evidence for the null hypothesis (g = 0.002, CI = [-0.14, 0.14], BF01 = 21.9). CONCLUSION Our meta-analysis highlights differential effects of conventional and pulsed taVNS protocols on pupil dilation. These findings underscore the relevance of taVNS protocols in optimizing its use for specific applications that may require modulation of tonic vs. phasic monoaminergic responses and might also help to gain mechanistic insights into potential therapeutic effects.
Collapse
Affiliation(s)
- Ipek Pervaz
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lilly Thurn
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cecilia Vezzani
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Luisa Kaluza
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| |
Collapse
|
9
|
Raut RV, Rosenthal ZP, Wang X, Miao H, Zhang Z, Lee JM, Raichle ME, Bauer AQ, Brunton SL, Brunton BW, Kutz JN. Arousal as a universal embedding for spatiotemporal brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.06.565918. [PMID: 38187528 PMCID: PMC10769245 DOI: 10.1101/2023.11.06.565918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Neural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, multidimensional arousal-related process that regulates brain-wide physiology on the timescale of seconds. By framing this interpretation within dynamical systems theory, we arrive at a surprising prediction: that a single, scalar measurement of arousal (e.g., pupil diameter) should suffice to reconstruct the continuous evolution of multidimensional, spatiotemporal measurements of large-scale brain physiology. To test this hypothesis, we perform multimodal, cortex-wide optical imaging and behavioral monitoring in awake mice. We demonstrate that spatiotemporal measurements of neuronal calcium, metabolism, and brain blood-oxygen can be accurately and parsimoniously modeled from a low-dimensional state-space reconstructed from the time history of pupil diameter. Extending this framework to behavioral and electrophysiological measurements from the Allen Brain Observatory, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from an intrinsic arousal manifold. Our results support the hypothesis that spontaneous, spatially structured fluctuations in brain-wide physiology-widely interpreted to reflect regionally-specific neural communication-are in large part reflections of an arousal-related process. This enriched view of arousal dynamics has broad implications for interpreting observations of brain, body, and behavior as measured across modalities, contexts, and scales.
Collapse
Affiliation(s)
- Ryan V. Raut
- Allen Institute, Seattle, WA, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Zachary P. Rosenthal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaodan Wang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hanyang Miao
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhanqi Zhang
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcus E. Raichle
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q. Bauer
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Chen Z, Liu K. Mechanism and Applications of Vagus Nerve Stimulation. Curr Issues Mol Biol 2025; 47:122. [PMID: 39996843 PMCID: PMC11854789 DOI: 10.3390/cimb47020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past three decades, vagus nerve stimulation (VNS) has emerged as a promising rehabilitation therapy for a diverse range of conditions, demonstrating substantial clinical potential. This review summarizes the in vivo biological mechanisms activated by VNS and their corresponding clinical applications. Furthermore, it outlines the selection of parameters and equipment for VNS implementation. VNS exhibits anti-inflammatory effects, modulates neurotransmitter release, enhances neural plasticity, inhibits apoptosis and autophagy, maintains blood-brain barrier integrity, and promotes angiogenesis. Clinically, VNS has been utilized in the treatment of epilepsy, depression, headache, stroke, and obesity. Its potential applications extend to anti-inflammatory treatment and the management of cardiovascular and cerebrovascular diseases and various brain disorders. However, further experiments are required to definitively establish the efficacy of VNS's various mechanisms. Additionally, there is a need to explore and identify optimal rehabilitation treatment parameters for different diseases.
Collapse
Affiliation(s)
| | - Kezhou Liu
- Department of Biomedical Engineering, School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
11
|
Ludwig M, Betts MJ, Hämmerer D. Stimulate to Remember? The Effects of Short Burst of Transcutaneous Vagus Nerve Stimulation (taVNS) on Memory Performance and Pupil Dilation. Psychophysiology 2025; 62:e14753. [PMID: 39815765 PMCID: PMC11736245 DOI: 10.1111/psyp.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
The decline in noradrenergic (NE) locus coeruleus (LC) function in aging is thought to be implicated in episodic memory decline. Transcutaneous auricular vagus nerve stimulation (taVNS), which supports LC function, might serve to preserve or improve memory function in aging. However, taVNS effects are generally very heterogeneous, and it is currently unclear whether taVNS has an effect on memory. In this study, an emotional memory task with negative events involving the LC-NE system was combined with the short burst of event-related taVNS (3 s) in younger adults (N = 24). The aim was to investigate taVNS-induced changes in pupil dilation during encoding and possible taVNS-induced improvements in (emotional) memory performance for early and delayed (24 h) recognition. Negative events were associated with increased pupil dilation and better memory performance. Additionally, real as compared to sham or no stimulation selectively increased memory for negative events. Short bursts of stimulation, whether real or sham, led to an increase in pupil dilation and an improvement in memory performance over time, likely due to the attention-inducing sensory modulation of electrical stimulation.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- CBBS Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)Otto‐von‐Guericke University MagdeburgMagdeburgGermany
- Department of NeurologyUniversity Medical CenterHamburg‐Eppendorf, HamburgGermany
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- CBBS Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)Otto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- CBBS Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)Otto‐von‐Guericke University MagdeburgMagdeburgGermany
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- The Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK
- Department of PsychologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
12
|
Othman MH, Amiri M, Kondziella D. Medical and surgical treatments in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:183-196. [PMID: 39986721 DOI: 10.1016/b978-0-443-13408-1.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Ever since a 2012 landmark study showed positive effects of amantadine in people with disorders of consciousness (DOC), there has been a shift in research efforts from merely improving diagnostics and prognostication of DOC to also include therapeutic trials, in the quest to improve consciousness recovery after brain injury. Stimulation of residual consciousness in the intensive care unit is critical because failure to do so may lead to unwarranted pessimistic prognosis and premature withdrawal of life-sustaining therapies. Similarly, it is crucial to harvest the potential of chronic DOC patients for late consciousness recovery, which is increasingly reported. To this end, medical and nonpharmacologic, including surgical, treatment strategies are being tested. These include dopaminergic and GABAergic drugs (medical), vagal nerve stimulation (noninvasive or surgical), and deep brain stimulation (surgical). In addition, transcranial magnetic stimulation, transcranial direct current stimulation, and low-intensity ultrasound (nonpharmacologic and nonsurgical) are covered in another chapter in this volume of the Handbook. Although overall, DOC treatment studies are subject to small sample sizes, unblinded protocols, and limited follow-up, this will likely change in the foreseeable future with the advent of adequately powered multicenter studies, randomized, double-blind, placebo-controlled designs, and standardized outcome measures. This chapter discusses the present state and outlooks of the field of medical and surgical options to boost arousal and awareness in patients with DOC, indicating the future of DOC treatment is bright.
