1
|
Boast AP, Wood JR, Cooper J, Bolstridge N, Perry GLW, Wilmshurst JM. DNA and spores from coprolites reveal that colourful truffle-like fungi endemic to New Zealand were consumed by extinct moa (Dinornithiformes). Biol Lett 2025; 21:20240440. [PMID: 39809323 PMCID: PMC11732427 DOI: 10.1098/rsbl.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM. As NZ lacks native land mammals (except bats), and sequestrate fungi are typically drab and mammal-dispersed, NZ's sequestrate fungi are hypothesized to be adapted for bird dispersal. However, there is little direct evidence for this hypothesis, as 41% of NZ's native land bird species became extinct since initial human settlement in the thirteenth century. Here, we report ancient DNA and spores from the inside of two coprolites of NZ's extinct, endemic upland moa (Megalapteryx didinus) that reveal consumption and likely dispersal of ECM fungi, including at least one colourful sequestrate species. Contemporary data from NZ show that birds rarely consume fungi and that the introduced mammals preferentially consume exotic fungi. NZ's endemic sequestrate fungi could therefore be dispersal limited compared with fungi that co-evolved with mammalian dispersers. NZ's fungal communities may thus be undergoing a gradual species turnover following avian mycovore extinction and the establishment of mammalian mycovores, potentially affecting forest resilience and facilitating invasion by exotic tree taxa.
Collapse
Affiliation(s)
| | - Jamie R. Wood
- School of Biological Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, South Australia5005, Australia
- Environment Institute, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Jerry Cooper
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - Nic Bolstridge
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - George L. W. Perry
- School of Environment, Faculty of Science, University of Auckland, Auckland1010, New Zealand
| | | |
Collapse
|
2
|
van der Merwe B, Rockefeller A, Kilian A, Clark C, Sethathi M, Moult T, Jacobs K. A description of two novel Psilocybe species from southern Africa and some notes on African traditional hallucinogenic mushroom use. Mycologia 2024; 116:821-834. [PMID: 38953774 DOI: 10.1080/00275514.2024.2363137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Two new Psilocybe species (Hymenogastraceae), P. ingeli and P. maluti, are described from southern Africa. Morphology and phylogeny were used to separate the two novel fungi from their closest relatives in the genus. Psilocybe ingeli was found fruiting on bovine manure-enriched grasslands in the Kwa-Zulu Natal Province of South Africa and differs from its closest relative P. keralensis and others in the internal transcribed spacer ITS1-5.8S-ITS2, partial 28S nuc rDNA, and translation elongation factor 1-alpha regions, distribution, and having larger basidiospores. Similarly, P. maluti was collected from the Free State Province of South Africa and observed in the Kingdom of Lesotho, growing on bovine manure. A secotioid pileus, geographic distribution, and differences in the same DNA regions distinguish P. maluti from its closest relative P. chuxiongensis. Furthermore, the spore dispersal and traditional, spiritualistic use of P. maluti are discussed here.
