1
|
Trinh DC. PHS1ΔP as a promising tool to study microtubule-related processes in plant sciences. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:445-449. [PMID: 40169153 DOI: 10.1111/plb.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025]
Abstract
Microtubules are an essential cell component that controls various biological processes, notably cell division and cellulose deposition in the cell wall. Traditionally, research involving microtubules relies on analysing mutants with altered microtubule properties or treating plant tissues with drugs that interfere with microtubule behaviours. Both approaches have problems, such as not being specific. Recently, a modified version of the tubulin kinase PROPYZAMID-HYPERSENSITIVE 1 (PHS1), named PHS1ΔP, that can efficiently depolymerize microtubules has emerged as a promising tool to manipulate microtubules with high spatial and temporal accuracy. This has been successfully used to address several microtubule-related research questions and is expected to be adopted more widely by researchers in the future.
Collapse
Affiliation(s)
- D-C Trinh
- Department of Life Sciences, University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
2
|
Anwar AF, Chukwurah PN, Amombo E, Mouhib S, Ntui VO. Unlocking the potential of 'Egusi' melon ( Colocynthis citrullus L.) as a crop for biotechnological improvement. FRONTIERS IN PLANT SCIENCE 2025; 16:1547157. [PMID: 40182542 PMCID: PMC11965695 DOI: 10.3389/fpls.2025.1547157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
'Egusi' melon (Colocynthis citrullus L.) plays a critical role in food security and potential biofuel production in West Africa. Its seeds are valued for both their nutritional and potential industrial applications, especially in biodiesel production. However, the crop faces significant challenges, including the impacts of climate change, water scarcity, declining arable land, and increased pressure from pests and diseases. These challenges threaten the stability of 'Egusi' production and may hinder its ability to meet future demand. To address these issues, there is a growing need to complement conventional breeding methods with biotechnological approaches. Molecular approaches; including genomics, transcriptomics, proteomics, and metabolomics; have been utilized for the improvement of several cucurbit species. However, information on molecular breeding of 'Egusi' is very limited. The current review focuses on 'Egusi' melon, its biology, uses, and factors affecting its improvement, and highlights critical knowledge gaps in the molecular breeding of 'Egusi'. The review also examines the potential of omics technologies and outlines the importance of genetic transformation and genome editing methods such as CRISPR that could drive the development of more resilient and high-yielding 'Egusi'varieties that will contribute to sustainability and profitability of 'Egusi' farming.
Collapse
Affiliation(s)
- Aliya Fathima Anwar
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | | - Erick Amombo
- African Sustainable Agriculture Research Institute, University Mohammed VI Polytechnic, Laayounne, Morocco
| | - Salma Mouhib
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | | |
Collapse
|
3
|
Romeiro Motta M, Nédélec F, Saville H, Woelken E, Jacquerie C, Pastuglia M, Stolze SC, Van De Slijke E, Böttger L, Belcram K, Nakagami H, De Jaeger G, Bouchez D, Schnittger A. The cell cycle controls spindle architecture in Arabidopsis by activating the augmin pathway. Dev Cell 2024; 59:2947-2961.e9. [PMID: 39191252 DOI: 10.1016/j.devcel.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/25/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
To ensure an even segregation of chromosomes during somatic cell division, eukaryotes rely on mitotic spindles. Here, we measured prime characteristics of the Arabidopsis mitotic spindle and built a three-dimensional dynamic model using Cytosim. We identified the cell-cycle regulator CYCLIN-DEPENDENT KINASE B1 (CDKB1) together with its cyclin partner CYCB3;1 as key regulators of spindle morphology in Arabidopsis. We found that the augmin component ENDOSPERM DEFECTIVE1 (EDE1) is a substrate of the CDKB1;1-CYCB3;1 complex. A non-phosphorylatable mutant rescue of ede1 resembled the spindle phenotypes of cycb3;1 and cdkb1 mutants and the protein associated less efficiently with spindle microtubules. Accordingly, reducing the level of augmin in simulations recapitulated the phenotypes observed in the mutants. Our findings emphasize the importance of cell-cycle-dependent phospho-control of the mitotic spindle in plant cells and support the validity of our model as a framework for the exploration of mechanisms controlling the organization of the eukaryotic spindle.
