1
|
Chen Y, Wang L, Zhou Q, Wei W, Wei H, Ma Y, Han T, Ma S, Huang X, Zhang M, Gao F, Liu C, Li W. Dynamic R-loops at centromeres ensure chromosome alignment during oocyte meiotic divisions in mice. Sci Bull (Beijing) 2025:S2095-9273(25)00168-9. [PMID: 39984387 DOI: 10.1016/j.scib.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
R-loops play various roles in many physiological processes, however, their role in meiotic division remains largely unknown. Here we show that R-loops and their regulator RNase H1 are present at centromeres during oocyte meiotic divisions. Proper centromeric R-loops are essential to ensure chromosome alignment in oocytes during metaphase I (MI). Remarkably, both Rnaseh1 knockout and overexpression in oocytes lead to severe spindle assembly defects and chromosome misalignment due to dysregulation of R-loops at centromeres. Furthermore, we find that replication protein A (RPA) is recruited to centromeric R-loops, facilitating the deposition of ataxia telangiectasia-mutated and Rad3-related (ATR) kinase at centromeres by interacting with the ATR-interaction protein (ATRIP). The ATR kinase deposition triggers the activity of CHK1, stimulating the phosphorylation of Aurora B to finally promote proper spindle assembly and chromosome alignment at the equatorial plate. Most importantly, the application of ATR, CHK1, and Aurora B inhibitors could efficiently rescue the defects in spindle assembly and chromosome alignment due to RNase H1 deficiency in oocytes. Overall, our findings uncover a critical role of R-loops during mouse oocyte meiotic divisions, suggesting that dysregulation of R-loops may be associated with female infertility. Additionally, ATR, CHK1, and Aurora B inhibitors may potentially be used to treat some infertile patients.
Collapse
Affiliation(s)
- Yinghong Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiuxing Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Wei
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huafang Wei
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanjie Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Han
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shuang Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoming Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Geng Q, Bonilla A, Sandwith SN, Verhey KJ. Multi-kinesin clusters impart mechanical stress that reveals mechanisms of microtubule breakage in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635950. [PMID: 39974990 PMCID: PMC11838454 DOI: 10.1101/2025.01.31.635950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microtubules are cytoskeletal filaments that provide structural support for numerous cellular processes. Despite their high rigidity, microtubules can be dramatically bent in cells and it is unknown how much force a microtubule can withstand before breaking. We find that liquid-liquid phase separation of the kinesin-3 motor KIF1C results in multi-kinesin clusters that entangle neighboring microtubules and impose a high level of mechanical stress that results in microtubule breakage and disassembly. Combining computational simulations and experiments, we show that microtubule fragmentation is enhanced by having a highly processive kinesin motor domain, a stiff clustering mechanism, and sufficient drag force on the microtubules. We estimate a rupture force for microtubules in cells of 70-120 pN, which is lower than previous estimates based on in vitro studies with taxol-stabilized microtubules. These results indicate that the presence of multiple kinesins on a cargo has the potential to cause microtubule breakage. We propose that mechanisms exist to protect microtubule integrity by releasing either the motor-cargo or motor-microtubule interaction, thereby preventing the accumulation of mechanical stress upon the engagement of multi-motor clusters with microtubules.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andres Bonilla
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Siara N Sandwith
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
4
|
Dudka D, Dawicki-McKenna JM, Sun X, Beeravolu K, Akera T, Lampson MA, Black BE. Satellite DNA shapes dictate pericentromere packaging in female meiosis. Nature 2025; 638:814-822. [PMID: 39779853 PMCID: PMC11880906 DOI: 10.1038/s41586-024-08374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance1-3. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1)4,5. Pericentromeric heterochromatin in two closely related mouse species, M. musculus and M. spretus, forms on divergent satellites that differ by both density of narrow DNA minor grooves and HMGA1 recruitment. HMGA1 binds preferentially to M. musculus satellites, and depletion in M. musculus oocytes causes massive stretching of pericentromeric satellites, disruption of kinetochore organization and delays in bipolar spindle assembly. In M. musculus × spretus hybrid oocytes, HMGA1 depletion disproportionately impairs M. musculus pericentromeres and microtubule attachment to their kinetochores. Thus, DNA shape affects both pericentromere packaging and the segregation machinery. We propose that rapid evolution of centromere and pericentromere DNA does not disrupt these essential processes when the satellites adopt DNA shapes recognized by conserved architectural proteins (such as HMGA1). By packaging these satellites, architectural proteins become part of the centromeric and pericentromeric chromatin, suggesting an evolutionary strategy that lowers the cost of megabase-scale satellite expansion.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueqi Sun
