1
|
Gluck L, Gerstein B, Kaunzner UW. Repair mechanisms of the central nervous system: From axon sprouting to remyelination. Neurotherapeutics 2025:e00583. [PMID: 40348704 DOI: 10.1016/j.neurot.2025.e00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lauren Gluck
- Montefiore Medical Center, 1250 Waters Place Tower 2, Bronx, NY 10461, USA.
| | - Brittany Gerstein
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| | - Ulrike W Kaunzner
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| |
Collapse
|
2
|
Nagarajan P, Winkler TW, Bentley AR, Miller CL, Kraja AT, Schwander K, Lee S, Wang W, Brown MR, Morrison JL, Giri A, O'Connell JR, Bartz TM, de Las Fuentes L, Gudmundsdottir V, Guo X, Harris SE, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer ND, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most PJ, Wang Y, Weiss S, Westerman KE, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja AD, Arzt M, Aschard H, Attia JR, Bazzanno L, Breyer MA, Brody JA, Cade BE, Chen HH, Chen YDI, Chen Z, de Vries PS, Dimitrov LM, Do A, Du J, Dupont CT, Edwards TL, Evans MK, Faquih T, Felix SB, Fisher-Hoch SP, Floyd JS, Graff M, Gu C, Gu D, Hairston KG, Hanley AJ, Heid IM, Heikkinen S, Highland HM, Hood MM, Kähönen M, Karvonen-Gutierrez CA, Kawaguchi T, Kazuya S, Kelly TN, Komulainen P, Levy D, Lin HJ, Liu PY, Marques-Vidal P, McCormick JB, Mei H, Meigs JB, Menni C, Nam K, Nolte IM, Pacheco NL, Petty LE, Polikowsky HG, Province MA, Psaty BM, Raffield LM, Raitakari OT, Rich SS, et alNagarajan P, Winkler TW, Bentley AR, Miller CL, Kraja AT, Schwander K, Lee S, Wang W, Brown MR, Morrison JL, Giri A, O'Connell JR, Bartz TM, de Las Fuentes L, Gudmundsdottir V, Guo X, Harris SE, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer ND, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most PJ, Wang Y, Weiss S, Westerman KE, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja AD, Arzt M, Aschard H, Attia JR, Bazzanno L, Breyer MA, Brody JA, Cade BE, Chen HH, Chen YDI, Chen Z, de Vries PS, Dimitrov LM, Do A, Du J, Dupont CT, Edwards TL, Evans MK, Faquih T, Felix SB, Fisher-Hoch SP, Floyd JS, Graff M, Gu C, Gu D, Hairston KG, Hanley AJ, Heid IM, Heikkinen S, Highland HM, Hood MM, Kähönen M, Karvonen-Gutierrez CA, Kawaguchi T, Kazuya S, Kelly TN, Komulainen P, Levy D, Lin HJ, Liu PY, Marques-Vidal P, McCormick JB, Mei H, Meigs JB, Menni C, Nam K, Nolte IM, Pacheco NL, Petty LE, Polikowsky HG, Province MA, Psaty BM, Raffield LM, Raitakari OT, Rich SS, Riha RL, Risch L, Risch M, Ruiz-Narvaez EA, Scott RJ, Sitlani CM, Smith JA, Sofer T, Teder-Laving M, Völker U, Vollenweider P, Wang G, Willems van Dijk K, Wilson OD, Xia R, Yao J, Young KL, Zhang R, Zhu X, Below JE, Böger CA, Conen D, Cox SR, Dörr M, Feitosa MF, Fox ER, Franceschini N, Gharib SA, Gudnason V, Harlow SD, He J, Holliday EG, Kutalik Z, Lakka TA, Lawlor DA, Lee S, Lehtimäki T, Li C, Liu CT, Mägi R, Matsuda F, Morrison AC, Penninx BW, Peyser PA, Rotter JI, Snieder H, Spector TD, Wagenknecht LE, Wareham NJ, Zonderman AB, North KE, Fornage M, Hung AM, Manning AK, Gauderman J, Chen H, Munroe PB, Rao DC, van Heemst D, Redline S, Noordam R, Wang H. A large-scale genome-wide study of gene-sleep duration interactions for blood pressure in 811,405 individuals from diverse populations. Mol Psychiatry 2025:10.1038/s41380-025-02954-w. [PMID: 40181193 DOI: 10.1038/s41380-025-02954-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discovered 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.
Collapse
Affiliation(s)
- Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Songmi Lee
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - John L Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ayush Giri
- Division of Quantitative and Clinical Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs, Nashville, TN, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa de Las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- National Heart & Lung Institute, Cardiovascular Genomics and Precision Medicine, Imperial College London, London, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Varun Rao
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stefan Stadler
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada
| | - Adriaan van der Graaf
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yujie Wang
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Kenneth E Westerman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Qian Yang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tabara Yasuharu
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wanying Zhu
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Drew Altschul
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- School of Psychology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anna D Argoty-Pantoja
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Hugues Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris, France
- Department of Epidemiology, Harvard TH School of Public Health, Boston, MA, USA
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Lydia Bazzanno
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Max A Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hung-Hsin Chen
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zekai Chen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Latchezar M Dimitrov
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Susan P Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kristen G Hairston
- Department of Endocrinology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heather M Highland
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | | | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Setoh Kazuya
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter Y Liu
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lauren E Petty
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah G Polikowsky
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, and Department of Clinical Physiology and Nuclear Medicine, University of Turku, and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Renata L Riha
- Department of Sleep Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lorenz Risch
- Faculty of Medical Sciences, Institute for Laboratory Medicine, Private University in the Principality of Liechtenstein, Vaduz, Liechtenstein
- Center of Laboratory Medicine, Institute of Clinical Chemistry, University of Bern and Inselspital, Bern, Switzerland
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur, Switzerland
- Medical Laboratory, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | | | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guanchao Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden, Netherlands
| | - Otis D Wilson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs, Nashville, TN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kristin L Young
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruiyuan Zhang
- Department of Epidemiology, O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jennifer E Below
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany
- KfH Kidney Centre Traunstein, Traunstein, Germany
| | - David Conen
- Population Health Research Institute, Medicine, McMaster University, Hamilton, ON, Canada
| | - Simon R Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ervin R Fox
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sina A Gharib
- Pulmonary, Critical Care and Sleep Medicine, Medicine, University of Washington, Seattle, WA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jiang He
- Department of Epidemiology, O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zoltan Kutalik
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Changwei Li
- Department of Epidemiology, O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kari E North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs, Nashville, TN, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, UK
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang XL, Wang ZY, Chen XH, Cai Y, Hu B. Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury. Neurosci Bull 2025; 41:633-648. [PMID: 39645618 PMCID: PMC11978567 DOI: 10.1007/s12264-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 12/09/2024] Open
Abstract
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Collapse
Affiliation(s)
- Xin-Liang Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Han Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Cai
- First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Kang W, Zhang Y, Cui W, Meng H, Zhang D. Folic Acid Promotes Peripheral Nerve Injury Repair via Regulating DNM3-AKT Pathway Through Mediating Methionine Cycle Metabolism. Neuromolecular Med 2025; 27:23. [PMID: 40163256 PMCID: PMC11958391 DOI: 10.1007/s12017-025-08845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Emerging evidence suggests that folic acid (FA) supports nerve repair, but its beneficial effects in peripheral nerve injury (PNI) remains unclear. This study aims to investigate protective effects of FA against PNI and the underlying molecular mechanisms. High-performance liquid chromatography-tandem mass spectrometry was utilized for precise quantification of metabolites. A sciatic nerve crush injury model was established in rats, followed by assessments of cell proliferation, apoptosis, and motor function using CCK-8 assays, flow cytometry, and the balance beam test, respectively. Neuromorphological observations, electromyography, and ELISA were conducted to evaluate structural, electrophysiological, and biochemical parameters. In vitro, FA restored methionine cycle balance in Schwann cells and neurons disrupted by enzyme inhibition, improving cell viability, reducing apoptosis, and preserving cellular structure. In vivo, FA supplementation restored S-adenosylmethionine and homocysteine levels in a methionine metabolism disorder model and enhanced motor function, neural morphology, neuron survival, and electrophysiological recovery after PNI. Epigenetic analyses revealed that FA modulated DNA methylation and histone modifications of the DNM3 promoter, influencing gene expression. Furthermore, FA facilitated nerve repair via the DNM3-AKT pathway, regulating apoptosis, autophagy, and oxidative stress-related enzymes. These findings highlight FA's potential in promoting nerve repair through metabolic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Weibo Kang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road, Beijing, 100070, China.