Collapse
Affiliation(s)
- Mariana Romeiro Motta
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg 22609, Germany; Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| | - Helen Saville
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Elke Woelken
- Department of Aquatic Ecophysiology and Phycology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg 22609, Germany
| | - Claire Jacquerie
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martine Pastuglia
- Institute Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78026, France
| | | | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lev Böttger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg 22609, Germany
| | - Katia Belcram
- Institute Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78026, France
| | - Hirofumi Nakagami
- Max-Planck-Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, Ghent 9052, Belgium
| | - David Bouchez
- Institute Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78026, France
| | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg 22609, Germany.
| |
Collapse
|
4
|
Parić A, Mesic A, Mahmutović-Dizdarević I, Jerković-Mujkić A, Žujo B, Bašić N, Pustahija F. Bioactive potential of Mentha arvensis L. essential oil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:584-594. [PMID: 39192720 DOI: 10.1080/03601234.2024.2396730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study was to evaluate the phytotoxic, genotoxic, cytotoxic and antimicrobial effects of the Mentha arvensis L. essential oil (EO). The biological activity of M. arvensis EO depended on the analyzed variable and the tested oil concentration. Higher concentrations of EO (20 and 30 µg mL-1) showed a moderate inhibitory effect on the germination and growth of seedlings of tested weed species (Bellis perennis, Cyanus segetum, Daucus carota, Leucanthemum vulgare, Matricaria chamomilla, Nepeta cataria, Taraxacum officinale, Trifolium repens and Verbena × hybrida). The results obtained also indicate that the EO of M. arvensis has some genotoxic, cytotoxic and proliferative potential in both plant and human in vitro systems. Similar results were obtained for antimicrobial activity against eight bacteria, including multidrug-resistant (MDR) strains [Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, extended-spectrum beta-lactamase-producing (ESBL) E. coli, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica serovar Enteritidis], with the effect on multidrug-resistant bacterial strains. Research indicates that the EO of M. arvensis shows phytotoxic, genotoxic, cytotoxic and antimicrobial effects, as well as its potential application as a herbicide and against various human diseases.
Collapse
Affiliation(s)
- Adisa Parić
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Aner Mesic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | | | - Belma Žujo
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Neđad Bašić
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
5
|
De Jaeger-Braet J, Schnittger A. Heating up meiosis - Chromosome recombination and segregation under high temperatures. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102548. [PMID: 38749207 DOI: 10.1016/j.pbi.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress is one of the major constraints to plant growth and fertility. During the current climate crisis, heat waves have increased dramatically, and even more extreme conditions are predicted for the near future, considerably affecting ecosystems and seriously threatening world food security. Although heat is very well known to affect especially reproductive structures, little is known about how heat interferes with reproduction in comparison to somatic cells and tissues. Recently, the effect of heat on meiosis as a central process in sexual reproduction has been analyzed in molecular and cytological depth. Notably, these studies are not only important for applied research by laying the foundation for breeding heat-resilient crops, but also for fundamental research, revealing general regulatory mechanisms of recombination and chromosome segregation control.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Li M, Zhang M, Meng B, Miao L, Fan Y. Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1709. [PMID: 38931141 PMCID: PMC11207893 DOI: 10.3390/plants13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes in Brassica napus remain unclear. In this study, we identified 299 CYCB genes in 11 B. napus accessions. Phylogenetic analysis suggests that CYCB genes could be divided into three subfamilies in angiosperms and that the CYCB3 subfamily members may be a newer group that evolved in eudicots. The expansion of BnaCYCB genes underwent segmental duplication and purifying selection in genomes, and a number of drought-responsive and light-responsive cis-elements were found in their promoter regions. Additionally, expression analysis revealed that BnaCYCBs were strongly expressed in the developing seed and silique pericarp, as confirmed by the obviously reduced seed size of the mutant cycb3;1 in Arabidopsis thaliana compared with Col-0. This study provides a comprehensive evolutionary analysis of CYCB genes as well as insight into the biological function of CYCB genes in B. napus.