Collapse
MESH Headings
- Phylogeny
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/genetics
- Animals
- South Africa
- Psilocybe/genetics
- Cattle
- Sequence Analysis, DNA
- DNA, Ribosomal/genetics
- Spores, Fungal
- Africa, Southern
- Manure/microbiology
- RNA, Ribosomal, 28S/genetics
- Peptide Elongation Factor 1/genetics
- Fruiting Bodies, Fungal
- RNA, Ribosomal, 5.8S/genetics
- Agaricales/classification
- Agaricales/genetics
- Agaricales/isolation & purification
Collapse
Affiliation(s)
- B van der Merwe
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch 7600, South Africa
| | | | - A Kilian
- 22 Cannon Road, Kelderhof Country Estate, Somerset West 7310, South Africa
| | - C Clark
- Unit 2 Empire Park, 5 Gateway Close, Capricorn Business Park, Muizenberg 7945, South Africa
| | | | - T Moult
- P.O. Box 113, KwaZulu Natal, Seapark 4241, South Africa
| | - K Jacobs
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Li L, Wan S, Wang Y, Thongklang N, Yang M, Liu C, Luo Z, Li S. Three New Species of Tuber Discovered in Alpine Fir Forests in Yunnan, China. J Fungi (Basel) 2024; 10:453. [PMID: 39057338 PMCID: PMC11277902 DOI: 10.3390/jof10070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Three new species of Tuber, T. albicavum, T. laojunshanense, and T. umbilicicavatum belonging to the Puberulum phylogroup, are described based on specimens collected in alpine Abies forests at 3600-4000 m, Northwest Yunnan, China. T. albicavum is distinguished by its ascomata with a single chamber of 0.5-1.8 cm diameter, with an apical opening of 0.2-0.6 cm in diameter, and light golden-brown alveolate reticulate ascospores up to 30 μm in length; T. laojunshanense is characterized by having ascomata with a slightly tomentose surface, sometimes with a white navel, a relatively thick peridium, up to 280 µm, and yellow-brown spores with alveolate reticulate ornamentation, up to 34 µm in length; T. umbilicicavatum is characterized by smooth ascomata with a distinct white navel, a relatively thin peridium, up to 110 µm, and golden or golden-brown alveolate reticulate ascospores, up to 40 μm in length. The molecular analysis of the internal transcribed spacer region also supports that these three new species differ from previously described Tuber species.
Collapse
Affiliation(s)
- Lin Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (L.L.); (Z.L.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Shanping Wan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Yun Wang
- New Zealand Institute for Crop and Food Research Limited, Invermay Agricultural Centre, Private Bag, Mosgiel 50034, New Zealand;
| | - Naritsada Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mei Yang
- Panzhihua City Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China; (M.Y.); (C.L.)
| | - Chengyi Liu
- Panzhihua City Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China; (M.Y.); (C.L.)
| | - Zonglong Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (L.L.); (Z.L.)
| | - Shuhong Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
4
|
Shi W, Maqsood I, Liu K, Yu M, Si Y, Rong K. Community Diversity of Fungi Carried by Four Common Woodpeckers in Heilongjiang Province, China. J Fungi (Basel) 2024; 10:389. [PMID: 38921375 PMCID: PMC11204829 DOI: 10.3390/jof10060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Woodpeckers exhibit selectivity when choosing tree cavities for nest development in forest ecosystems, and fungi play a significant and important role in this ecological process. Therefore, there is a complex and intricate relationship between the various behaviors of woodpeckers and the occurrence of fungal species. Research into the complex bond between fungi and woodpeckers was undertaken to provide more information about this remarkable ecological relationship. Through the process of line transect sampling, woodpecker traces were searched for, and mist nets were set up to capture them. A total of 21 woodpeckers belonging to four species were captured. High-throughput sequencing of the ITS region was performed on fungal-conserved samples to enable an in-depth analysis of the fungal communities linked to the woodpeckers' nests. Members of Ascomycota were the most abundant in the samples, accounting for 91.96% of the total, demonstrating the importance of this group in the forest ecosystem of this station. The statistical results indicate significant differences in the fungal diversity carried by woodpeckers among the different groups. Species of Cladosporium were found to be the most prevalent of all the detected fungal genera, accounting for 49.3%. The top 15 most abundant genera were Cladosporium, Trichoderma, Beauveria, Epicococcum, Hypoxylon, Penicillium, Nigrospora, Aspergillus, Oidiodendron, Cercospora, Talaromyces, Phialemo-nium, Petriella, Cordyceps, and Sistotrema. The standard Bray-Curtis statistical technique was used in a hierarchical clustering analysis to compute inter-sample distances, allowing for the identification of patterns and correlations within the dataset. We discovered that in the grouped samples from woodpeckers, there were differences in the diversity of fungal communities carried by four woodpecker species, but the less dominant fungal species were still similar. The findings highlight the need to consider these diverse ecological linkages in woodpecker research and conservation efforts.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar Pakistan, Peshawar 25000, Pakistan
| | - Keying Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Meichen Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yuhui Si
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Wildlife Conservation Biology, National Forestry and Grassland Administration, Beijing 100013, China
| |
Collapse
|
5
|
Lofgren L, Nguyen NH, Kennedy P, Pérez-Pazos E, Fletcher J, Liao HL, Wang H, Zhang K, Ruytinx J, Smith AH, Ke YH, Cotter HVT, Engwall E, Hameed KM, Vilgalys R, Branco S. Suillus: an emerging model for the study of ectomycorrhizal ecology and evolution. THE NEW PHYTOLOGIST 2024; 242:1448-1475. [PMID: 38581203 PMCID: PMC11045321 DOI: 10.1111/nph.19700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.