| | - Yanli Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Cui
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road, Beijing, 100070, China
| | - Hua Meng
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road, Beijing, 100070, China
| | - Duo Zhang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Road, Beijing, 100070, China
| |
Collapse
|
6
|
Shi G, Su T, Li J, Wang A, Gao G, Tao B, Chen N, Tian L, Yan J, Zhao L, Zhang J, Zhao Y. Biomimetic piezoelectric hydrogel system for energy metabolism reprogramming in spinal cord injury repair. Theranostics 2025; 15:4955-4969. [PMID: 40303325 PMCID: PMC12036890 DOI: 10.7150/thno.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/15/2025] [Indexed: 05/02/2025] Open
Abstract
Rationale: Spinal cord injury (SCI) leads to limited regenerative capacity and severe energy deficiency in the injury microenvironment. This study aimed to develop a biomimetic piezoelectric hydrogel system that could recapitulate the native tissue microenvironment while enabling wireless physical regulation for SCI repair. Methods: A piezoelectric hydrogel was fabricated by integrating K0.5Na0.5NbO3 (KNN) nanoparticles with porous decellularized spinal cord matrix gel (pDG). The hydrogel's effects on vascular endothelial cell migration, neural stem cell differentiation, and ATP synthesis were evaluated in vitro. RNA sequencing was performed to identify key regulatory pathways. The therapeutic efficacy was assessed in a rat model of spinal cord hemisection, examining motor function and angiogenesis. Results: The piezoelectric hydrogel demonstrated excellent biocompatibility and significantly enhanced vascular endothelial cell and neural cell migration. Under ultrasonic stimulation, the hydrogel promoted neural stem cell differentiation into neurons more effectively than control hydrogels. The piezoelectric stimulation increased ATP synthesis and calcium ion flux, activating the Ca2+/Camk2b/PGC-1α signaling axis. In vivo studies showed that implantation of the piezoelectric hydrogel combined with ultrasound stimulation significantly improved motor function recovery and promoted angiogenesis. Conclusion: The piezoelectric hydrogel system presents an effective strategy for SCI repair through energy metabolism reprogramming and demonstrates promising potential in neural tissue engineering applications.
Collapse
Affiliation(s)
- Guoliang Shi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital; Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Tianqi Su
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Junyang Li
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Aoao Wang
- National Center for Orthopaedics; Beijing Research Institute of Traumatology and Orthopaedics; Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, PR China
| | - Gan Gao
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Benzhang Tao
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
- Tianjin Medical University, Tianjin, 300052, PR China
| | - Nantian Chen
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Lu Tian
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital; Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Jun Yan
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Lingzhou Zhao
- Air Force Medical Center, The Fourth Military Medical University, Beijing, 100089, PR China
| | - Jianning Zhang
- Senior Department of Neurosurgery, the First Medical Center of PLA General Hospital; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital; Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| |
Collapse
|
7
|
Ugalde-Triviño L, Tejeda GS, Esteban-Ortega GM, Díaz-Guerra M. A brain-accessible peptide modulates stroke inflammatory response and neurotoxicity by targeting BDNF-receptor TrkB-T1 specific interactome. Theranostics 2025; 15:4654-4672. [PMID: 40225562 PMCID: PMC11984388 DOI: 10.7150/thno.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Glia reactivity, neuroinflammation and excitotoxic neuronal death are central processes to ischemic stroke and neurodegenerative diseases, altogether a leading cause of death, disability, and dementia. Given the high incidence of these pathologies and the limited efficacy of current treatments, developing brain-protective therapies that target both neurons and glial cells is a priority. Truncated neurotrophin receptor TrkB-T1, a protein produced by these cell types, plays relevant roles in excitotoxicity and ischemia. We hypothesized that interactions mediated by isoform-specific TrkB-T1 sequences might contribute to neurotoxicity and/or reactive gliosis, thus representing potential therapeutic targets. Methods: We designed cell-penetrating peptides containing TrkB-T1 isoform-specific sequences to: 1) characterize peptide delivery into rat primary cortical cultures and mice brain cortex; 2) isolate and identify the isoform interactome in basal and in vitro excitotoxic conditions; 3) analyze peptide effects on neuroinflammation and neurotoxicity using primary cultures subjected to excitotoxicity or in vivo in a mouse model of ischemia. Results: We identify here the TrkB-T1-specific interactome, poorly described to date, and demonstrate that interference of these protein-protein interactions using brain-accessible TrkB-T1-derived peptides can reduce reactive gliosis and decrease excitotoxicity-induced damage in cellular and animal models of stroke, where treatment reduces the infarct volume in male and female mice. Conclusions: The crucial role of TrkB-T1 in modulating microglia and astrocyte reactivity indicates that isoform-derived peptides hold promise for the development of therapies for human stroke and other excitotoxicity-associated pathologies.
Collapse
Affiliation(s)
- Lola Ugalde-Triviño
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Gonzalo S. Tejeda
- Institute of Molecular, Cell and Systems Biology, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Gema M. Esteban-Ortega
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
8
|
Feng Y, Guo M, You T, Zhang M, Li J, Xie J, Han S, Zhao H, Jiang Y, Zhao Y, Yu J, Dong Q, Cui M. Paranodal instability driven by axonal mitochondrial accumulation in ischemic demyelination and cognitive decline. Mol Psychiatry 2025:10.1038/s41380-025-02936-y. [PMID: 40033045 DOI: 10.1038/s41380-025-02936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Subcortical ischemic demyelination is the primary cause of vascular cognitive impairment in the elderly. However, its underlying mechanisms remain elusive. METHODS Using a bilateral common carotid artery stenosis (BACS) mouse model and an in vitro cerebellar slice model treated with low glucose-low oxygen (LGLO), we investigated a novel mechanism of vascular demyelination. RESULTS This work identified syntaphilin-mediated docking of mitochondria as the initial event preceding ischemic demyelination. This axonal insult drives paranodal retraction, myelin instability, and subsequent cognitive impairment through excessive oxidation of protein 4.1B by mitochondrial ROS. Syntaphilin knockdown reestablished the balance of mitochondrial axoplasmic transport, reduced axonal ROS burden, and consequently decreased the abnormal oxidation of protein 4.1B, an essential component that secures the Caspr1/contactin-1/NF155 complex tethered to the axonal cytoskeleton βII-Spectrin within paranodes. This ultimately protected the paranodal structure and myelin and improved cognitive function. CONCLUSIONS Our findings reveal a distinct pathological characteristic of ischemic demyelination and highlight the therapeutic potential of modulating axonal mitochondrial mobility to stabilize myelin structures and improve vascular cognitive impairment.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minjie Zhang
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Jincheng Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Junchao Xie
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China.
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Xiong J, Ge X, Pan D, Zhu Y, Zhou Y, Gao Y, Wang H, Wang X, Gu Y, Ye W, Teng H, Zhou X, Wang Z, Liu W, Cai W. Metabolic reprogramming in astrocytes prevents neuronal death through a UCHL1/PFKFB3/H4K8la positive feedback loop. Cell Death Differ 2025:10.1038/s41418-025-01467-x. [PMID: 40016338 DOI: 10.1038/s41418-025-01467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Astrocytic metabolic reprogramming is an adaptation of metabolic patterns to meet increased energy demands, although the role after spinal cord injury (SCI) remains unclear. Analysis of single-cell RNA sequencing (scRNA-seq) data identified an increase in astrocytic glycolysis, while PFKFB3, a key regulator of glycolytic flux, was significantly upregulated following SCI. Loss of PFKFB3 in astrocytes prohibited neuronal energy supply and enhanced neuronal ferroptosis in vitro and expanded infiltration of CD68+ macrophages/microglia, exacerbated neuronal loss, and hindered functional recovery in vivo after SCI. Mechanistically, deubiquitinase UCHL1 plays a crucial role in stabilizing and enhancing PFKFB3 expression by cleaving K48-linked ubiquitin chains. Genetic deletion of Uchl1 inhibited locomotor recovery after SCI by suppression of PFKFB3-induced glycolytic reprogramming in astrocytes. Furthermore, the UCHL1/PFKFB3 axis increased lactate production, leading to enhanced histone lactylation and subsequent transcription of Uchl1 and several genes related to glycolysis, suggesting a glycolysis/H4K8la/UCHL1 positive feedback loop. These findings help to clarify the role of the UCHL1/PFKFB3/H4K8la loop in modulation of astrocytic metabolic reprogramming and reveal a potential target for treatment of SCI.