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Keagan Beeravolu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ikeda Y, Yuki R, Saito Y, Nakayama Y. DeSUMOylating isopeptidase 1 participates in the faithful chromosome segregation and vincristine sensitivity. FASEB J 2024; 38:e70261. [PMID: 39698932 DOI: 10.1096/fj.202401560rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown. In this study, we explored DESI1's role in cell division. Knockdown of DESI1 accelerated cell division progression, leading to a significant increase in abnormal chromosome segregation. These phenotypes were rescued by re-expression of wild-type DESI1, but not catalytically inactive DESI1. DESI1 knockdown reduced the mitotic arrest caused by nocodazole, suggesting DESI1's involvement in the spindle assembly checkpoint (SAC). Localization of Aurora B, a key SAC regulator, at the metaphase chromosomes was reduced due to decreased Aurora B expression upon DESI1 knockdown. Consistently, DESI1 knockdown reduced transcription of FoxM1 target genes, such as Aurora B, cyclin B1, and CENP-F. The TCGA database showed that both decreased and increased DESI1 expression levels are associated with poor prognosis in patients with certain cancer types. Importantly, we found that DESI1 knockdown reduced sensitivity to vincristine by inducing mitotic slippage. These results suggest that DESI1 is required for faithful chromosome segregation via regulating FoxM1 transcriptional activity and thereby SAC activity in an isopeptidase activity-dependent manner. Our findings identified DESI1 as a novel regulator of cell division and a factor affecting cancer chemotherapy.
Collapse
Affiliation(s)
- Yuki Ikeda
- Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
6
|
Risteski P, Martinčić J, Jagrić M, Tintor E, Petelinec A, Tolić IM. Microtubule poleward flux as a target for modifying chromosome segregation errors. Proc Natl Acad Sci U S A 2024; 121:e2405015121. [PMID: 39541344 PMCID: PMC11588092 DOI: 10.1073/pnas.2405015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or codepletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubule growth rates. Instead, speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue certain mitotic errors in cancer cells.
Collapse
Affiliation(s)
- Patrik Risteski
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Jelena Martinčić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Mihaela Jagrić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Erna Tintor
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Ana Petelinec
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Iva M. Tolić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| |
Collapse
|
7
|
Serpico AF, Pisauro C, Trano A, Grieco D. Chromosome alignment and Kif18A action rely on spindle-localized control of Cdk1 activity. Front Cell Dev Biol 2024; 12:1490781. [PMID: 39610707 PMCID: PMC11602486 DOI: 10.3389/fcell.2024.1490781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction During mitosis, chromosome alignment at the mitotic spindle equator grants correct chromosome segregation and proper nuclei formation in daughter cells. The kinesin 8 family member Kif18A plays a crucial role for chromosome alignment by localizing at the kinetochore-microtubule (K-MT) plus ends to dampen MT dynamics and stabilize K-MT attachments. Kif18A action is directly antagonized by the master mitotic kinase cyclin B-dependent kinase 1 (Cdk1) and is promoted by protein phosphatase 1 (PP1). Since chromosome alignment precedes Cdk1 inactivation by cyclin B proteolysis, it is unclear how Kif18A evades Cdk1 inhibition. Methods We analyzed chromosome alignment and Kif18A in mitotic cells upon genetic perturbation of the phosphorylation-dependent inhibitory control of Cdk1 activity by immunofluorescence and cell fractionation experiments. Results We show here that chromosome alignment in human cells relies on a recently identified fraction of Cdk1 that is inhibited by Wee1-dependent phosphorylation in mitosis (i-Cdk1, standing for inhibited/inactive-Cdk1) and that localized at spindle structures where it promotes proper spindle assembly. Indeed, the reduction of i-Cdk1 led to several spindle defects including spindles with misaligned, bipolarly attached chromosomes showing poor Kif18A localization at their K-MT plus ends. Restoring i-Cdk1 reversed both alignment defects and Kif18A localization. In cells with lowered i-Cdk1, expressing a phosphonull Kif18A mutant version at the sites that serve as Cdk1 substrate significantly rescued the alignment defects. Discussion Mechanistically, our evidence suggests that i-Cdk1 and active PP1 facilitated the dephosphorylation and reactivation of spindle-localized Kif18A. Considering the relevance of Kif18A for survival of aneuploid cancer cells and the potential therapeutic targeting of both Kif18A and Wee1, these findings could also be relevant for cancer therapy.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