Collapse
Affiliation(s)
- Marwan H Othman
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Moshgan Amiri
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Yun YJ, Myong Y, Oh BM, Song JJ, Kim CK, Seo HG. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Adults. Neuromodulation 2025; 28:115-122. [PMID: 38878053 DOI: 10.1016/j.neurom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has recently been reported to exert additional benefits for functional recovery in patients with brain injury. However, the mechanisms underlying these effects have not yet been elucidated. This study examined the effects of transcutaneous auricular VNS (taVNS) on cortical excitability in healthy adults. MATERIALS AND METHODS We recorded subthreshold and suprathreshold single- and paired-pulse motor-evoked potentials (MEPs) in the right-hand muscles of 16 healthy adults by stimulating the left primary motor cortex. Interstimulus intervals were set at 2 milliseconds and 3 milliseconds for intracortical inhibition (ICI), and 10 milliseconds and 15 milliseconds for intracortical facilitation (ICF). taVNS was applied to the cymba conchae of both ears for 30 minutes. The intensity of taVNS was set to a maximum tolerable level of 1.95 mA. MEPs were measured before stimulation, 20 minutes after the beginning of the stimulation, and 10 minutes after the cessation of stimulation. RESULTS The participants' age was 33.25 ± 7.08 years, and nine of 16 were male. No statistically significant changes were observed in the mean values of the single-pulse MEPs before, during, or after stimulation. Although the ICF showed an increasing trend after stimulation, the changes in ICI and ICF were not significant, primarily because of the substantial interindividual variability. CONCLUSIONS The effect of taVNS on cortical excitability varied in healthy adults. An increase in ICF was observed after taVNS, although the difference was not statistically significant. Our findings contribute to the understanding of the mechanisms by which taVNS is effective in patients with brain disorders.
Collapse
Affiliation(s)
- Yeo Joon Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Youho Myong
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Institute on Aging, Seoul National University, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Korea; Neurive Co, Ltd, Gimhae, Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital and College of Medicine, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
14
|
Sönmez Ö, Holstein E, Puschmann S, Schmitt T, Witt K, Thiel CM. The impact of transcutaneous vagus nerve stimulation on anterior cingulate cortex activity in a cognitive control task. Psychophysiology 2025; 62:e14739. [PMID: 39780300 PMCID: PMC11711293 DOI: 10.1111/psyp.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner. The tasks were executed using a randomized within-subject design, with participants undergoing auricular tVNS and sham stimulation in separate sessions. tVNS significantly changed performance in the simple control task reflected in a greater propensity to respond. Furthermore, we observed a significant increase in neural activity in the anterior cingulate cortex during the simple cognitive control task under tVNS. Functional connectivity analyses revealed positive coupling between neural activity in the locus coeruleus and anterior cingulate cortex, however, this was not modulated by tVNS. The findings suggest that non-invasive stimulation of the vagus nerve can modulate neural activity in the anterior cingulate cortex. While these neural effects suggest an impact of tVNS in a key region involved in conflict monitoring and cognitive control, the behavioral effects are more indicative of a shift in response bias rather than enhanced cognitive control.