Collapse
Affiliation(s)
- Junjun Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China
| | - Dishui Pan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yitong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaokun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Gu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China.
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Zhou S, Li B, Wu D, Chen Y, Zeng W, Huang J, Tan L, Mao G, Liu F. Mechanisms of fibrinogen trans-activation of the EGFR/Ca2+ signaling axis to regulate mitochondrial transport and energy transfer and inhibit axonal regeneration following cerebral ischemia. J Neuropathol Exp Neurol 2025; 84:210-222. [PMID: 39495964 DOI: 10.1093/jnen/nlae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Ischemic stroke results in inhibition of axonal regeneration but the roles of fibrinogen (Fg) in neuronal signaling and energy crises in experimental stroke are under-investigated. We explored the mechanism of Fg modulation of axonal regeneration and neuronal energy crisis after cerebral ischemia using a permanent middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons under low glucose-low oxygen. Behavioral tests assessed neurological deficits; immunofluorescence, immunohistochemistry, and Western-blot analyzed Fg and protein levels. Fluo-3/AM fluorescence measured free Ca2+ and ATP levels were gauged via specific assays and F560nm/F510nm ratio calculations. Mito-Tracker Green labeled mitochondria and immunoprecipitation studied protein interactions. Our comprehensive study revealed that Fg inhibited axonal regeneration post-MCAO as indicated by reduced GAP43 expression along with elevated free Ca2+, both suggesting an energy crisis. Fg impeded mitochondrial function and mediated impairment through the EGFR/Ca2+ axis by trans-activating EGFR via integrin αvβ3 interaction. These results indicate that the binding of Fg with integrin αvβ3 leads to the trans-activation of the EGFR/Ca2+ signaling axis thereby disrupting mitochondrial energy transport and axonal regeneration and exacerbating the detrimental effects of ischemic neuronal injury.
Collapse
Affiliation(s)
- Shengqiang Zhou
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Dahua Wu
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Yanjun Chen
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Wen Zeng
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Jia Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Lingjuan Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Guo Mao
- Key Project Office, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Fang Liu
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| |
Collapse
|
11
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, La Torre A, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun 2025; 16:1789. [PMID: 39979261 PMCID: PMC11842812 DOI: 10.1038/s41467-025-57135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hannah C Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, P.R. China
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia.
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
12
|
Wang X, Zhou G, Xiong J, Ye W, Gao Y, Wang H, Pan D, Luo Y, Zhou Z. H4K12 Lactylation Activated-Spp1 in Reprogrammed Microglia Improves Functional Recovery After Spinal Cord Injury. CNS Neurosci Ther 2025; 31:e70232. [PMID: 39939834 PMCID: PMC11821456 DOI: 10.1111/cns.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/19/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition leading to significant disability and high mortality. The role of the secreted phosphoprotein 1 (SPP1) signaling pathway in SCI, which is quickly activated after injury, is critical for intercellular communication but remains poorly understood. AIMS This study aimed to explore the function and regulatory mechanisms of the SPP1 signaling pathway in SCI and investigate its potential as a therapeutic target for improving functional recovery after injury. MATERIALS AND METHODS Single-cell RNA sequencing (scRNA-seq) was employed to identify ligands and receptors of the SPP1 signaling pathway, particularly in microglia/macrophages. Recombinant SPP1 (rSPP1) was used in vitro and in vivo to assess its effects on neuronal maturation, mitochondrial energy in axons, and functional recovery after SCI. Pseudotime analysis was conducted to examine the role of Spp1 in microglial activation and proliferation. DNA-pulldown and in vitro experiments were performed to investigate the upstream regulatory proteins of Spp1. RESULTS The SPP1 signaling pathway is primarily localized in microglia after SCI, with rSPP1 promoting neuronal maturation and enhancing mitochondrial function in axons. Injection of rSPP1 into the injured spinal cord resulted in significant improvement in functional recovery. Pseudotime analysis indicated that Spp1 is involved in the activation and proliferation of microglia. Histone H4 lysine 12 lactylation (H4K12la) was found to promote the transcription of Spp1 in reprogrammed microglia postinjury. DISCUSSION Our findings reveal a novel regulatory mechanism involving Spp1 in SCI, particularly its role in microglial activation, mitochondrial function, and glycolytic reprogramming. This new insight provides a deeper understanding of its contribution to the injury response. CONCLUSION This study uncovers a previously unreported mechanism of Spp1 in SCI, offering a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Xiaokun Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Geliang Zhou
- Department of First Clinical Medical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junjun Xiong
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Wu Ye
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yu Gao
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Haofan Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dishui Pan
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yongjun Luo
- Department of OrthopedicsThe Fourth Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zheng Zhou
- Emergency and Critical Care Medicine DepartmentThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
13
|
Masin L, Bergmans S, Van Dyck A, Farrow K, De Groef L, Moons L. Local glycolysis supports injury-induced axonal regeneration. J Cell Biol 2024; 223:e202402133. [PMID: 39352499 PMCID: PMC11451009 DOI: 10.1083/jcb.202402133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.
Collapse
Affiliation(s)
- Luca Masin
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Steven Bergmans
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Annelies Van Dyck
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Karl Farrow
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- imec, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
14
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Shi C, Xu J, Ding Y, Chen X, Yuan F, Zhu F, Duan C, Hu J, Lu H, Wu T, Jiang L. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics 2024; 14:5662-5681. [PMID: 39310103 PMCID: PMC11413787 DOI: 10.7150/thno.96374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Spinal cord injury (SCI)-induced vascular damage causes ischemia and hypoxia at the injury site, which, in turn, leads to profound metabolic disruptions. The effects of these metabolic alterations on neural tissue remodeling and functional recovery have yet to be elucidated. The current study aimed to investigate the consequences of the SCI-induced hypoxic environment at the epicenter of the injury. Methods: This study employed metabolomics to assess changes in energy metabolism after SCI. The use of a lactate sensor identified lactate shuttle between endothelial cells (ECs) and neurons. Reanalysis of single-cell RNA sequencing data demonstrated reduced MCT1 expression in ECs after SCI. Additionally, an adeno-associated virus (AAV) overexpressing MCT1 was utilized to elucidate its role in endothelial-neuronal interactions, tissue repair, and functional recovery. Results: The findings revealed markedly decreased monocarboxylate transporter 1 (MCT1) expression that facilitates lactate delivery to neurons to support their energy metabolism in ECs post-SCI. This decreased expression of MCT1 disrupts lactate transport to neurons, resulting in a metabolic imbalance that impedes axonal regeneration. Strikingly, our results suggested that administering adeno-associated virus specifically to ECs to restore MCT1 expression enhances axonal regeneration and improves functional recovery in SCI mice. These findings indicate a novel link between lactate shuttling from endothelial cells to neurons following SCI and subsequent neural functional recovery. Conclusion: In summary, the current study highlights a novel metabolic pathway for therapeutic interventions in the treatment of SCI. Additionally, our findings indicate the potential benefits of targeting lactate transport mechanisms in recovery from SCI.