| | | | - Asia Trano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Domenico Grieco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
8
|
Valles SY, Bural S, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. Mol Biol Cell 2024; 35:ar141. [PMID: 39356777 PMCID: PMC11617097 DOI: 10.1091/mbc.e23-12-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y. Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Shrea Bural
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
9
|
Tang X, He Y, Tang Y, Chen K, Lin H, Liu B, Deng X. A kinetochore-associated kinesin-7 motor cooperates with BUB3.3 to regulate mitotic chromosome congression in Arabidopsis thaliana. NATURE PLANTS 2024; 10:1724-1736. [PMID: 39414927 DOI: 10.1038/s41477-024-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Faithful genome partition during cell division relies on proper congression of chromosomes to the spindle equator before sister chromatid segregation. Here we uncover a kinesin-7 motor, kinetochore-associated kinesin 1 (KAK1), that is required for mitotic chromosome congression in Arabidopsis. KAK1 associates dynamically with kinetochores throughout mitosis. Loss of KAK1 results in severe defects in chromosome congression at metaphase, yet segregation errors at anaphase are rarely observed. KAK1 specifically interacts with the spindle assembly checkpoint protein BUB3.3 and both proteins show interdependent kinetochore localization. Chromosome misalignment in BUB3.3-depleted plants can be rescued by artificial tethering of KAK1 to kinetochores but not vice versa, demonstrating that KAK1 acts downstream of BUB3.3 to orchestrate microtubule-based chromosome transport at kinetochores. Moreover, we show that KAK1's motor activity is essential for driving chromosome congression to the metaphase plate. Thus, our findings reveal that plants have repurposed BUB3.3 to interface with a specialized kinesin adapted to integrate proper chromosome congression and checkpoint control through a distinct kinetochore design.
Collapse
Affiliation(s)
- Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Keqi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
11
|
Ha G, Dieterle P, Shen H, Amir A, Needleman DJ. Measuring and modeling the dynamics of mitotic error correction. Proc Natl Acad Sci U S A 2024; 121:e2323009121. [PMID: 38875144 PMCID: PMC11194551 DOI: 10.1073/pnas.2323009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024] Open
Abstract
Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.
Collapse
Affiliation(s)
- Gloria Ha
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Paul Dieterle
- Department of Physics, Harvard University, Cambridge, MA02138
| | - Hao Shen
- Reverie Labs, Cambridge, MA02139
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| |
Collapse
|
12
|
Sun M, Wang Y, Xin G, Yang B, Jiang Q, Zhang C. NuSAP regulates microtubule flux and Kif2A localization to ensure accurate chromosome congression. J Cell Biol 2024; 223:e202108070. [PMID: 38117947 PMCID: PMC10733630 DOI: 10.1083/jcb.202108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023] Open
Abstract
Precise chromosome congression and segregation requires the proper assembly of a steady-state metaphase spindle, which is dynamic and maintained by continuous microtubule flux. NuSAP is a microtubule-stabilizing and -bundling protein that promotes chromosome-dependent spindle assembly. However, its function in spindle dynamics remains unclear. Here, we demonstrate that NuSAP regulates the metaphase spindle length control. Mechanistically, NuSAP facilitates kinetochore capture and spindle assembly by promoting Eg5 binding to microtubules. It also prevents excessive microtubule depolymerization through interaction with Kif2A, which reduces Kif2A spindle-pole localization. NuSAP is phosphorylated by Aurora A at Ser-240 during mitosis, and this phosphorylation promotes its interaction with Kif2A on the spindle body and reduces its localization with the spindle poles, thus maintaining proper spindle microtubule flux. NuSAP knockout resulted in the formation of shorter spindles with faster microtubule flux and chromosome misalignment. Taken together, we uncover that NuSAP participates in spindle assembly, dynamics, and metaphase spindle length control through the regulation of microtubule flux and Kif2A localization.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Leeds BK, Kostello KF, Liu YY, Nelson CR, Biggins S, Asbury CL. Mechanical coupling coordinates microtubule growth. eLife 2023; 12:RP89467. [PMID: 38150374 PMCID: PMC10752587 DOI: 10.7554/elife.89467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.