Collapse
Affiliation(s)
- Lotus Lofgren
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Māno, 3190 Maile Way, Honolulu, HI 96822, USA
| | - Peter Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Eduardo Pérez-Pazos
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
| | - Joske Ruytinx
- Research Group of Microbiology and Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium, USA
| | - Alexander H. Smith
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Yi-Hong Ke
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - H. Van T. Cotter
- University of North Carolina at Chapel Hill Herbarium, 120 South Road, Chapel Hill, NC 27599, USA
| | - Eiona Engwall
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA
| | - Khalid M. Hameed
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| |
Collapse
|
6
|
Mujic AB, Elliott TF, Stephens RB, Trappe JM, Kristol R, Sublett D, Smith ME. Rare but widespread: A systematic revision of the truffle-forming genera Destuntzia and Kjeldsenia and the formation of a new genus, Hosakaea. Mycologia 2024; 116:148-169. [PMID: 38064355 DOI: 10.1080/00275514.2023.2259786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/13/2023] [Indexed: 01/23/2024]
Abstract
Here we present the results of taxonomic and systematic study of the rare truffle-forming genera Destuntzia and Kjeldsenia. Truffle-forming fungi are difficult to study due to their reduced morphological features and their cryptic, hypogeous fruiting habits. The rare occurrence of Destuntzia and Kjeldsenia further compounds these difficulties due to the lack of adequate material for study. Recent forays in North Carolina and Tennessee recovered new specimens of another rarely collected fungus, Octaviania purpurea. Morphological and phylogenetic analysis revealed that Octaviania purpurea is a member of the genus Destuntzia, and this led us to reevaluate the taxonomic status and systematic relationships of other Destuntzia species. We performed a multilocus phylogenetic analysis of Destuntzia specimens deposited in public fungaria, including all available type material, and environmental sequences from animal scat and soil. Our analyses indicate that Destuntzia is a member of the family Claustulaceae within the order Phallales and is a close relative of Kjeldsenia. Results of our phylogenetic analysis infer that three species originally described in the genus Destuntzia are members of the genus Kjeldsenia. We propose three new combinations in Kjeldsenia to accommodate these species as well as a new combination in Destuntzia to accommodate Octaviania purpurea. We also describe a new genus in Claustulaceae, Hosakaea, to accommodate a closely affiliated species, Octaviania violascens. Finally, we transfer the genus Destunzia into the family Claustulaceae and emend the description of the family. The newly proposed combinations in Destuntzia and Kjeldsenia significantly expand the known geographic ranges of both genera. The data from metabarcode analysis of scat and soil also reveal several additional undescribed species that expand these ranges well beyond those suggested by basidiomata collections. Systematic placement of Destuntzia in the saprotrophic order Phallales suggests that this genus is not ectomycorrhizal, and the ecological implications of this systematic revision are discussed.