Collapse
Affiliation(s)
- Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Fengzhang Zhu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
16
|
Wang P, Shao Y, Al-Nusaif M, Zhang J, Yang H, Yang Y, Kim K, Li S, Liu C, Cai H, Le W. Pathological characteristics of axons and alterations of proteomic and lipidomic profiles in midbrain dopaminergic neurodegeneration induced by WDR45-deficiency. Mol Neurodegener 2024; 19:62. [PMID: 39183331 PMCID: PMC11346282 DOI: 10.1186/s13024-024-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Although WD repeat domain 45 (WDR45) mutations have been linked to β -propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the impacts of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. We hope to better understand the disease process by examining pathological and molecular alterations, especially within the DAergic system. METHODS To investigate the impacts of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in the midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in the mouse behaviors using open field, rotarod, Y-maze, and 3-chamber social approach tests. We utilized a combination of immunofluorescence staining and transmission electron microscopy to examine the pathological changes in DAergic neuron soma and axons. Additionally, we performed proteomic and lipidomic analyses of the striatum from young and aged mice to identify the molecules and processes potentially involved in the striatal pathology during aging. Further more, primary midbrain neuronal culture was employed to explore the molecular mechanisms leading to axonal degeneration. RESULTS Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound reduction of midbrain DAergic neurons. The neuronal loss, we observed massive axonal enlargements in the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Proteomic analysis of the striatum showed that the differentially expressed proteins were enriched in metabolic processes. The carbohydrate metabolic and protein catabolic processes appeared earlier, and amino acid, lipid, and tricarboxylic acid metabolisms were increased during aging. Of note, we observed a tremendous increase in the expression of lysophosphatidylcholine acyltransferase 1 (Lpcat1) that regulates phospholipid metabolism, specifically in the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC) in the presence of acyl-CoA. The lipidomic results consistently suggested that differential lipids were concentrated on PC and LPC. Axonal degeneration was effectively ameliorated by interfering Lpcat1 expression in primary cultured WDR45-deficient DAergic neurons, proving that Lpcat1 and its regulated lipid metabolism, especially PC and LPC metabolism, participate in controlling the axonal degeneration induced by WDR45 deficits. CONCLUSIONS In this study, we uncovered the molecular mechanisms underlying the contribution of WDR45 deficiency to axonal degeneration, which involves complex relationships between phospholipid metabolism, autophagy, and tubular ER. These findings greatly advance our understanding of the fundamental molecular mechanisms driving axonal degeneration and may provide a foundation for developing novel mechanistically based therapeutic interventions for BPAN and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Panpan Wang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Jun Zhang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yuting Yang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Kunhyok Kim
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cong Liu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science, Sichuan Provincial Hospital, Chengdu, 610072, China.
| |
Collapse
|
17
|
Jenkins JE, Fazli M, Evans CS. Mitochondrial motility modulators coordinate quality control dynamics to promote neuronal health. Curr Opin Cell Biol 2024; 89:102383. [PMID: 38908094 DOI: 10.1016/j.ceb.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Dysfunction in mitochondrial maintenance and trafficking is commonly correlated with the development of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, biomedical research has been dedicated to understanding how architecturally complex neurons maintain and transport their mitochondria. However, the systems that coordinate mitochondrial QC (quality control) dynamics and trafficking in response to neuronal activity and stress are less understood. Additionally, the degree of integration between the processes of mitochondrial trafficking and QC is unclear. Recent work indicates that mitochondrial motility modulators (i.e., anchors and tethers) help coordinate mitochondrial health by mediating distinct, stress-level-appropriate QC pathways following mitochondrial damage. This review summarizes current evidence supporting the role of two mitochondrial motility modulators, Syntaphilin and Mitofusin 2, in coordinating mitochondrial QC to promote neuronal health. Exploring motility modulators' intricate regulatory molecular landscape may reveal new therapeutic targets for delaying disease progression and enhancing neuronal survival post-insult.
Collapse
Affiliation(s)
- Jennifer E Jenkins
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mohammad Fazli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Wang H, Nagarajan P, Winkler T, Bentley A, Miller C, Kraja A, Schwander K, Lee S, Wang W, Brown M, Morrison J, Giri A, O'Connell J, Bartz T, de Las Fuentes L, Gudmundsdottir V, Guo X, Harris S, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer N, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most P, Wang Y, Weiss S, Westerman K, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja A, Arzt M, Aschard H, Attia J, Bazzano L, Breyer M, Brody J, Cade B, Chen HH, Chen YDI, Chen Z, de Vries P, Dimitrov L, Do A, Du J, Dupont C, Edwards T, Evans M, Faquih T, Felix S, Fisher-Hoch S, Floyd J, Graff M, Charles Gu C, Gu D, Hairston K, Hanley A, Heid I, Heikkinen S, Highland H, Hood M, Kähönen M, Karvonen-Gutierrez C, Kawaguchi T, Kazuya S, Tanika K, Komulainen P, Levy D, Lin H, Liu P, Marques-Vidal P, McCormick J, Mei H, Meigs J, Menni C, Nam K, Nolte I, Pacheco N, Petty L, Polikowsky H, Province M, Psaty B, Raffield L, Raitakari O, et alWang H, Nagarajan P, Winkler T, Bentley A, Miller C, Kraja A, Schwander K, Lee S, Wang W, Brown M, Morrison J, Giri A, O'Connell J, Bartz T, de Las Fuentes L, Gudmundsdottir V, Guo X, Harris S, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer N, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most P, Wang Y, Weiss S, Westerman K, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja A, Arzt M, Aschard H, Attia J, Bazzano L, Breyer M, Brody J, Cade B, Chen HH, Chen YDI, Chen Z, de Vries P, Dimitrov L, Do A, Du J, Dupont C, Edwards T, Evans M, Faquih T, Felix S, Fisher-Hoch S, Floyd J, Graff M, Charles Gu C, Gu D, Hairston K, Hanley A, Heid I, Heikkinen S, Highland H, Hood M, Kähönen M, Karvonen-Gutierrez C, Kawaguchi T, Kazuya S, Tanika K, Komulainen P, Levy D, Lin H, Liu P, Marques-Vidal P, McCormick J, Mei H, Meigs J, Menni C, Nam K, Nolte I, Pacheco N, Petty L, Polikowsky H, Province M, Psaty B, Raffield L, Raitakari O, Rich S, Riha R, Risch L, Risch M, Ruiz-Narvaez E, Scott R, Sitlani C, Smith J, Sofer T, Teder-Laving M, Völker U, Vollenweider P, Wang G, van Dijk KWI, Wilson O, Xia R, Yao J, Young K, Zhang R, Zhu X, Below J, Böger C, Conen D, Cox S, Dörr M, Feitosa M, Fox E, Franceschini N, Gharib S, Gudnason V, Harlow S, He J, Holliday E, Kutalik Z, Lakka T, Lawlor D, Lee S, Lehtimäki T, Li C, Liu CT, Mägi R, Matsuda F, Morrison A, Penninx BWJH, Peyser P, Rotter J, Snieder H, Spector T, Wagenknecht L, Wareham N, Zonderman A, North K, Fornage M, Hung A, Manning A, Gauderman W, Chen H, Munroe P, Rao D, van Heemst D, Redline S, Noordam R. A Large-Scale Genome-Wide Study of Gene-Sleep Duration Interactions for Blood Pressure in 811,405 Individuals from Diverse Populations. RESEARCH SQUARE 2024:rs.3.rs-4163414. [PMID: 39070651 PMCID: PMC11276021 DOI: 10.21203/rs.3.rs-4163414/v1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michael Brown
- The University of Texas Health Science Center at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicholette Palmer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
| | | | | | | | | | - Quan Sun
- University of North Carolina, USA
| | | | | | | | | | | | - Stefan Weiss
- University Medicine Greifswald & University of Greifswald
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph McCormick
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health
| | - Hao Mei
- University of Mississippi Medical Center
| | | | | | | | - Ilja Nolte
- University of Groningen, University Medical Center Groningen
| | | | | | | | | | | | | | - Olli Raitakari
- Turku University Hospital and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku
| | | | | | | | | | | | - Rodney Scott
- University of Newcastle and the Hunter Medical Research Institute
| | | | | | | | | | | | | | | | | | | | - Rui Xia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiang He
- Tulane University School of Public Health and Tropical Medicine
| | | | | | | | | | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | | | | | | | | | - Patricia Peyser
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | | | | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center
- 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, Torre AL, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587832. [PMID: 38617277 PMCID: PMC11014509 DOI: 10.1101/2024.04.02.587832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hannah C. Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA; USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA; USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA; USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
20
|