Collapse
Affiliation(s)
- Bonnibelle K Leeds
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Katelyn F Kostello
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Yuna Y Liu
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| | - Christian R Nelson
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Valles SY, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572788. [PMID: 38187612 PMCID: PMC10769330 DOI: 10.1101/2023.12.21.572788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To ensure genomic fidelity a series of spatially and temporally coordinated events are executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown if Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
15
|
Chattaraj S, Torre M, Kalcher C, Stukowski A, Morganti S, Reali A, Pasqualini FS. SEM 2: Introducing mechanics in cell and tissue modeling using coarse-grained homogeneous particle dynamics. APL Bioeng 2023; 7:046118. [PMID: 38075209 PMCID: PMC10699888 DOI: 10.1063/5.0166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 09/03/2024] Open
Abstract
Modeling multiscale mechanics in shape-shifting engineered tissues, such as organoids and organs-on-chip, is both important and challenging. In fact, it is difficult to model relevant tissue-level large non-linear deformations mediated by discrete cell-level behaviors, such as migration and proliferation. One approach to solve this problem is subcellular element modeling (SEM), where ensembles of coarse-grained particles interacting via empirically defined potentials are used to model individual cells while preserving cell rheology. However, an explicit treatment of multiscale mechanics in SEM was missing. Here, we incorporated analyses and visualizations of particle level stress and strain in the open-source software SEM++ to create a new framework that we call subcellular element modeling and mechanics or SEM2. To demonstrate SEM2, we provide a detailed mechanics treatment of classical SEM simulations including single-cell creep, migration, and proliferation. We also introduce an additional force to control nuclear positioning during migration and proliferation. Finally, we show how SEM2 can be used to model proliferation in engineered cell culture platforms such as organoids and organs-on-chip. For every scenario, we present the analysis of cell emergent behaviors as offered by SEM++ and examples of stress or strain distributions that are possible with SEM2. Throughout the study, we only used first-principles literature values or parametric studies, so we left to the Discussion a qualitative comparison of our insights with recently published results. The code for SEM2 is available on GitHub at https://github.com/Synthetic-Physiology-Lab/sem2.
Collapse
Affiliation(s)
- Sandipan Chattaraj
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michele Torre
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | | | | | - Simone Morganti
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Alessandro Reali
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Francesco Silvio Pasqualini
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Gluszek‐Kustusz A, Craske B, Legal T, McHugh T, Welburn JPI. Phosphorylation controls spatial and temporal activities of motor-PRC1 complexes to complete mitosis. EMBO J 2023; 42:e113647. [PMID: 37592895 PMCID: PMC10620760 DOI: 10.15252/embj.2023113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Agata Gluszek‐Kustusz
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Benjamin Craske
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
- McGill UniversityMontrealQCCanada
| | - Toni McHugh
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Julie PI Welburn
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Leeds BK, Kostello KF, Liu YY, Nelson CR, Biggins S, Asbury CL. Mechanical coupling coordinates microtubule growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547092. [PMID: 37905093 PMCID: PMC10614740 DOI: 10.1101/2023.06.29.547092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.