Collapse
Affiliation(s)
- Alija B Mujic
- Department of Biology, California State University, Fresno, California 93740
| | - Todd F Elliott
- Ecosystem Management, University of New England, Armidale, New South Wales 2351, Australia
| | - Ryan B Stephens
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - James M Trappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Rebecca Kristol
- Department of Plant Pathology, University of Florida, Fifield Hall, Gainesville, Florida 32611
| | - Danielle Sublett
- Department of Biology, California State University, Fresno, California 93740
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Fifield Hall, Gainesville, Florida 32611
| |
Collapse
|
7
|
Čejka T, Trnka M, Büntgen U. Sustainable cultivation of the white truffle (Tuber magnatum) requires ecological understanding. MYCORRHIZA 2023; 33:291-302. [PMID: 37462722 PMCID: PMC10752849 DOI: 10.1007/s00572-023-01120-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/29/2023] [Indexed: 12/29/2023]
Abstract
The white truffle (Tuber magnatum Picco.; WT) is the most expensive and arguably also the most delicious species within the genus Tuber. Due to its hidden belowground life cycle, complex host symbiosis, and yet unknown distribution, cultivation of the enigmatic species has only recently been achieved at some plantations in France. A sustainable production of WTs under future climate change, however, requires a better ecological understanding of the species' natural occurrence. Here, we combine information from truffle hunters with a literature review to assess the climatic, edaphic, geographic, and symbiotic characteristics of 231 reported WT sites in southeast Europe. Our meta-study shows that 75% of the WT sites are located outside the species' most famous harvest region, the Piedmont in northern Italy. Spanning a wide geographic range from ~ 37° N in Sicily to ~ 47° N in Hungary, and elevations between sea level in the north and 1000 m asl in the south, all WT sites are characterised by mean winter temperatures > 0.4 °C and summer precipitation totals of ~ 50 mm. Often formed during past flood or landslide events, current soil conditions of the WT sites exhibit pH levels between 6.4 and 8.7, high macroporosity, and a cation exchange capacity of ~ 17 meq/100 g. At least 26 potential host species from 12 genera were reported at the WT sites, with Populus alba and Quercus cerris accounting for 23.5% of all plant species. We expect our findings to contribute to a sustainable WT industry under changing environmental and economic conditions.
Collapse
Affiliation(s)
- Tomáš Čejka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic.
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Miroslav Trnka
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Ulf Büntgen
- Department of Climate Change Impacts On Agroecosystems, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4, 603 00, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
| |
Collapse
|
8
|
Ishikawa A, Nara K. Primary succession of ectomycorrhizal fungi associated with Alnus sieboldiana on Izu-Oshima Island, Japan. MYCORRHIZA 2023:10.1007/s00572-023-01112-w. [PMID: 37233830 DOI: 10.1007/s00572-023-01112-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The primary succession of ectomycorrhizal (ECM) fungi has been well described for Pinus and Salix, but the succession for other pioneer hosts is almost unknown. Here, we investigated ECM fungal communities of Alnus sieboldiana at different host growth stages in a primary successional volcanic site on Izu-Oshima Island, Japan. ECM root tips were collected from 120 host individuals, encompassing seedling, sapling, and mature tree stages. The taxonomic identity of the ECM fungi was determined based on rDNA internal transcribed spacer region sequences. Nine molecular taxonomic units were detected from a total of 807 root tips. The initial ECM fungal community on the pioneer seedlings was composed of only three species, where an undescribed Alpova species (Alpova sp.) was exclusively frequent. With host growth, other ECM fungal species were added to the communities, while the initial colonizers remained even at mature tree stages. Thus, the ECM fungal composition significantly changed along host growth stages and showed the nested community structure. Although most of the ECM fungi confirmed in this study had a broad Holarctic geographical distribution, the Alpova sp. had no previous records in other regions. These results suggest that a locally evolved Alpova sp. plays an essential role in the initial seedling establishment of A. sieboldiana at early successional volcanic sites.