Collapse
Affiliation(s)
- Mingyue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
- Hanhong College, Institute of Innovation and Entrepreneurship, Southwest University, Beibei, Chongqing 400715, China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| |
Collapse
|
7
|
Arico DS, Burachik NB, Wengier DL, Mazzella MA. Arabidopsis hypocotyl growth in darkness requires the phosphorylation of a microtubule-associated protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1815-1831. [PMID: 38494883 DOI: 10.1111/tpj.16711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Rapid hypocotyl elongation allows buried seedlings to emerge, where light triggers de-etiolation and inhibits hypocotyl growth mainly by photoreceptors. Phosphorylation/dephosphorylation events regulate many aspects of plant development. Only recently we have begun to uncover the earliest phospho-signaling responders to light. Here, we reported a large-scale phosphoproteomic analysis and identified 20 proteins that changed their phosphorylation pattern following a 20 min light pulse compared to darkness. Microtubule-associated proteins were highly overrepresented in this group. Among them, we studied CIP7 (COP1-INTERACTING-PROTEIN 7), which presented microtubule (MT) localization in contrast to the previous description. An isoform of CIP7 phosphorylated at Serine915 was detected in etiolated seedlings but was undetectable after a light pulse in the presence of photoreceptors, while CIP7 transcript expression decays with long light exposure. The short hypocotyl phenotype and rearrangement of MTs in etiolated cip7 mutants are complemented by CIP7-YFP and the phospho-mimetic CIP7S915D-YFP, but not the phospho-null CIP7S915A-YFP suggesting that the phosphorylated S915CIP7 isoform promotes hypocotyl elongation through MT reorganization in darkness. Our evidence on Serine915 of CIP7 unveils phospho-regulation of MT-based processes during skotomorphogenic hypocotyl growth.
Collapse
Affiliation(s)
- Denise Soledad Arico
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - Natalia B Burachik
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - Diego Leonardo Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - María Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| |
Collapse
|
8
|
Bouchez D, Uyttewaal M, Pastuglia M. Spatiotemporal regulation of plant cell division. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102530. [PMID: 38631088 DOI: 10.1016/j.pbi.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Plant morphogenesis largely depends on the orientation and rate of cell division and elongation, and their coordination at all levels of organization. Despite recent progresses in the comprehension of pathways controlling division plane determination in plant cells, many pieces are missing to the puzzle. For example, we have a partial comprehension of formation, function and evolutionary significance of the preprophase band, a plant-specific cytoskeletal array involved in premitotic setup of the division plane, as well as the role of the nucleus and its connection to the preprophase band of microtubules. Likewise, several modeling studies point to a strong relationship between cell shape and division geometry, but the emergence of such geometric rules from the molecular and cellular pathways at play are still obscure. Yet, recent imaging technologies and genetic tools hold a lot of promise to tackle these challenges and to revisit old questions with unprecedented resolution in space and time.
Collapse
Affiliation(s)
- David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France.