Nagarajan P, Winkler TW, Bentley AR, Miller CL, Kraja AT, Schwander K, Lee S, Wang W, Brown MR, Morrison JL, Giri A, O’Connell JR, Bartz TM, de las Fuentes L, Gudmundsdottir V, Guo X, Harris SE, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer ND, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most PJ, Wang Y, Weiss S, Westerman KE, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja AD, Arzt M, Aschard H, Attia JR, Bazzanno L, Breyer MA, Brody JA, Cade BE, Chen HH, Ida Chen YD, Chen Z, de Vries PS, Dimitrov LM, Do A, Du J, Dupont CT, Edwards TL, Evans MK, Faquih T, Felix SB, Fisher-Hoch SP, Floyd JS, Graff M, Gu C, Gu D, Hairston KG, Hanley AJ, Heid IM, Heikkinen S, Highland HM, Hood MM, Kähönen M, Karvonen-Gutierrez CA, Kawaguchi T, Kazuya S, Kelly TN, Komulainen P, Levy D, Lin HJ, Liu PY, Marques-Vidal P, McCormick JB, Mei H, Meigs JB, Menni C, Nam K, Nolte IM, Pacheco NL, Petty LE, Polikowsky HG, Province MA, Psaty BM, Raffield LM, Raitakari OT, Rich SS, et alNagarajan P, Winkler TW, Bentley AR, Miller CL, Kraja AT, Schwander K, Lee S, Wang W, Brown MR, Morrison JL, Giri A, O’Connell JR, Bartz TM, de las Fuentes L, Gudmundsdottir V, Guo X, Harris SE, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer ND, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most PJ, Wang Y, Weiss S, Westerman KE, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja AD, Arzt M, Aschard H, Attia JR, Bazzanno L, Breyer MA, Brody JA, Cade BE, Chen HH, Ida Chen YD, Chen Z, de Vries PS, Dimitrov LM, Do A, Du J, Dupont CT, Edwards TL, Evans MK, Faquih T, Felix SB, Fisher-Hoch SP, Floyd JS, Graff M, Gu C, Gu D, Hairston KG, Hanley AJ, Heid IM, Heikkinen S, Highland HM, Hood MM, Kähönen M, Karvonen-Gutierrez CA, Kawaguchi T, Kazuya S, Kelly TN, Komulainen P, Levy D, Lin HJ, Liu PY, Marques-Vidal P, McCormick JB, Mei H, Meigs JB, Menni C, Nam K, Nolte IM, Pacheco NL, Petty LE, Polikowsky HG, Province MA, Psaty BM, Raffield LM, Raitakari OT, Rich SS, Riha RL, Risch L, Risch M, Ruiz-Narvaez EA, Scott RJ, Sitlani CM, Smith JA, Sofer T, Teder-Laving M, Völker U, Vollenweider P, Wang G, van Dijk KW, Wilson OD, Xia R, Yao J, Young KL, Zhang R, Zhu X, Below JE, Böger CA, Conen D, Cox SR, Dörr M, Feitosa MF, Fox ER, Franceschini N, Gharib SA, Gudnason V, Harlow SD, He J, Holliday EG, Kutalik Z, Lakka TA, Lawlor DA, Lee S, Lehtimäki T, Li C, Liu CT, Mägi R, Matsuda F, Morrison AC, Penninx BWJH, Peyser PA, Rotter JI, Snieder H, Spector TD, Wagenknecht LE, Wareham NJ, Zonderman AB, North KE, Fornage M, Hung AM, Manning AK, Gauderman J, Chen H, Munroe PB, Rao DC, van Heemst D, Redline S, Noordam R, Wang H. A Large-Scale Genome-Wide Study of Gene-Sleep Duration Interactions for Blood Pressure in 811,405 Individuals from Diverse Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303870. [PMID: 38496537 PMCID: PMC10942520 DOI: 10.1101/2024.03.07.24303870] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.
Collapse
Affiliation(s)
- Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesvil le, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville ,VA, USA
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Songmi Lee
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - John L Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
| | - Jeffrey R O’Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, MO, USA
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research, King’s College London, London, UK
- National Heart & Lung Institute, Cardiovascular Genomics and Precision Medicine, Imperial College London, London, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Varun Rao
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, USA
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Stefan Stadler
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, Qc, Canada
| | - Adriaan van der Graaf
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yujie Wang
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Kenneth E Westerman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Qian Yang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tabara Yasuharu
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wanying Zhu
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Drew Altschul
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anna D Argoty-Pantoja
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Hugues Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris, France
- Department of Epidemiology, Harvard TH School of Public Health, Boston, MA, USA
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Lydia Bazzanno
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Max A Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hung-hsin Chen
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zekai Chen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Latchezar M Dimitrov
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US A
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, Un iversity Medicine Greifswald, Greifswald, Germany
| | - Susan P Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science an d Technology, Shenzhen, China
| | - Kristen G Hairston
- Department of Endocrinology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Kuopio
| | - Heather M Highland
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | | | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Setoh Kazuya
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, USA
| | | | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter Y Liu
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, London, UK
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Lauren E Petty
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah G Polikowsky
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, and Department of Clinical Physiology and Nuclear Medicine, University of Turku, and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Renata L Riha
- Department of Sleep Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liecht enstein, Vaduz, Liechtenstein
- Center of Laboratory Medicine, Institute of Clinical Chemistry, University of Bern and Inselspital, Bern, Switze rland
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur, Switzerland
- Medical Laboratory, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | | | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guanchao Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden, Netherlands
| | - Otis D Wilson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kristin L Young
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer E Below
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany
- KfH Kidney Centre Traunstein, Traunstein, Germany
| | - David Conen
- Population Health Research Institute, Medicine, McMaster University, Hamilton, On, Canada
| | - Simon R Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, Un iversity Medicine Greifswald, Greifswald, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ervin R Fox
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sina A Gharib
- Pulmonary, Critical Care and Sleep Medicine, Medicine, University of Washington, Seattle, WA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
- Tulane University Translational Sciences Institute, New Orleans, LA , USA
| | - Elizabeth G Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zoltan Kutalik
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Kuopio
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Brenda WJH Penninx
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tim D Spector
- Department of Twin Research, King’s College London, London, UK
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kari E North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, UK
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Lei den, Netherlands
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Lei den, Netherlands
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wang H, Ma W, Hu W, Li X, Shen N, Li Z, Kong X, Lin T, Gao J, Zhu T, Che F, Chen J, Wan Q. Cathodal bilateral transcranial direct-current stimulation regulates selenium to confer neuroprotection after rat cerebral ischaemia-reperfusion injury. J Physiol 2024; 602:1175-1197. [PMID: 38431908 DOI: 10.1113/jp285806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
22
|
D'Urso B, Weil R, Génin P. [Optineurin and mitochondrial dysfunction in neurodegeneration]. Med Sci (Paris) 2024; 40:167-175. [PMID: 38411425 DOI: 10.1051/medsci/2023220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Optineurin (OPTN) is a multifunctional protein playing a crucial role as a receptor in selective autophagy. OPTN gene mutations are linked to diseases such as normal-tension glaucoma and amyotrophic lateral sclerosis. Recognized as a critical receptor for mitophagy, OPTN is pivotal in selectively degrading damaged mitochondria. This process is essential to prevent their accumulation, the generation of reactive oxygen species, and the release of pro-apoptotic factors. Mitophagy's quality control is governed by the PINK1 kinase and the cytosolic ubiquitin ligase Parkin, whose mutations are associated with Parkinson's disease. This review highlights recent insights emphasizing OPTN's role in mitophagy and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Baptiste D'Urso
- CIMI-Paris, UPMC UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de médecine Sorbonne Université site Pitié-Salpêtrière, Paris, France - Sorbonne Université, Faculté des sciences et ingénierie, Paris, France
| | - Robert Weil
- CIMI-Paris, UPMC UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de médecine Sorbonne Université site Pitié-Salpêtrière, Paris, France
| | - Pierre Génin
- CIMI-Paris, UPMC UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de médecine Sorbonne Université site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
23
|
Hori I, Harashima H, Yamada Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics 2023; 16:49. [PMID: 38258060 PMCID: PMC10821366 DOI: 10.3390/pharmaceutics16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Most of the energy in neurons is produced in mitochondria. Mitochondria generate the ATP that is essential for neuronal growth, function, and regeneration. Mitochondrial axonal transport plays a crucial role in maintaining neuronal homeostasis and biological activity. Decreased mitochondrial axonal transport at axon terminals, where the metabolism of substances is likely to be delayed, may contribute to neurological dysfunction. Therefore, regulation of mitochondrial dynamics at axon terminals has attracted considerable interest as a strategy to modulate neuronal function. Nanoparticles may be useful in controlling local mitochondrial dynamics. Nevertheless, there are few reports on the influence of drug delivery that nanoparticles impart on the mitochondrial dynamics in neurons. This paper reports the results of a study using liposomes (LPs) to examine local drug delivery and pharmacological actions on neurons. We tested berberine (BBR), which is an activator of AMP-activated protein kinase (AMPK), to examine the utility of this drug as a cellular energy sensor. Axon terminals targeting LPs were prepared. The amount of axon terminals targeting LPs was increased compared with treatment using cationic LPs. Moreover, axon terminal-targeting LPs increased anterograde transport by about 40% compared with that of either naked BBR or cationic LPs and suppressed axonal retraction. Our findings suggest that local drug delivery to neurons is important for enhancing pharmacological activity in axon terminals.