Collapse
Affiliation(s)
- Akira Ishikawa
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
9
|
de la Fuente JI, García-Jiménez J, Raymundo T, Sánchez-Flores M, Valenzuela R, Guevara-Guerrero G, Pérez-Ovando EC, Martínez-González CR. Elaphomyces castilloi (Elaphomycetaceae, Ascomycota) and Entoloma secotioides (Entolomataceae, Basidiomycota), two new sequestrate fungi from tropical montane cloud forest from south Mexico. MycoKeys 2023; 96:127-142. [DOI: 10.3897/mycokeys.96.98320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Two new species of sequestrate fungi are described from south Mexico based on morphological and molecular evidences. Here we describe Elaphomyces castilloi characterized by the yellowish mycelial mat, dull blue gleba and ascospores of 9.7–11.5 µm; Entoloma secotioides is characterized by the secotioid basidiomata, sulcate, pale cream pileus, and basidiospores of 7–13 × 5–9 µm. Both species grow in montane cloud forest under Quercus sp. in the state of Chiapas, Mexico. Descriptions, photographs, and multilocus phylogeny for both species are presented.
Collapse
|
10
|
Norberg A, Susi H, Sallinen S, Baran P, Clark NJ, Laine AL. Direct and indirect viral associations predict coexistence in wild plant virus communities. Curr Biol 2023; 33:1665-1676.e4. [PMID: 37019108 DOI: 10.1016/j.cub.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
Viruses are a vastly underestimated component of biodiversity that occur as diverse communities across hierarchical scales from the landscape level to individual hosts. The integration of community ecology with disease biology is a powerful, novel approach that can yield unprecedented insights into the abiotic and biotic drivers of pathogen community assembly. Here, we sampled wild plant populations to characterize and analyze the diversity and co-occurrence structure of within-host virus communities and their predictors. Our results show that these virus communities are characterized by diverse, non-random coinfections. Using a novel graphical network modeling framework, we demonstrate how environmental heterogeneity influences the network of virus taxa and how the virus co-occurrence patterns can be attributed to non-random, direct statistical virus-virus associations. Moreover, we show that environmental heterogeneity changed virus association networks, especially through their indirect effects. Our results highlight a previously underestimated mechanism of how environmental variability can influence disease risks by changing associations between viruses that are conditional on their environment.
Collapse
Affiliation(s)
- Anna Norberg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7034 Trondheim, Norway.
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Pezhman Baran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Nicholas J Clark
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, QL 4343, Australia
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| |
Collapse
|
11
|
Factors in the Distribution of Mycorrhizal and Soil Fungi. DIVERSITY 2022. [DOI: 10.3390/d14121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil fungi are crucial microorganisms in the functioning of ecosystems. They shape the soil properties, facilitate nutrient circulation, and assist with plant growth. However, their biogeography and distribution studies are limited compared to other groups of organisms. This review aims to provide an overview of the main factors shaping the spatial distribution of soil fungi (with a special focus on mycorrhizal fungi). The review also tries to identify the field frontier where further studies are needed. The main drivers of soil fungal distribution were classified and reviewed into three groups: soil properties, plant interactions, and dispersal vectors. It was apparent that ectomycorrhizal and arbuscular fungi are relatively overrepresented in the body of research, while the other mycorrhiza types and endophytes were grossly omitted. Notwithstanding, soil pH and the share of ectomycorrhizal plants in the plant coverage were repeatedly reported as strong predictors of mycorrhizal fungal distribution. Dispersal potential and vector preferences show more variation among fungi, especially when considering long-distance dispersal. Additionally, special attention was given to the applications of the island biogeography theory to soil fungal assemblages. This theory proves to be a very efficient framework for analyzing and understanding not only the soil fungal communities of real islands but even more effective islands, i.e., isolated habitats, such as patches of trees discontinuous from more enormous forests.