Collapse
Affiliation(s)
- Bonnibelle K. Leeds
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | - Katelyn F. Kostello
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | - Yuna Y. Liu
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| | | | | | - Charles L. Asbury
- Physiology & Biophysics Department, University of Washington School of Medicine, Seattle WA, USA
| |
Collapse
|
18
|
Torvi JR, Wong J, Drubin DG, Barnes G. Interdependence of a microtubule polymerase and a motor protein in establishment of kinetochore end-on attachments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544255. [PMID: 37333421 PMCID: PMC10274876 DOI: 10.1101/2023.06.08.544255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Faithful segregation of chromosomes into daughter cells during mitosis requires formation of attachments between kinetochores and mitotic spindle microtubules. Chromosome alignment on the mitotic spindle, also referred to as congression, is facilitated by translocation of side-bound chromosomes along the microtubule surface, which allows the establishment of end-on attachment of kinetochores to microtubule plus ends. Spatial and temporal constraints hinder observation of these events in live cells. Therefore, we used our previously developed reconstitution assay to observe dynamics of kinetochores, the yeast kinesin-8, Kip3, and the microtubule polymerase, Stu2, in lysates prepared from metaphase-arrested budding yeast, Saccharomyces cerevisiae . Using total internal reflection fluorescence (TIRF) microscopy to observe kinetochore translocation on the lateral microtubule surface toward the microtubule plus end, motility was shown to be dependent on both Kip3, as we reported previously, and Stu2. These proteins were shown to have distinct dynamics on the microtubule. Kip3 is highly processive and moves faster than the kinetochore. Stu2 tracks both growing and shrinking microtubule ends but also colocalizes with moving lattice-bound kinetochores. In cells, we observed that both Kip3 and Stu2 are important for establishing chromosome biorientation, Moreover, when both proteins are absent, biorientation is completely defective. All cells lacking both Kip3 and Stu2 had declustered kinetochores and about half also had at least one unattached kinetochore. Our evidence argues that despite differences in their dynamics, Kip3 and Stu2 share roles in chromosome congression to facilitate proper kinetochore-microtubule attachment.
Collapse
|
19
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
20
|
Torvi JR, Wong J, Serwas D, Moayed A, Drubin DG, Barnes G. Reconstitution of kinetochore motility and microtubule dynamics reveals a role for a kinesin-8 in establishing end-on attachments. eLife 2022; 11:e78450. [PMID: 35791811 PMCID: PMC9259035 DOI: 10.7554/elife.78450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
During mitosis, individual microtubules make attachments to chromosomes via a specialized protein complex called the kinetochore to faithfully segregate the chromosomes to daughter cells. Translocation of kinetochores on the lateral surface of the microtubule has been proposed to contribute to high fidelity chromosome capture and alignment at the mitotic midzone, but has been difficult to observe in vivo because of spatial and temporal constraints. To overcome these barriers, we used total internal reflection fluorescence (TIRF) microscopy to track the interactions between microtubules, kinetochore proteins, and other microtubule-associated proteins in lysates from metaphase-arrested Saccharomyces cerevisiae. TIRF microscopy and cryo-correlative light microscopy and electron tomography indicated that we successfully reconstituted interactions between intact kinetochores and microtubules. These kinetochores translocate on the lateral microtubule surface toward the microtubule plus end and transition to end-on attachment, whereupon microtubule depolymerization commences. The directional kinetochore movement is dependent on the highly processive kinesin-8, Kip3. We propose that Kip3 facilitates stable kinetochore attachment to microtubule plus ends through its abilities to move the kinetochore laterally on the surface of the microtubule and to regulate microtubule plus end dynamics.