Collapse
Affiliation(s)
- Ikuma Hori
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
24
|
Kim HJ, Saikia JM, Monte KMA, Ha E, Romaus-Sanjurjo D, Sanchez JJ, Moore AX, Hernaiz-Llorens M, Chavez-Martinez CL, Agba CK, Li H, Zhang J, Lusk DT, Cervantes KM, Zheng B. Deep scRNA sequencing reveals a broadly applicable Regeneration Classifier and implicates antioxidant response in corticospinal axon regeneration. Neuron 2023; 111:3953-3969.e5. [PMID: 37848024 PMCID: PMC10843387 DOI: 10.1016/j.neuron.2023.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Despite substantial progress in understanding the biology of axon regeneration in the CNS, our ability to promote regeneration of the clinically important corticospinal tract (CST) after spinal cord injury remains limited. To understand regenerative heterogeneity, we conducted patch-based single-cell RNA sequencing on rare regenerating CST neurons at high depth following PTEN and SOCS3 deletion. Supervised classification with Garnett gave rise to a Regeneration Classifier, which can be broadly applied to predict the regenerative potential of diverse neuronal types across developmental stages or after injury. Network analyses highlighted the importance of antioxidant response and mitochondrial biogenesis. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Our data demonstrate a universal transcriptomic signature underlying the regenerative potential of vastly different neuronal populations and illustrate that deep sequencing of only hundreds of phenotypically identified neurons has the power to advance regenerative biology.
Collapse
Affiliation(s)
- Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA USA
| | - Katlyn Marie A Monte
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eunmi Ha
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua J Sanchez
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea X Moore
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marc Hernaiz-Llorens
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carmine L Chavez-Martinez
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Graduate program in Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Chimuanya K Agba
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA USA
| | - Haoyue Li
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph Zhang
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel T Lusk
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kayla M Cervantes
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
25
|
Kuznetsov IA, Kuznetsov AV. Effect of mitochondrial circulation on mitochondrial age density distribution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3770. [PMID: 37688421 PMCID: PMC10841163 DOI: 10.1002/cnm.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
26
|
Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin Inactivation Can Enhance Axonal Mitochondrial Transport to Improve Spinal Cord Injury. Mol Neurobiol 2023; 60:6556-6565. [PMID: 37458986 DOI: 10.1007/s12035-023-03494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/08/2023] [Indexed: 09/28/2023]
Abstract
Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
27
|
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023; 14:635-652. [PMID: 36856750 PMCID: PMC10501188 DOI: 10.1093/procel/pwad003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Collapse
Affiliation(s)
- Ting Tian
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
29
|
Li L, Liu Y, Zheng Y, Zhu J, Wu D, Yan X, Li C, Wu M, Li W. Exploring the mechanisms under Zuogui Pill's treatment of ischemic stroke through network pharmacology and in vitro experimental verification. Front Pharmacol 2023; 14:1153478. [PMID: 37426810 PMCID: PMC10323140 DOI: 10.3389/fphar.2023.1153478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Due to its high mortality, incidence and disability rates, ischemic stroke poses heavy economic burdens to families and society. Zuogui Pill (ZGP) is a classic Chinese medicine for tonifying the kidney, which is effective for the recovery of neurological function after ischemic stroke. However, Zuogui Pill has not been evaluated for its potential effects on ischemic strokes. Using network pharmacology, the research aimed to explore the mechanisms of Zuogui Pill on ischemic stroke, which were further validated in SH-SY5Y cells injured by oxygen and glucose deprivation/reperfusion (OGD/R). Network analysis of Zuogui Pill identified 86 active ingredients and 107 compound-related targets correlated with ischemic stroke. Additionally, 11 core active compounds were obtained, such as Quercetin, beta sitosterol, and stigmasterol. Most of the compounds have been proven to have pharmacological activities. Based on pathway enrichment studies, Zuogui Pill may exert neuroprotection through MAPK signaling, PI3K-Akt signaling and apoptosis, as well as enhance neurite outgrowth and axonal regeneration effect via mTOR signaling, p53 signaling and Wnt signaling pathways. In vitro experiment, the viability of ischemic neuron treated with Zuogui Pill was increased, and the ability of neurite outgrowth was significantly improved. Western blot assays shown that the pro-neurite outgrowth effect of Zuogui Pill on ischemic stroke may be relate to PTEN/mTOR signal pathway. The results of the study provided new insights into Zuogui Pill's molecular mechanism in treatment of ischemic stroke, as well as clinical references for its use.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawei Zheng
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Yan
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changyin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenlei Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
31
|
Le W, Wang P, Al-Nusaif M, Zhang J, Yang H, Yang Y, Kim K, Li S, Liu C, Cai H. Pathological characteristics of axons and proteome patterns in midbrain dopaminergic neurodegeneration induced by WDR45-deficiency. RESEARCH SQUARE 2023:rs.3.rs-2901370. [PMID: 37292937 PMCID: PMC10246098 DOI: 10.21203/rs.3.rs-2901370/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Although WD repeats domain 45 (WDR45) mutations have been linked to β-propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the effects of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. By examining pathological and molecular alterations, we hope to better understand the disease process. Methods To investigate the effects of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in mouse behavior using open field, rotarod, Y-maze, and 3-chamber social approach tests. To examine the pathological changes in DAergic neuron soma and axons, we utilized a combination of immunofluorescence staining and transmission electron microscopy. Additionally, we performed proteomic analyses of the striatum to identify the molecules and processes involved in striatal pathology. Results Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound loss of midbrain DAergic neurons. Prior to neuronal loss, we observed massive axonal enlargements in both the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Additionally, we found that WDR45cKO mice exhibited disrupted autophagic flux. Proteomic analysis of the striatum in these mice showed that many differentially expressed proteins (DEPs) were enriched in amino acid, lipid, and tricarboxylic acid metabolisms. Of note, we observed significant alterations in the expression of genes encoding DEPs that regulate phospholipids catabolic and biosynthetic processes, such as lysophosphatidylcholine acyltransferase 1, ethanolamine-phosphate phospho-lyase, and abhydrolase domain containing 4, N-acyl phospholipase B. These findings suggest a possible link between phospholipid metabolism and striatal axon degeneration. Conclusions In this study, we have uncovered the molecular mechanisms underlying the contribution of WDR45-deficiency to axonal degeneration, revealing intricate relationships between tubular ER dysfunction, phospholipid metabolism, BPAN and other neurodegenerative diseases. These findings significantly advance our understanding of the fundamental molecular mechanisms driving neurodegeneration and may provide a foundation for developing novel, mechanistically-based therapeutic interventions.