Collapse
|
12
|
Thomas PW, Thomas HW. Mycorrhizal fungi and invertebrates: Impacts on Tuber melanosporum ascospore dispersal and lifecycle by isopod mycophagy. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Gaston KJ. Birds and ecosystem services. Curr Biol 2022; 32:R1163-R1166. [DOI: 10.1016/j.cub.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Hackel J, Henkel TW, Moreau P, De Crop E, Verbeken A, Sà M, Buyck B, Neves M, Vasco‐Palacios A, Wartchow F, Schimann H, Carriconde F, Garnica S, Courtecuisse R, Gardes M, Manzi S, Louisanna E, Roy M. Biogeographic history of a large clade of ectomycorrhizal fungi, the Russulaceae, in the Neotropics and adjacent regions. THE NEW PHYTOLOGIST 2022; 236:698-713. [PMID: 35811430 PMCID: PMC9795906 DOI: 10.1111/nph.18365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.
Collapse
Affiliation(s)
- Jan Hackel
- Royal Botanic Gardens, KewRichmond‐upon‐ThamesTW9 3AEUK
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Terry W. Henkel
- Department of Biological SciencesCalifornia State Polytechnic University, HumboldtArcataCA95521USA
| | - Pierre‐Arthur Moreau
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Eske De Crop
- Department of BiologyGhent University9000GentBelgium
| | | | - Mariana Sà
- Centro Universitário de João PessoaPB 58053‐000João PessoaBrazil
| | - Bart Buyck
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRSSorbonne Université, EPHE, Université des Antilles75231Paris cedex 05France
| | - Maria‐Alice Neves
- Departamento de BotânicaUniversidade Federal de Santa CatarinaSC 88040‐900FlorianópolisBrazil
| | - Aída Vasco‐Palacios
- Microbiología Ambiental–School of Microbiology, Laboratory of Taxonomy and Ecology of Fungi–Institute of BiologyUniversity of Antioquia050010MedellínColombia
| | - Felipe Wartchow
- Departamento de Sistemática e EcologiaUniversidade Federal da ParaíbaPB 58051‐970João PessoaBrazil
| | - Heidy Schimann
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Fabian Carriconde
- Institut Agronomique néo‐Calédonien (IAC), Equipe Sol & Végétations (SolVeg)BP1823998848NouméaNew Caledonia
| | - Sigisfredo Garnica
- Instituto de Bioquímica y MicrobiologíaUniversidad Austral de Chile5049000ValdiviaChile
| | - Régis Courtecuisse
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Monique Gardes
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Sophie Manzi
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Eliane Louisanna
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Mélanie Roy
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
- Instituto Franco‐Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS‐CONICET‐UBA‐IRD)Universidad de Buenos AiresC1428EGACiudad Autonoma de Buenos AiresArgentina
| |
Collapse
|
15
|
Elliott T, Truong C, Jackson S, Zúñiga C, Trappe J, Vernes K. Mammalian mycophagy: A global review of ecosystem interactions between mammals and fungi. Fungal Syst Evol 2022; 9:99-159. [PMID: 36072820 PMCID: PMC9402283 DOI: 10.3114/fuse.2022.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/02/2022] [Indexed: 11/07/2022] Open
Abstract
The consumption of fungi by animals is a significant trophic interaction in most terrestrial ecosystems, yet the role mammals play in these associations has been incompletely studied. In this review, we compile 1 154 references published over the last 146 years and provide the first comprehensive global review of mammal species known to eat fungi (508 species in 15 orders). We review experimental studies that found viable fungal inoculum in the scats of at least 40 mammal species, including spores from at least 58 mycorrhizal fungal species that remained viable after ingestion by mammals. We provide a summary of mammal behaviours relating to the consumption of fungi, the nutritional importance of fungi for mammals, and the role of mammals in fungal spore dispersal. We also provide evidence to suggest that the morphological evolution of sequestrate fungal sporocarps (fruiting bodies) has likely been driven in part by the dispersal advantages provided by mammals. Finally, we demonstrate how these interconnected associations are widespread globally and have far-reaching ecological implications for mammals, fungi and associated plants in most terrestrial ecosystems. Citation: Elliott TF, Truong C, Jackson S, Zúñiga CL, Trappe JM, Vernes K (2022). Mammalian mycophagy: a global review of ecosystem interactions between mammals and fungi. Fungal Systematics and Evolution 9: 99-159. doi: 10.3114/fuse.2022.09.07.