Collapse
Affiliation(s)
- Julia R Torvi
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
22
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
23
|
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin. Curr Biol 2022; 32:2480-2493.e6. [PMID: 35537456 PMCID: PMC9235856 DOI: 10.1016/j.cub.2022.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Forces produced by motor proteins and microtubule dynamics within the mitotic spindle are crucial for proper chromosome segregation. In addition to linear forces, rotational forces or torques are present in the spindle, which are reflected in the left-handed twisted shapes of microtubule bundles that make the spindle chiral. However, the biological role and molecular origins of spindle chirality are unknown. By developing methods for measuring the spindle twist, we show that spindles are most chiral near the metaphase-to-anaphase transition. To assess the role of chirality in spindle mechanics, we compressed the spindles along their axis. This resulted in a stronger left-handed twist, suggesting that the twisted shape allows for a mechanical response to forces. Inhibition or depletion of motor proteins that perform chiral stepping, Eg5/kinesin-5, Kif18A/kinesin-8, MKLP1/kinesin-6, and dynein, decreased the left-handed twist or led to right-handed twist, implying that these motors regulate the twist by rotating microtubules within their antiparallel overlaps or at the spindle pole. A right-handed twist was also observed after the depletion of the microtubule nucleator augmin, indicating its contribution to the twist through the nucleation of antiparallel bridging microtubules. The uncovered switch from left-handed to right-handed twist reveals the existence of competing mechanisms that promote twisting in opposite directions. As round spindles are more twisted than the elongated ones are, we infer that bending and twisting moments are generated by similar molecular mechanisms and propose a physiological role for spindle chirality in allowing the spindle to absorb mechanical load. Video abstract
Spindle twist depends on torque-generating motors Eg5, Kif18A, MKLP1, and dynein Without the microtubule nucleator augmin, spindles show right-handed twist Compression of the spindle along the axis increases the left-handed twist Rounder spindles are more twisted than elongated ones are
Collapse
|
24
|
Varying outcomes of triple-negative breast cancer in different age groups-prognostic value of clinical features and proliferation. Breast Cancer Res Treat 2022; 196:471-482. [PMID: 36261751 PMCID: PMC9633490 DOI: 10.1007/s10549-022-06767-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive disease lacking specific biomarkers to guide treatment decisions. We evaluated the combined prognostic impact of clinical features and novel biomarkers of cell cycle-progression in age-dependent subgroups of TNBC patients. METHODS One hundred forty seven TNBC patients with complete clinical data and up to 18 year follow-up were collected from Turku University Hospital, Finland. Eight biomarkers for cell division were immunohistochemically detected to evaluate their clinical applicability in relation to patient and tumor characteristics. RESULTS Age at diagnosis was the decisive factor predicting disease-specific mortality in TNBC (p = 0.002). The established prognostic features, nodal status and Ki-67, predicted survival only when combined with age. The outcome and prognostic features differed significantly between age groups, middle-aged patients showing the most favorable outcome. Among young patients, only lack of basal differentiation predicted disease outcome, indicating 4.5-fold mortality risk (p = 0.03). Among patients aged > 57, the established prognostic features predicted disease outcome with up to 3.0-fold mortality risk for tumor size ≥ 2 cm (p = 0.001). Concerning cell proliferation, Ki-67 alone was a significant prognosticator among patients aged > 57 years (p = 0.009). Among the studied cell cycle-specific biomarkers, only geminin predicted disease outcome, indicating up to 6.2-fold increased risk of mortality for tumor size < 2 cm (p = 0.03). CONCLUSION Traditional clinical features do not provide optimal prognostic characterization for all TNBC patients. Young age should be considered as an additional adverse prognostic feature in therapeutic considerations. Increased proliferation, as evaluated using Ki-67 or geminin immunohistochemistry, showed potential in detecting survival differences in subgroups of TNBC.
Collapse
|
25
|
McKim KS. Highway to hell-thy meiotic divisions: Chromosome passenger complex functions driven by microtubules: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function. Bioessays 2022; 44:e2100202. [PMID: 34821405 PMCID: PMC8688318 DOI: 10.1002/bies.202100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin-microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC-microtubule dependent functions are considered in the context of the first meiotic division. Acentrosomal spindle assembly is a process that depends on transfer of the CPC from the chromosomes to the microtubules. Furthermore, transfer to the microtubules is not only to position the CPC for a later role in cytokinesis; metaphase I error correction and subsequent bi-orientation of bivalents may depend on microtubule associated CPC interacting with the kinetochores.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
26
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|