Collapse
Affiliation(s)
- Weidong Le
- The First Affiliated Hospital Of Dalian Medical University
| | - Panpan Wang
- First Affiliated Hospital of Dalian Medical University
| | | | - Jun Zhang
- First Affiliated Hospital of Dalian Medical University
| | - Huijia Yang
- First Affiliated Hospital of Dalian Medical University
| | - Yuting Yang
- First Affiliated Hospital of Dalian Medical University
| | - Kunhyok Kim
- First Affiliated Hospital of Dalian Medical University
| | - Song Li
- First Affiliated Hospital of Dalian Medical University
| | - Cong Liu
- Shanghai Institute of Organic Chemistry
| | | |
Collapse
|
32
|
Zhang KL, Li SM, Hou JY, Hong YH, Chen XX, Zhou CQ, Wu H, Zheng GH, Zeng CT, Wu HD, Fu JY, Wang T. Elabela, a Novel Peptide, Exerts Neuroprotective Effects Against Ischemic Stroke Through the APJ/miR-124-3p/CTDSP1/AKT Pathway. Cell Mol Neurobiol 2023:10.1007/s10571-023-01352-6. [PMID: 37106272 DOI: 10.1007/s10571-023-01352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Grants
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. 81070125, 81270213, 81670306 National Natural Science Foundation of China
- No. 2010B031600032, 2014A020211002 the Science and Technology Foundation in Guangdong Province
- No. 2017A030313503 the National Natural Science Foundation of Guangdong Province
- No. 201806020084 the Science and Technology Foundation in Guangzhou City
- No. 13ykzd16, 17ykjc18 the Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Kang-Long Zhang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Shuang-Mei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jing-Yu Hou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Ying-Hui Hong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xu-Xiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Chang-Qing Zhou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guang-Hui Zheng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chao-Tao Zeng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hai-Dong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jia-Ying Fu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
33
|
Chen M, Yan R, Luo J, Ning J, Zhou R, Ding L. The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons. Neurochem Res 2023:10.1007/s11064-023-03934-8. [PMID: 37097395 DOI: 10.1007/s11064-023-03934-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Neurons are highly dependent on mitochondrial ATP production and Ca2+ buffering. Neurons have unique compartmentalized anatomy and energy requirements, and each compartment requires continuously renewed mitochondria to maintain neuronal survival and activity. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key factor in the regulation of mitochondrial biogenesis. It is widely accepted that mitochondria are synthesized in the cell body and transported via axons to the distal end. However, axonal mitochondrial biogenesis is necessary to maintain axonal bioenergy supply and mitochondrial density due to limitations in mitochondrial axonal transport rate and mitochondrial protein lifespan. In addition, impaired mitochondrial biogenesis leading to inadequate energy supply and neuronal damage has been observed in neurological disorders. In this review, we focus on the sites where mitochondrial biogenesis occurs in neurons and the mechanisms by which it maintains axonal mitochondrial density. Finally, we summarize several neurological disorders in which mitochondrial biogenesis is affected.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
34
|
Huang J, Chen L, Yao ZM, Sun XR, Tong XH, Dong SY. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother 2023; 162:114671. [PMID: 37037094 DOI: 10.1016/j.biopha.2023.114671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. More than 80 % of strokes are ischemic, caused by an occlusion of cerebral arteries. Without question, restoration of blood supply as soon as possible is the first therapeutic strategy. Nonetheless paradoxically, reperfusion can further aggravate the injury through a series of reactions known as cerebral ischemia-reperfusion injury (CIRI). Mitochondria play a vital role in promoting nerve survival and neurological function recovery and mitochondrial dysfunction is considered one of the characteristics of CIRI. Neurons often die due to oxidative stress and an imbalance in energy metabolism following CIRI, and there is a strong association with mitochondrial dysfunction. Altered mitochondrial dynamics is the first reaction of mitochondrial stress. Mitochondrial dynamics refers to the maintenance of the integrity, distribution, and size of mitochondria as well as their ability to resist external stimuli through a continuous cycle of mitochondrial fission and fusion. Therefore, improving mitochondrial dynamics is a vital means of treating CIRI. This review discusses the relationship between mitochondria and CIRI and emphasizes improving mitochondrial dynamics as a potential therapeutic approach to improve the prognosis of CIRI.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China; Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China.
| |
Collapse
|
35
|
Kim HN, McCrea MR, Li S. Advances in molecular therapies for targeting pathophysiology in spinal cord injury. Expert Opin Ther Targets 2023; 27:171-187. [PMID: 37017093 PMCID: PMC10148912 DOI: 10.1080/14728222.2023.2194532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) affects 25,000-50,000 people around the world each year and there is no cure for SCI patients currently. The primary injury damages spinal cord tissues and secondary injury mechanisms, including ischemia, apoptosis, inflammation, and astrogliosis, further exacerbate the lesions to the spinal cord. Recently, researchers have designed various therapeutic approaches for SCI by targeting its major cellular or molecular pathophysiology. AREAS COVERED Some strategies have shown promise in repairing injured spinal cord for functional recoveries, such as administering neuroprotective reagents, targeting specific genes to promote robust axon regeneration of disconnected spinal fiber tracts, targeting epigenetic factors to enhance cell survival and neural repair, and facilitating neuronal relay pathways and neuroplasticity for restoration of function after SCI. This review focuses on the major advances in preclinical molecular therapies for SCI reported in recent years. EXPERT OPINION Recent progress in developing novel and effective repairing strategies for SCI is encouraging, but many challenges remain for future design of effective treatments, including developing highly effective neuroprotectants for early interventions, stimulating robust neuronal regeneration with functional synaptic reconnections among disconnected neurons, maximizing the recovery of lost neural functions with combination strategies, and translating the most promising therapies into human use.
Collapse
Affiliation(s)
- Ha Neui Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Madeline R. McCrea
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
36
|
Jiang C, Lu Y, Zhu R, Zong Y, Huang Y, Wang D, Da Z, Yu B, Shen L, Cao Q. Pyruvate dehydrogenase beta subunit (Pdhb) promotes peripheral axon regeneration by regulating energy supply and gene expression. Exp Neurol 2023; 363:114368. [PMID: 36863478 DOI: 10.1016/j.expneurol.2023.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Key metabolic enzymes not only regulate Glucose, lipid, amino acid metabolism to serve the cellular energy needs, but also modulate noncanonical or nonmetabolic signaling pathway such as gene expression, cell-cycle progression, DNA repair, apoptosis and cell proliferation in regulating the pathologic progression of disease. However, the role of glycometabolism in peripheral nerve axon regeneration is little known. In this study, we investigated the expression of Pyruvate dehydrogenase E1(PDH), a key enzyme linking glycolysis and the tricarboxylic acid (TCA) cycle, with qRT-PCR and found that pyruvate dehydrogenase beta subunit (Pdhb) is up-regulated at the early stage during peripheral nerve injury. The knockdown of Pdhb inhibits neurite outgrowth of primary DRG neurons in vitro and restrains axon regeneration of sciatic nerve after crush injury. Pdhb overexpression promoting axonal regeneration is reversed by knockdown of Monocarboxylate transporter 2(Mct2), a transporter involved in the transport and metabolism of lactate, indicating Pdhb promoting axon regeneration depends on lactate for energy supply. Given the nucleus-localization of Pdhb, further analysis revealed that Pdhb enhances the acetylation of H3K9 and affecting the expression of genes involved in arachidonic acid metabolism and Ras signaling pathway, such as Rsa-14-44 and Pla2g4a, thereby promoting axon regeneration. Collectively, our data indicates that Pdhb is a positive dual modulator of energy generation and gene expression in regulating peripheral axon regeneration.
Collapse
Affiliation(s)
- Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong 226001, China
| | - Ran Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuchen Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhanyun Da
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
37
|
Kim H, Saikia J, Monte K, Ha E, Romaus-Sanjurjo D, Sanchez J, Moore A, Hernaiz-Llorens M, Chavez-Martinez C, Agba C, Li H, Lusk D, Cervantes K, Zheng B. Probing regenerative heterogeneity of corticospinal neurons with scRNA-Seq. RESEARCH SQUARE 2023:rs.3.rs-2588274. [PMID: 36865182 PMCID: PMC9980198 DOI: 10.21203/rs.3.rs-2588274/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The corticospinal tract (CST) is clinically important for the recovery of motor functions after spinal cord injury. Despite substantial progress in understanding the biology of axon regeneration in the central nervous system (CNS), our ability to promote CST regeneration remains limited. Even with molecular interventions, only a small proportion of CST axons regenerate1. Here we investigate this heterogeneity in the regenerative ability of corticospinal neurons following PTEN and SOCS3 deletion with patch-based single cell RNA sequencing (scRNA-Seq)2,3, which enables deep sequencing of rare regenerating neurons. Bioinformatic analyses highlighted the importance of antioxidant response and mitochondrial biogenesis along with protein translation. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Applying Garnett4, a supervised classification method, to our dataset gave rise to a Regenerating Classifier (RC), which, when applied to published scRNA-Seq data, generates cell type- and developmental stage-appropriate classifications. While embryonic brain, adult dorsal root ganglion and serotonergic neurons are classified as Regenerators, most neurons from adult brain and spinal cord are classified as Non-regenerators. Adult CNS neurons partially revert to a regenerative state soon after injury, which is accelerated by molecular interventions. Our data indicate the existence of universal transcriptomic signatures underlying the regenerative abilities of vastly different neuronal populations, and further illustrate that deep sequencing of only hundreds of phenotypically identified CST neurons has the power to reveal new insights into their regenerative biology.