Collapse
Affiliation(s)
- T.F. Elliott
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - C. Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - S.M. Jackson
- Australian Museum Research Institute, Australian Museum, 1 William St., Sydney, NSW 2010, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - C.L. Zúñiga
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - J.M. Trappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - K. Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
16
|
Jusino MA, Hagemeyer ND, Banik MT, Palmer JM, Lindner DL, Smith ME, Koenig WD, Walters EL. Fungal communities associated with acorn woodpeckers and their excavations. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
A Culture-Based Study of Micromycetes Isolated from the Urban Nests of Grey Heron (Ardea cinerea) in SW Poland. Animals (Basel) 2022; 12:ani12060676. [PMID: 35327074 PMCID: PMC8944552 DOI: 10.3390/ani12060676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fungi inhabiting bird nests may pose a serious threat to living organisms. Therefore, the main goal of the study was to identify cultivable fungi in the nest of grey heron (Ardea cinerea) located near the city centre of Wrocław (Poland). Overall, 10 different fungal species were obtained which were both cosmopolitan and potentially hazardous to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The damp chamber allowed isolation of Aspergillus fumigatus, Penicillium coprophilum, and P. griseofulvum as directly related to the occurrence of visible fungal growth on plant fragments of grey heron nests. Abstract There are many positive relationships between micromycetes and birds: They can spread fungal spores, and fungi facilitate cavity woodpecker excavation by preparing and modifying excavation sites. In turn, bird nests are mainly a source of potentially zoopathogenic fungi. The Wrocław city centre hosts the biggest grey heron breeding colony in Poland with at least 240 breeding birds pairs. To assess the possible public health risks associated with bird nests, the goal of the present study was to identify cultivable fungi present in the nests of grey herons (Ardea cinerea) in Wrocław. Additionally, attempts were made to determine whether the obtained species of fungi may pose a potential threat to animal health. Fungi were cultured at 23 and 37 ± 0.5 °C, and identified based on phenotypic and genotypic traits. Moreover, during routine inspection, visible fungal growth in some of the nests was found. Overall, 10 different fungal species were obtained in the study (Alternaria alternata, Aspergillus fumigatus, Botryotrichum piluliferum, Cladosporium cladosporioides, Epicoccum layuense, Mucor circinelloides, M.hiemalis, Penicillium atramentosum, P.coprophilum, and P.griseofulvum). They are both cosmopolitan species and a source of potential threat to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth incubated at 23 °C, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The species such as A. fumigatus, P. coprophilum, and P.griseofulvum can be directly related to the occurrence of visible fungal growth on plant fragments of grey heron’s nests.
Collapse
|
18
|
Fernández N, Fontenla S, Fioroni F, Soto-Mancilla M, Carron A, Moguilevsky D, Marchelli P, Marín C, Mestre MC. Mycorrhizas in Nothofagus From South America: What Do We Know From Nursery and Field Experiences? Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Money NP. Fungal ecology: Truffle-guzzling birds. Curr Biol 2021; 31:R1591-R1593. [PMID: 34932972 DOI: 10.1016/j.cub.2021.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study of truffle fungi in Patagonia reveals the importance of native bird species in spore dispersal. This has wide implications for the study of animal-fungal symbioses in the Southern Hemisphere.
Collapse
Affiliation(s)
- Nicholas P Money
- Western Program, Miami University, Oxford, OH 45056, USA; Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
20
|
Surridge C. For the birds. NATURE PLANTS 2021; 7:1526. [PMID: 34907306 DOI: 10.1038/s41477-021-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|