Collapse
Affiliation(s)
- Özde Sönmez
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Department of PsychiatryUniversity Medical Center GroningenGroningenThe Netherlands
| | - Elfriede Holstein
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- DIPF | Leibniz Institute for Research and Information in EducationFrankfurt am MainGermany
| | - Sebastian Puschmann
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Tina Schmitt
- Neuroimaging Unit, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| | - Christiane M. Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
15
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Zhi J, Zhang S, Huang M, Qin H, Xu H, Chang Q, Wang Y. Transcutaneous auricular vagus nerve stimulation as a potential therapy for attention deficit hyperactivity disorder: modulation of the noradrenergic pathway in the prefrontal lobe. Front Neurosci 2024; 18:1494272. [PMID: 39697776 PMCID: PMC11652481 DOI: 10.3389/fnins.2024.1494272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC). In recent years, transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive neuromodulation technique, has demonstrated promising potential in the treatment of neurological and psychiatric disorders. However, its application in the management of ADHD remains relatively unexplored. Previous studies have shown that taVNS exerts therapeutic effects on attention, cognition, arousal, perception, and behavioral regulation primarily through activating the vagus nerve conduction pathway, specifically targeting the nucleus tractus solitarius - locus coeruleus - NE pathway. These findings have led to the hypothesis that taVNS may be an effective intervention for ADHD, with NE and its pathway playing a pivotal role in this context. Therefore, this review comprehensively examines the correlation between NE pathway alterations in the PFC and ADHD, the mechanism of action of taVNS, and the potential role of the NE pathway in treating ADHD with taVNS, aiming to provide a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Jincao Zhi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shiwen Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Meiling Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Qin
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Xu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Chang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Martin KA, Papadoyannis ES, Schiavo JK, Fadaei SS, Issa HA, Song SC, Valencia SO, Temiz NZ, McGinley MJ, McCormick DA, Froemke RC. Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning. Nat Neurosci 2024; 27:2152-2166. [PMID: 39284963 PMCID: PMC11932732 DOI: 10.1038/s41593-024-01767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2024] [Indexed: 11/07/2024]
Abstract
Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.
Collapse
Affiliation(s)
- Kathleen A Martin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Jennifer K Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Saba Shokat Fadaei
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Habon A Issa
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Soomin C Song
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Sofia Orrey Valencia
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Nesibe Z Temiz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Matthew J McGinley
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
18
|
Cheng W, Fang K, Ouyang X, Jin L, Song Y, Yu B. Vagus nerve stimulation with a small total charge transfer improves motor behavior and reduces neuroinflammation in a mouse model of Parkinson's disease. Neurochem Int 2024; 180:105871. [PMID: 39362497 DOI: 10.1016/j.neuint.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Conventional treatments are ineffective in reversing disease progression. Recently, the therapeutic and rehabilitation potential of vagus nerve stimulation (VNS) in PD has been explored. However, the underlying mechanisms remain largely unknown. In this study, we investigated the neuroprotective effects of VNS in a lateral lesioned mice model of PD. Excluding controls, experimental mice received cuff electrode implantation on the left vagus nerve and 6-hydroxydopamine administration into the bilateral striatum. After ten days, electrical stimulation was delivered for 11 consecutive days onto PD animals. Behavioral tests were performed after stimulation. The expression of TH, Iba-1, GFAP, adrenergic receptors and cytokines in the SN and striatum was detected by immunofluorescence or western blotting. The activity of noradrenergic neurons in the locus coeruleus (LC) was also measured. Our results suggest that VNS improved behavioral performance in rod rotation, open field tests and pole-climbing tests in PD mice, accompanied by a decrease in the loss of dopaminergic neurons in the SN and increased TH expression in the striatum. Neuroinflammation-related factors, such as GFAP, Iba-1, TNF-α and IL-1β were also suppressed in PD mice after VNS compared to those without treatment. Furthermore, the proportion of c-Fos-positive noradrenergic neurons in the LC increased when animals received VNS. Additionally, the expression of the adrenergic receptor of α1BR was also upregulated after VNS compared to PD mice. In conclusion, VNS has potential as a novel PD therapy for neuroprotective effects, and indicate that activation of norepinephric neurons in LC may plays an important role in VNS treatment for PD.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. Sci Rep 2024; 14:24391. [PMID: 39420188 PMCID: PMC11487125 DOI: 10.1038/s41598-024-72179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Grants
- R01 MH126971 NIMH NIH HHS
- federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF) in the Center for Behavioral Brain Sciences (CBBS, ZS/2016/04/78113)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ProjectID 425899994 – Sonderforschungsbereiche 1436 (SFB 1436)
- Human Brain Project, Specific Grant Agreement 3 (SGA3), Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Sonderforschungsbereiche 1315 (SFB 1315).