Collapse
Affiliation(s)
- Hugo Kim
- University of California San Diego
| | | | | | - Eunmi Ha
- University of California San Diego
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McElroy T, Zeidan RS, Rathor L, Han SM, Xiao R. The role of mitochondria in the recovery of neurons after injury. Neural Regen Res 2023; 18:317-318. [PMID: 35900413 PMCID: PMC9396508 DOI: 10.4103/1673-5374.343907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Taylor McElroy
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rola S. Zeidan
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laxmi Rathor
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Qiu X, Xu H, Wang K, Gao F, Xu X, He H. P-21 Activated Kinases in Liver Disorders. Cancers (Basel) 2023; 15:cancers15020551. [PMID: 36672500 PMCID: PMC9857091 DOI: 10.3390/cancers15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.
Collapse
Affiliation(s)
- Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Correspondence: (K.W.); (H.H.)
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia
- Correspondence: (K.W.); (H.H.)
| |
Collapse
|
40
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
41
|
Wen S, Zou ZR, Cheng S, Guo H, Hu HS, Zeng FZ, Mei XF. Ginsenoside Rb1 improves energy metabolism after spinal cord injury. Neural Regen Res 2022; 18:1332-1338. [PMID: 36453420 PMCID: PMC9838172 DOI: 10.4103/1673-5374.357915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases. Studies have shown that ginsenoside Rb1 has neurotrophic and neuroprotective effects. However, whether it influences energy metabolism after spinal cord injury remains unclear. In this study, we treated mouse and cell models of spinal cord injury with ginsenoside Rb1. We found that ginsenoside Rb1 remarkably inhibited neuronal oxidative stress, protected mitochondria, promoted neuronal metabolic reprogramming, increased glycolytic activity and ATP production, and promoted the survival of motor neurons in the anterior horn and the recovery of motor function in the hind limb. Because sirtuin 3 regulates glycolysis and oxidative stress, mouse and cell models of spinal cord injury were treated with the sirtuin 3 inhibitor 3-TYP. When Sirt3 expression was suppressed, we found that the therapeutic effects of ginsenoside Rb1 on spinal cord injury were remarkably inhibited. Therefore, ginsenoside Rb1 is considered a potential drug for the treatment of spinal cord injury, and its therapeutic effects are closely related to sirtuin 3.
Collapse
Affiliation(s)
- Shan Wen
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhi-Ru Zou
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China,Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shuai Cheng
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hui Guo
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Heng-Shuo Hu
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Fan-Zhuo Zeng
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xi-Fan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China,Correspondence to: Xi-Fan Mei, .
| |
Collapse
|
42
|
Huang N, Sheng ZH. Microfluidic devices as model platforms of CNS injury-ischemia to study axonal regeneration by regulating mitochondrial transport and bioenergetic metabolism. CELL REGENERATION 2022; 11:33. [PMID: 36184647 PMCID: PMC9527262 DOI: 10.1186/s13619-022-00138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
Central nervous system (CNS) neurons typically fail to regenerate their axons after injury leading to neurological impairment. Axonal regeneration is a highly energy-demanding cellular program that requires local mitochondria to supply most energy within injured axons. Recent emerging lines of evidence have started to reveal that injury-triggered acute mitochondrial damage and local energy crisis contribute to the intrinsic energetic restriction that accounts for axon regeneration failure in the CNS. Characterizing and reprogramming bioenergetic signaling and mitochondrial maintenance after axon injury-ischemia is fundamental for developing therapeutic strategies that can restore local energy metabolism and thus facilitate axon regeneration. Therefore, establishing reliable and reproducible neuronal model platforms is critical for assessing axonal energetic metabolism and regeneration capacity after injury-ischemia. In this focused methodology article, we discuss recent advances in applying cutting-edge microfluidic chamber devices in combination with state-of-the-art live-neuron imaging tools to monitor axonal regeneration, mitochondrial transport, bioenergetic metabolism, and local protein synthesis in response to injury-ischemic stress in mature CNS neurons.
Collapse
Affiliation(s)
- Ning Huang
- grid.94365.3d0000 0001 2297 5165Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706 USA ,grid.43169.390000 0001 0599 1243Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Zu-Hang Sheng
- grid.94365.3d0000 0001 2297 5165Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706 USA
| |
Collapse
|
43
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
44
|
Mao Z, Tian L, Liu J, Wu Q, Wang N, Wang G, Wang Y, Seto S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154111. [PMID: 35512628 DOI: 10.1016/j.phymed.2022.154111] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin. PURPOSE To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion. METHODS This research used the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model and oxygen-glucose deprivation and reperfusion (OGD/R) as in vitro model. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of LIG in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP) and activities of Na+-K+-ATPase were detected to reflect mitochondrial function. Moreover, transmission electron microscope (TEM) and fluorescence microscope were used to observe mitophagy and the western blot was performed to explore the changes in protein expression in PINK1/Parkin mediated mitophagy. Finally, exact mechanism between neuroprotection of LIG and mitophagy mediated by PINK1/Parkin was explored by cell transfection. RESULTS The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury. CONCLUSION LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liyu Tian
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Guangyun Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
45
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
46
|
Li Y, Yang L, Hu F, Xu J, Ye J, Liu S, Wang L, Zhuo M, Ran B, Zhang H, Ye J, Xiao J. Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25155-25172. [PMID: 35618676 DOI: 10.1021/acsami.2c04341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The repair of spinal cord injury (SCI) is still a tough clinical challenge and needs innovative therapies. Mitochondrial function is significantly compromised after SCI and has emerged as an important factor causing neuronal apoptosis and hindering functional recovery. In this study, umbilical cord mesenchymal stem cells (UCMSC), which are promising seed cells for nerve regeneration, and basic fibroblast growth factor (bFGF) that have been demonstrated to have a variety of effects on neural regeneration were jointly immobilized in extracellular matrix (ECM) and heparin-poloxamer (HP) to create a polymer bioactive system that brings more hope and possibility for the treatment of SCI. Our results in vitro and in vivo showed that the UCMSC-bFGF-ECM-HP thermosensitive hydrogel has good therapeutic effects, mainly in reducing apoptosis and improving the mitochondrial function. It showed promising utility for the functional recovery of impaired mitochondrial function by promoting mitochondrial fusion, reducing pathological mitochondrial fragmentation, increasing mitochondrial energy supply, and improving the metabolism of MDA, LDH, and ROS. In addition, we uncovered a distinct molecular mechanism underlying the protective effects associated with activating p21-activated kinase 1 (PAK1) and mitochondrial sirtuin 4 (SIRT4) by the UCMSC-bFGF-ECM-HP hydrogel. The expansion of new insights into the molecular relationships between PAK1 and SIRT4, which links the mitochondrial function in SCI, can lay the foundation for future applications and help to provide promising interventions of stem-cell-based biological scaffold therapies and potential therapeutic targets for the clinical formulation of SCI treatment strategies.
Collapse
Affiliation(s)
- Yi Li
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fei Hu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Xu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Shuhua Liu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Lifeng Wang
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Ming Zhuo
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Bing Ran
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Pain, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junming Ye
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
47
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
48
|
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021; 109:3456-3472.e8. [PMID: 34506725 PMCID: PMC8571020 DOI: 10.1016/j.neuron.2021.08.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Francesca LiCausi
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yan Li
- Proteomics Core Facility, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 1B-1014, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
49
|
Twiss JL, Kalinski AL, Sahoo PK, Costa ID, Giger RJ. Neurobiology: Resetting the axon's batteries. Curr Biol 2021; 31:R914-R917. [PMID: 34314722 PMCID: PMC10069667 DOI: 10.1016/j.cub.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal injury can cause mitochondrial damage, leading to reduced energy production, decreased Ca2+ storage capacity, and increased reactive oxygen species. A new study reveals a mechanism to trigger the axonal transport of previously anchored mitochondria and promote neuroprotection and axon regeneration by replacing damaged with functional mitochondria.
Collapse
Affiliation(s)
- Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208, USA.
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|