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| |
Collapse
|
9
|
Liu C, Jia Y, He L, Li H, Song J, Ji L, Wang C. Integrated transcriptome and DNA methylome analysis reveal the biological base of increased resistance to gray leaf spot and growth inhibition in interspecific grafted tomato scions. BMC PLANT BIOLOGY 2024; 24:130. [PMID: 38383283 PMCID: PMC10880203 DOI: 10.1186/s12870-024-04764-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Grafting is widely used as an important agronomic approach to deal with environmental stresses. However, the molecular mechanism of grafted tomato scions in response to biotic stress and growth regulation has yet to be fully understood. RESULTS This study investigated the resistance and growth performance of tomato scions grafted onto various rootstocks. A scion from a gray leaf spot-susceptible tomato cultivar was grafted onto tomato, eggplant, and pepper rootstocks, creating three grafting combinations: one self-grafting of tomato/tomato (TT), and two interspecific graftings, namely tomato/eggplant (TE) and tomato/pepper (TP). The study utilized transcriptome and DNA methylome analyses to explore the regulatory mechanisms behind the resistance and growth traits in the interspecific graftings. Results indicated that interspecific grafting significantly enhanced resistance to gray leaf spot and improved fruit quality, though fruit yield was decreased compared to self-grafting. Transcriptome analysis demonstrated that, compared to self-grafting, interspecific graftings triggered stronger wounding response and endogenous immune pathways, while restricting genes related to cell cycle pathways, especially in the TP grafting. Methylome data revealed that the TP grafting had more hypermethylated regions at CHG (H = A, C, or T) and CHH sites than the TT grafting. Furthermore, the TP grafting exhibited increased methylation levels in cell cycle related genes, such as DNA primase and ligase, while several genes related to defense kinases showed decreased methylation levels. Notably, several kinase transcripts were also confirmed among the rootstock-specific mobile transcripts. CONCLUSIONS The study concludes that interspecific grafting alters gene methylation patterns, thereby activating defense responses and inhibiting the cell cycle in tomato scions. This mechanism is crucial in enhancing resistance to gray leaf spot and reducing growth in grafted tomato scions. These findings offer new insights into the genetic and epigenetic contributions to agronomic trait improvements through interspecific grafting.
Collapse
Affiliation(s)
- Ce Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanhong Jia
- Tianjin Academy of Agricultural Sciences, Tianjin, 300380, China
| | - Lixia He
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jian Song
- Tianjin Academy of Agricultural Sciences, Tianjin, 300380, China
| | - Lizhu Ji
- Tianjin Academy of Agricultural Sciences, Tianjin, 300380, China.
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Fábián A, Péntek BK, Soós V, Sági L. Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1314021. [PMID: 38259921 PMCID: PMC10800805 DOI: 10.3389/fpls.2023.1314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The significance of heat stress in agriculture is ever-increasing with the progress of global climate changes. Due to a negative effect on the yield of staple crops, including wheat, the impairment of plant reproductive development triggered by high ambient temperature became a restraint in food production. Although the heat sensitivity of male meiosis and the following gamete development in wheat has long been recognized, a detailed structural characterization combined with a comprehensive gene expression analysis has not been done about this phenomenon. We demonstrate here that heat stress severely alters the cytoskeletal configuration, triggers the failure of meiotic division in wheat. Moreover, it changes the expression of genes related to gamete development in male meiocytes and the tapetum layer in a genotype-dependent manner. 'Ellvis', a heat-tolerant winter wheat cultivar, showed high spikelet fertility rate and only scarce structural aberrations upon exposure to high temperature. In addition, heat shock genes and genes involved in scavenging reactive oxygen species were significantly upregulated in 'Ellvis', and the expression of meiosis-specific and major developmental genes showed high stability in this cultivar. In the heat-sensitive 'Mv 17-09', however, genes participating in cytoskeletal fiber nucleation, the spindle assembly checkpoint genes, and tapetum-specific developmental regulators were downregulated. These alterations may be related to the decreased cytoskeleton content, frequent micronuclei formation, and the erroneous persistence of the tapetum layer observed in the sensitive genotype. Our results suggest that understanding the heat-sensitive regulation of these gene functions would be an essential contribution to the development of new, heat-tolerant cultivars.
Collapse
Affiliation(s)
- Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Vilmos Soós
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| |
Collapse
|
11
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
13
|
Hu W, Liu J, Liu T, Zhu C, Wu F, Jiang C, Wu Q, Chen L, Lu H, Shen G, Zheng H. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1122-1136. [PMID: 36907700 DOI: 10.1016/j.plaphy.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Jiyun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Tingwu Liu
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China.