- Center for Behavioral Brain Sciences (CBBS) NeuroNetzwerk 17
- the German Federal Ministry of Education and Research (BMBF, funding code 01ED2102B) under the aegis of the EU Joint Programme – Neurodegenerative Disease Research (JPND)
- Sonderforschungsbereich 1315, Project B06, Sonderforschungsbereich 1436
- Project A08, ARUK SRF2018B-004
- CBBS Neural Network (CBBS, ZS/2016/04/78113)
- NIH R01MH126971
- Otto-von-Guericke-Universität Magdeburg (3121)
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Calida Pereira
- Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Chen L, Gao H, Wang Z, Gu B, Zhou W, Pang M, Zhang K, Liu X, Ming D. Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke. Cogn Neurodyn 2024; 18:3107-3124. [PMID: 39555282 PMCID: PMC11564590 DOI: 10.1007/s11571-024-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Huixin Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Bin Gu
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Wanqi Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
21
|
Zhang H, Shan AD, Wan CH, Cao XY, Yuan YS, Ye SY, Gao MX, Gao LZ, Tong Q, Gan CT, Sun HM, Zhang KZ. Transcutaneous auricular vagus nerve stimulation improves anxiety symptoms and cortical activity during verbal fluency task in Parkinson's disease with anxiety. J Affect Disord 2024; 361:556-563. [PMID: 38925314 DOI: 10.1016/j.jad.2024.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ai-di Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Chen-Hui Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Xing-Yue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Shi-Yi Ye
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Meng-Xi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Li-Zhi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Qing Tong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Cai-Ting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Hui-Min Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
RoaFiore L, Meyer T, Peixoto T, Irazoqui P. Label-free functional imaging of vagus nerve stimulation-evoked potentials at the cortical surface. NPJ BIOSENSING 2024; 1:11. [PMID: 39286049 PMCID: PMC11404031 DOI: 10.1038/s44328-024-00012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Vagus nerve stimulation (VNS) is an FDA-approved stimulation therapy to treat patients with refractory epilepsy. In this work, we use a coherent holographic imaging system to characterize vagus nerve-evoked potentials (VEPs) in the cortex in response to VNS stimulation paradigms without electrode placement or any genetic, structural, or functional labels. We analyze stimulation amplitude up to saturation, pulse width up to 800 μs, and frequency from 10 Hz to 30 Hz, finding that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interactions between pulse width and frequency. This non-contact label-free functional imaging technique may serve as a non-invasive rapid-feedback tool to characterize VEPs and may increase the efficacy of VNS in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Laura RoaFiore
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Thaissa Peixoto
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
23
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
24
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
25
|
Carroll AM, Pruitt DT, Riley JR, Danaphongse TT, Rennaker RL, Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation during training fails to improve learning in healthy rats. Sci Rep 2024; 14:18955. [PMID: 39147873 PMCID: PMC11327266 DOI: 10.1038/s41598-024-69666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Learning new skills requires neuroplasticity. Vagus nerve stimulation (VNS) during sensory and motor events can increase neuroplasticity in networks related to these events and might therefore serve to facilitate learning on sensory and motor tasks. We tested if VNS could broadly improve learning on a wide variety of tasks across different skill domains in healthy, female adult rats. VNS was paired with presentation of stimuli or on successful trials during training, strategies known to facilitate plasticity and improve recovery in models of neurological disorders. VNS failed to improve either rate of learning or performance for any of the tested tasks, which included skilled forelimb motor control, speech sound discrimination, and paired-associates learning. These results contrast recent findings from multiple labs which found VNS pairing during training produced learning enhancements across motor, auditory, and cognitive domains. We speculate that these contrasting results may be explained by key differences in task designs, training timelines and animal handling approaches, and that while VNS may be able to facilitate rapid and early learning processes in healthy subjects, it does not broadly enhance learning for difficult tasks.
Collapse
Affiliation(s)
- Alan M Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
26
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605407. [PMID: 39131302 PMCID: PMC11312456 DOI: 10.1101/2024.07.27.605407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Calida Pereira
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck
| |
Collapse
|
27
|
Wu Q, Wang J, Han D, Qian L, Hu H, Gao H. Current status of transcutaneous auricular vagus nerve stimulation for tinnitus: a narrative review of modern research. Front Neurosci 2024; 18:1405310. [PMID: 39027324 PMCID: PMC11254635 DOI: 10.3389/fnins.2024.1405310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Tinnitus, characterized by phantom sound perception, is a highly disruptive disorder lacking definitive and effective treatments. Its intricate neural mechanisms are not fully understood. Transcutaneous auricular vagus nerve stimulation (taVNS) has demonstrated potential as a substitute or supplementary treatment by activating central vagal pathways. However, standardized therapeutic protocols and objective tests to assess efficacy are lacking. Therefore, taVNS shows promise as a therapy for tinnitus, and treatment protocols should be optimized in future clinical trials.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Acupuncture, Moxibustion and Massage, Wenzhou Central Hospital, Wenzhou, China
| | - Jiawei Wang
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Dexiong Han
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lala Qian
- Department of Acupuncture, Moxibustion and Massage, Wenzhou Central Hospital, Wenzhou, China
| | - Hantong Hu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Gao
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
29
|
Huang R, Carter ER, Hughes EG, Welle CG. Paired vagus nerve stimulation drives precise remyelination and motor recovery after myelin loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593609. [PMID: 38766201 PMCID: PMC11100833 DOI: 10.1101/2024.05.10.593609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Myelin loss in the central nervous system can cause permanent motor or cognitive deficits in patients with multiple sclerosis (MS). While current immunotherapy treatments decrease the frequency of demyelinating episodes, they do not promote myelin repair or functional recovery. Vagus nerve stimulation (VNS) is a neuromodulation therapy which enhances neuroplasticity and the recovery of motor function after stroke, but its effects on myelin repair are not known. To determine if VNS influences myelin repair, we applied VNS following a demyelinating injury and measured longitudinal myelin dynamics and functional recovery. We found that VNS promotes remyelination by increasing the generation of myelinating oligodendrocytes. Pairing VNS with a skilled reach task leads to the regeneration of myelin sheaths on previously myelinated axon segments, enhancing the restoration of the original pattern of myelination. Moreover, the magnitude of sheath pattern restoration correlates with long-term motor functional improvement. Together, these results suggest that recovery of the myelin sheath pattern is a key factor in the restoration of motor function following myelin loss and identify paired VNS as a potential remyelination therapy to treat demyelinating diseases.
Collapse
|
30
|
Carroll AM, Riley JR, Borland MS, Danaphongse TT, Hays SA, Kilgard MP, Engineer CT. Bursts of vagus nerve stimulation paired with auditory rehabilitation fail to improve speech sound perception in rats with hearing loss. iScience 2024; 27:109527. [PMID: 38585658 PMCID: PMC10995867 DOI: 10.1016/j.isci.2024.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/09/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.
Collapse
Affiliation(s)
- Alan M. Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Jonathan R. Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael S. Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Tanya T. Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Crystal T. Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
31
|
Wessel CR, Karakas C, Haneef Z, Mutchnick I. Vagus nerve stimulation and heart rate variability: A scoping review of a somatic oscillatory signal. Clin Neurophysiol 2024; 160:95-107. [PMID: 38412747 DOI: 10.1016/j.clinph.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024]
Abstract
The goal of this review is to synthesize the literature on vagus nerve stimulator (VNS)-related changes in heart rate variability (HRV) in patients with drug-resistant epilepsy (DRE) and assess the role of these changes in seizure relief. A scoping literature review was performed with the following inclusion criteria: primary articles written in English, involved implantable VNS in humans, and had HRV as a primary outcome. Twenty-nine studies were retrieved, however with considerable heterogeneity in study methods. The overall depression in HRV seen in DRE patients compared to healthy controls persisted even after VNS implant, indicating that achieving "healthy" HRV is not necessary for VNS therapeutic success. Within DRE patients, changes in frequency domain parameters six months after VNS implant returned to baseline after a year. The mechanism of how VNS reduces seizure burden does not appear to be significantly related to alterations in baseline HRV. However, the subtlety of sympathetic/parasympathetic signaling likely requires a more structured approach to experimental and analytic techniques than currently found in the literature.
Collapse
Affiliation(s)
- Caitlin R Wessel
- University of Louisville School of Medicine, Louisville KY 40202, USA.
| | - Cemal Karakas
- University of Louisville School of Medicine, Louisville KY 40202, USA; Division of Pediatric Neurology, Department of Neurology, University of Louisville, Louisville KY 40202, USA; Norton Neuroscience Institute and Children's Hospital, Louisville KY 40241, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College, Houston TX 77030, USA; Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Ian Mutchnick
- University of Louisville School of Medicine, Louisville KY 40202, USA; Norton Neuroscience Institute and Children's Hospital, Louisville KY 40241, USA; University of Louisville Department of Neurosurgery, Louisville KY 40202, USA
| |
Collapse
|
32
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does Vibrotactile Stimulation of the Auricular Vagus Nerve Enhance Working Memory? A Behavioral and Physiological Investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586365. [PMID: 38585960 PMCID: PMC10996508 DOI: 10.1101/2024.03.24.586365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.
Collapse
|
33
|
Teckentrup V, Kroemer NB. Mechanisms for survival: vagal control of goal-directed behavior. Trends Cogn Sci 2024; 28:237-251. [PMID: 38036309 DOI: 10.1016/j.tics.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation. Brain Stimul 2024; 17:460-468. [PMID: 38593972 PMCID: PMC11268363 DOI: 10.1016/j.brs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Josh Adams
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Kara Donovan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna L Gorlewicz
- Department of Aerospace and Mechanical Engineering, Saint Louis University, MO, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
36
|
Bao R, Wang S, Liu X, Tu K, Liu J, Huang X, Liu C, Zhou P, Liu S. Neuromorphic electro-stimulation based on atomically thin semiconductor for damage-free inflammation inhibition. Nat Commun 2024; 15:1327. [PMID: 38351088 PMCID: PMC10864345 DOI: 10.1038/s41467-024-45590-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by β2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).
Collapse
Affiliation(s)
- Rong Bao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Xiaohe Huang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chunsen Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Shen Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
37
|
Fitzgerald PJ. Neural hyperexcitability in Angelman syndrome: Genetic factors and pharmacologic treatment approaches. Epilepsy Res 2024; 200:107286. [PMID: 38217951 DOI: 10.1016/j.eplepsyres.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder that is typically caused by deletion or a loss-of-function mutation of the maternal copy of the ubiquitin ligase E3A (UBE3A) gene. The disorder is characterized by severe intellectual disability, deficits in speech, motor abnormalities, altered electroencephalography (EEG) activity, spontaneous epileptic seizures, sleep disturbances, and a happy demeanor with frequent laughter. Regarding electrophysiologic abnormalities in particular, enhanced delta oscillatory power and an elevated excitatory/inhibitory (E/I) ratio have been documented in AS, with E/I ratio especially studied in rodent models. These electrophysiologic characteristics appear to relate with the greatly elevated rates of epilepsy in individuals with AS, and associated hypersynchronous neural activity. Here we briefly review findings on EEG, E/I ratio, and epileptic seizures in AS, including data from rodent models of the disorder. We summarize pharmacologic approaches that have been used to treat behavioral aspects of AS, including neuropsychiatric phenomena and sleep disturbances, as well as seizures in the context of the disorder. Antidepressants such as SSRIs and atypical antipsychotics are among the medications that have been used behaviorally, whereas anticonvulsant drugs such as valproic acid and lamotrigine have frequently been used to control seizures in AS. We end by suggesting novel uses for some existing pharmacologic agents in AS, including noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists) and cholinesterase inhibitors, where these various classes of drugs may have the ability to ameliorate both behavioral disturbances and seizures.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
Reed F, Foldi CJ. Do the therapeutic effects of psilocybin involve actions in the gut? Trends Pharmacol Sci 2024; 45:107-117. [PMID: 38216431 DOI: 10.1016/j.tips.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
The psychedelic compound psilocybin has recently emerged as a therapeutic intervention for various mental health conditions. Psilocybin is a potent agonist of serotonin (5-HT) receptors (5-HTRs), which are expressed in the brain and throughout peripheral tissues, with particularly high expression in the gastrointestinal (GI) tract. However, no studies have investigated the possibility that peripheral actions of psilocybin may contribute to improvements in mental health outcomes. This is despite strong evidence for disturbed gut-brain signalling in conditions in which psilocybin is being tested clinically. In this Opinion, we highlight the likely actions of psychedelics in the gut and provide initial support for the premise that peripheral actions may be involved in rapid and long-term therapeutic effects. A greater understanding of all sites and modes of action will guide more targeted approaches to drug development.