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Feihua Wu
- Department of Horticulture, Foshan University, Foshan, 528051, Guangdong, China.
| | - Chenkai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qian Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hongling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hailei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
14
|
Zhang L, Lin X, Yang Z, Jiang L, Hou Q, Xie Z, Li Y, Pei H. The role of microtubules in microalgae: promotion of lipid accumulation and extraction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:7. [PMID: 36635732 PMCID: PMC9837904 DOI: 10.1186/s13068-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Microtubules in cells are closely related to the growth and metabolism of microalgae. To date, the study of microalgal microtubules has mainly concentrated on revealing the relationship between microtubule depolymerization and synthesis of precursors for flagellar regeneration. While information on the link between microtubule depolymerization and biosynthesis of precursors for complex organic matter (such as lipid, carbohydrate and protein), is still lacking, a better understanding of this could help to achieve a breakthrough in lipid regulation. With the aim of testing the assumption that microtubule disruption could regulate carbon precursors and redirect carbon flow to promote lipid accumulation, Chlorella sorokiniana SDEC-18 was pretreated with different concentrations of oryzalin. RESULTS Strikingly, microalgae that were pretreated with 1.5 mM oryzalin accumulated lipid contents of 41.06%, which was attributed to carbon redistribution induced by microtubule destruction. To promote the growth of microalgae, two-stage cultivation involving microtubule destruction was employed, which resulted in the lipid productivity being 1.44 times higher than that for microalgae with routine single-stage cultivation, as well as yielding a desirable biodiesel quality following from increases in monounsaturated fatty acid (MUFA) content. Furthermore, full extraction of lipid was achieved after only a single extraction step, because microtubule destruction caused removal of cellulose synthase and thereby blocked cellulose biosynthesis. CONCLUSIONS This study provides an important advance towards observation of microtubules in microalgae through immunocolloidal gold techniques combined with TEM. Moreover, the observation of efficient lipid accumulation and increased cell fragility engendered by microtubule destruction has expanded our knowledge of metabolic regulation by microtubules. Finally, two-stage cultivation involving microtubule destruction has established ideal growth, coupling enhanced lipid accumulation and efficient oil extraction; thus gaining advances in both applied and fundamental research in algal biodiesel production.
Collapse
Affiliation(s)
- Lijie Zhang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Xiao Lin
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK
| | - Zhigang Yang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Liqun Jiang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Qingjie Hou
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Zhen Xie
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Yizhen Li
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Haiyan Pei
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China ,grid.8547.e0000 0001 0125 2443Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China ,Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061 China
| |
Collapse
|
15
|
Chen Y, Miao Y, Bai W, Lin K, Pang E. Characteristics and potential functional effects of long insertions in Asian butternuts. BMC Genomics 2022; 23:732. [PMID: 36307757 PMCID: PMC9617325 DOI: 10.1186/s12864-022-08961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Structural variants (SVs) play important roles in adaptation evolution and species diversification. Especially, in plants, many phenotypes of response to the environment were found to be associated with SVs. Despite the prevalence and significance of SVs, long insertions remain poorly detected and studied in all but model species.
Results
We used whole-genome resequencing of paired reads from 80 Asian butternuts to detect long insertions and further analyse their characteristics and potential functional effects. By combining of mapping-based and de novo assembly-based methods, we obtained a multiple related species pangenome representing higher taxonomic groups. We obtained 89,312 distinct contigs totaling 147,773,999 base pair (bp) of new sequences, of which 347 were putative long insertions placed in the reference genome. Most of the putative long insertions appeared in multiple species; in contrast, only 62 putative long insertions appeared in one species, which may be involved in the response to the environment. 65 putative long insertions fell into 61 distinct protein-coding genes involved in plant development, and 105 putative long insertions fell into upstream of 106 distinct protein-coding genes involved in cellular respiration. 3,367 genes were annotated in 2,606 contigs. We propose PLAINS (https://github.com/CMB-BNU/PLAINS.git), a streamlined, comprehensive pipeline for the prediction and analysis of long insertions using whole-genome resequencing.
Conclusions
Our study lays down an important foundation for further whole-genome long insertion studies, allowing the investigation of their effects by experiments.
Collapse
|
16
|
Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution. Proc Natl Acad Sci U S A 2022; 119:e2200108119. [PMID: 36227914 DOI: 10.1073/pnas.2200108119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs but by an FHA domain, a widely conserved phosphate-binding module. We find that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we find conservation of this helical domain between animals and plants and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, likely reflecting the situation in the last eukaryotic common ancestor.
Collapse
|
17
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|