Collapse
Affiliation(s)
- Felicia Reed
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia; Australian Eating Disorders Research & Translation Centre (AEDRTC), Sydney, NSW 2006, Australia.
| | - Claire J Foldi
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O’Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus nerve stimulation (VNS) modulates synaptic plasticity in the rat infralimbic cortex via Trk-B receptor activation to reduce drug-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577293. [PMID: 38328140 PMCID: PMC10849650 DOI: 10.1101/2024.01.25.577293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M. Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Jessica E. Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aarron J. Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Sierra R. Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - John T. O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Kathy L. Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Bogdan Bordieanu
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Jacqueline F. McGinty
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| |
Collapse
|
40
|
Winter Y, Sandner K, Bassetti CLA, Glaser M, Ciolac D, Ziebart A, Karakoyun A, Saryyeva A, Krauss JK, Ringel F, Groppa S. Vagus nerve stimulation for the treatment of narcolepsy. Brain Stimul 2024; 17:83-88. [PMID: 38184192 DOI: 10.1016/j.brs.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVE No study on neurostimulation in narcolepsy is available until now. Arousal- and wake-promoting effects of vagus nerve stimulation (VNS) have been demonstrated in animal experiments and are well-known as side effects of VNS therapy in epilepsy and depression. The objective was to evaluate the therapeutic effect of VNS on daily sleepiness and cataplexies in narcolepsy. METHODS In our open-label prospective comparative study, we included narcolepsy patients who were treated with VNS because of depression or epilepsy and compared them to controls without narcolepsy treated with VNS for depression or epilepsy (18 patients in each group, aged 31.5 ± 8.2 years). We evaluated daily sleepiness (Epworth Sleepiness Scale, ESS) and the number of cataplexies per week before the implantation of VNS and at three and six month follow-ups. RESULTS Compared to baseline (ESS: 15.9 ± 2.5) patients with narcolepsy showed a significant improvement on ESS after three months (11.2 ± 3.3, p < 0.05) and six months (9.6 ± 2.8, p < 0.001) and a trend to reduction of cataplexies. No significant ESS-improvement was observed in patients without narcolepsy (14.9 ± 3.9, 13.6 ± 3.7, 13.2 ± 3.5, p = 0.2 at baseline, three and six months, correspondingly). Side effects did not differ between the study groups. CONCLUSION In this first evaluation of VNS in narcolepsy, we found a significant improvement of daily sleepiness due to this type of neurostimulation. VNS could be a promising non-medical treatment in narcolepsy.
Collapse
Affiliation(s)
- Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Neurology, Philipps-University Marburg, Germany.
| | - Katharina Sandner
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudio L A Bassetti
- Department of Neurology, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Ziebart
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ali Karakoyun
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
41
|
Qin X, Yuan Y, Yu H, Yao Y, Li L. Acute Effect of Vagus Nerve Stimulation in Patients with Drug-Resistant Epilepsy: A Preliminary Exploration via Stereoelectroencephalogram. Neurosurg Clin N Am 2024; 35:105-118. [PMID: 38000834 DOI: 10.1016/j.nec.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
As the pathophysiological mechanisms of vagus nerve stimulation (VNS) causing individual differences in the vagal ascending network remains unclear, stereoelectroencephalography (SEEG) provides a unique platform to explore the brain networks affected by VNS and helps to understand the anti-seizure mechanism of VNS more comprehensively. This study presents a preliminary exploration of the acute effect of VNS. SEEG signals were collected to assess the acute effect of VNS on neural synchronization in patients with drug-resistant epilepsy, especially in epileptogenic networks. The results show that the better the efficacy of VNS, the wider the spread of desynchronization assessed by weighted phase lag index at a high frequency band caused by VNS. Future studies should focus on the association between the change in synchronization and the efficacy of VNS, exploring the possibility of synchronization as a biomarker for patient screening and parameter programming.
Collapse
Affiliation(s)
- Xiaoya Qin
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China; National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yuan Yuan
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China; National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital Affiliated to Fujian Medical University, Fujian, China; Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China.
| |
Collapse
|
42
|
Koorathota S, Ma JL, Faller J, Hong L, Lapborisuth P, Sajda P. Pupil-linked arousal correlates with neural activity prior to sensorimotor decisions. J Neural Eng 2023; 20:066031. [PMID: 38016448 DOI: 10.1088/1741-2552/ad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Sensorimotor decisions require the brain to process external information and combine it with relevant knowledge prior to actions. In this study, we explore the neural predictors of motor actions in a novel, realistic driving task designed to study decisions while driving.Approach.Through a spatiospectral assessment of functional connectivity during the premotor period, we identified the organization of visual cortex regions of interest into a distinct scene processing network. Additionally, we identified a motor action selection network characterized by coherence between the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC).Main results.We show that steering behavior can be predicted from oscillatory power in the visual cortex, DLPFC, and ACC. Power during the premotor periods (specific to the theta and beta bands) correlates with pupil-linked arousal and saccade duration.Significance.We interpret our findings in the context of network-level correlations with saccade-related behavior and show that the DLPFC is a key node in arousal circuitry and in sensorimotor decisions.
Collapse
Affiliation(s)
- Sharath Koorathota
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Jia Li Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Pawan Lapborisuth
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
- Data Science Institute, Columbia University, New York, NY, United States of America
| |
Collapse
|
43
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
44
|
Wang L, Gao F, Dai Y, Wang Z, Liang F, Wu J, Wang M, Wang L. Transcutaneous auricular vagus nerve stimulation on upper limb motor function with stroke: a functional near-infrared spectroscopy pilot study. Front Neurosci 2023; 17:1297887. [PMID: 38075278 PMCID: PMC10702495 DOI: 10.3389/fnins.2023.1297887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) emerges as a promising neuromodulatory technique. However, taVNS uses left ear stimulation in stroke survivors with either left or right hemiparesis. Understanding its influence on the cortical responses is pivotal for optimizing post-stroke rehabilitation protocols. OBJECTIVE The primary objective of this study was to elucidate the influence of taVNS on cortical responses in stroke patients presenting with either left or right hemiparesis and to discern its potential ramifications for upper limb rehabilitative processes. METHODS We employed functional near-infrared spectroscopy (fNIRS) to ascertain patterns of cerebral activation in stroke patients as they engaged in a "block transfer" task. Additionally, the Lateralization Index (LI) was utilized to quantify the lateralization dynamics of cerebral functions. RESULTS In patients exhibiting left-side hemiplegia, there was a notable increase in activation within the pre-motor and supplementary motor cortex (PMC-SMC) of the unaffected hemisphere as well as in the left Broca area. Conversely, those with right-side hemiplegia displayed heightened activation in the affected primary somatosensory cortex (PSC) region following treatment.Significantly, taVNS markedly amplified cerebral activation, with a pronounced impact on the left motor cortical network across both cohorts. Intriguingly, the LI showcased consistency, suggesting a harmonized enhancement across both compromised and uncompromised cerebral regions. CONCLUSION TaVNS can significantly bolster the activation within compromised cerebral territories, particularly within the left motor cortical domain, without destabilizing cerebral lateralization. TaVNS could play a pivotal role in enhancing upper limb functional restoration post-stroke through precise neuromodulatory and neuroplastic interventions.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
45
|
Ruiz AD, Malley KM, Danaphongse TT, Ahmad FN, Beltran CM, White ML, Baghdadi S, Pruitt DT, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Must Occur During Tactile Rehabilitation to Enhance Somatosensory Recovery. Neuroscience 2023; 532:79-86. [PMID: 37778688 DOI: 10.1016/j.neuroscience.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. Here, we systematically varied the timing of VNS relative to tactile rehabilitation to determine the paradigm that yields the greatest degree of somatosensory recovery after peripheral nerve injury (PNI). The medial and ulnar nerves in rats were transected, causing chronic sensory loss. Eight weeks after injury, rats were given a VNS implant followed by four weeks of tactile rehabilitation sessions consisting of repeated mechanical stimuli to the previously denervated forepaw. Rats received VNS before, during, or after tactile rehabilitation. Delivery of VNS during rehabilitative training generates robust, significant recovery compared to rehabilitative training without stimulation (56 ± 14% improvement over sham stimulation). A matched amount of VNS before training, immediately after training, or two hours after training is significantly less effective than VNS during rehabilitative training and fails to improve recovery compared to rehabilitative training alone (5 ± 10%, 4 ± 11%, and -7 ± 22% improvement over sham stimulation, respectively). These findings indicate that concurrent delivery of VNS during rehabilitative training is most effective and illustrate the importance of considering stimulation timing for clinical implementation of VNS therapy.
Collapse
Affiliation(s)
- Andrea D Ruiz
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Kaitlyn M Malley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N Ahmad
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Clareth Mota Beltran
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Megan L White
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sahba Baghdadi
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
46
|
Teruel-Hernández E, López-Pina JA, Souto-Camba S, Báez-Suárez A, Medina-Ramírez R, Gómez-Conesa A. Improving Sleep Quality, Daytime Sleepiness, and Cognitive Function in Patients with Dementia by Therapeutic Exercise and NESA Neuromodulation: A Multicenter Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7027. [PMID: 37947583 PMCID: PMC10650908 DOI: 10.3390/ijerph20217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Dementia is a progressive decline in cognitive functions caused by an alteration in the pattern of neural network connections. There is an inability to create new neuronal connections, producing behavioral disorders. The most evident alteration in patients with neurodegenerative diseases is the alteration of sleep-wake behavior. The aim of this study was to test the effect of two non-pharmacological interventions, therapeutic exercise (TE) and non-invasive neuromodulation through the NESA device (NN) on sleep quality, daytime sleepiness, and cognitive function of 30 patients diagnosed with dementia (non-invasive neuromodulation experimental group (NNG): mean ± SD, age: 71.6 ± 7.43 years; therapeutic exercise experimental group (TEG) 75.2 ± 8.63 years; control group (CG) 80.9 ± 4.53 years). The variables were evaluated by means of the Pittsburg Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Mini-Cognitive Exam Test at four different times during the study: at baseline, after 2 months (after completion of the NNG), after 5 months (after completion of the TEG), and after 7 months (after 2 months of follow-up). Participants in the NNG and TEG presented significant improvements with respect to the CG, and in addition, the NNG generated greater relevant changes in the three variables with respect to the TEG (sleep quality (p = 0.972), daytime sleepiness (p = 0.026), and cognitive function (p = 0.127)). In conclusion, with greater effects in the NNG, both treatments were effective to improve daytime sleepiness, sleep quality, and cognitive function in the dementia population.
Collapse
Affiliation(s)
| | | | - Sonia Souto-Camba
- Department of Physiotherapy, Medicine and Biomedical Sciences, University of A Coruña, 15006 A Coruña, Spain;
| | - Aníbal Báez-Suárez
- Health Science Faculty, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Raquel Medina-Ramírez
- SocDig Research Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Antonia Gómez-Conesa
- Research Methods and Evaluation in the Social Sciences Research Group, Mare Nostrum Campus of International Excellence, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
47
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
48
|
Borland MS, Buell EP, Riley JR, Carroll AM, Moreno NA, Sharma P, Grasse KM, Buell JM, Kilgard MP, Engineer CT. Precise sound characteristics drive plasticity in the primary auditory cortex with VNS-sound pairing. Front Neurosci 2023; 17:1248936. [PMID: 37732302 PMCID: PMC10508341 DOI: 10.3389/fnins.2023.1248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.
Collapse
Affiliation(s)
- Michael S. Borland
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Elizabeth P. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Jonathan R. Riley
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Alan M. Carroll
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Nicole A. Moreno
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Pryanka Sharma
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Katelyn M. Grasse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - John M. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Crystal T. Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
49
|
Kumagai S, Shiramatsu TI, Matsumura A, Ishishita Y, Ibayashi K, Onuki Y, Kawai K, Takahashi H. Frequency-specific modulation of oscillatory activity in the rat auditory cortex by vagus nerve stimulation. Brain Stimul 2023; 16:1476-1485. [PMID: 37777110 DOI: 10.1016/j.brs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND We previously found that vagus nerve stimulation (VNS) strengthened stimulus-evoked activity in the superficial layer of the sensory cortex but not in the deep layer, suggesting that VNS altered the balance between the feedforward (FF) and feedback (FB) pathways. Band-specific oscillatory activities in the cortex could serve as an index of the FF-FB balance, but whether VNS affects cortical oscillations along sensory pathways through neuromodulators remains unclear. HYPOTHESIS VNS modulates the FF-FB balance through the cholinergic and noradrenergic systems, which modulate stimulus gain in the cortex. METHODS We investigated the effects of VNS using electrocorticography in the auditory cortex of 34 Wistar rats under general anesthesia while presenting click stimuli. In the time-frequency analyses, the putative modulation of the FF and FB pathways was estimated using high- and low-frequency power. We assessed, using analysis of variance, how VNS modulates auditory-evoked activities and how the modulation changes with cholinergic and noradrenergic antagonists. RESULTS VNS increased auditory cortical evoked potentials, consistent with results of our previous work. Furthermore, VNS increased auditory-evoked gamma and beta powers and decreased theta power. Local administration of cholinergic antagonists in the auditory cortex selectively disrupted the VNS-induced increase in gamma and beta power, while noradrenergic antagonists disrupted the decrease in theta power. CONCLUSIONS VNS might strengthen the FF pathway through the cholinergic system and attenuate the FB pathway through the noradrenergic system in the auditory cortex. Cortical gain modulation through the VNS-induced neuromodulatory system provides new mechanistic insights into the effect of VNS on auditory processing.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Matsumura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Hays SA, Rennaker RL, Kilgard MP. How to fail with paired VNS therapy. Brain Stimul 2023; 16:1252-1258. [PMID: 37595833 PMCID: PMC11650123 DOI: 10.1016/j.brs.2023.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) has gained enormous traction as a promising bioelectronic therapy. In particular, the delivery of VNS paired with training to promote neural changes has demonstrated clinical success for stroke recovery and found far-reaching application in other domains, from autism to psychiatric disorders to normal learning. The success of paired VNS has been extensively documented. Here, we consider a more unusual question: why does VNS have such broad utility, and perhaps more importantly, when does VNS not work? We present a discussion of the concepts that underlie VNS therapy and an anthology of studies that describe conditions in which these concepts are violated and VNS fails. We focus specifically on the mechanisms engaged by implanted VNS, and how the parameters of stimulation, stimulation method, pharmacological manipulations, accompanying comorbidities, and specifics of concurrent training interact with these mechanisms to impact the efficacy of VNS therapy. As paired VNS therapy is increasing translated to clinical implementation, a clear understanding of the conditions in which it does, and critically, does not work is fundamental to the success of this approach.
Collapse
Affiliation(s)
- Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|