1
|
Chicas SD, Mizoue N, Ota T, Kyaw KTW, Valdez MC, Nielsen JØ, Chen CF. Cacao agroforestry adoption by smallholder farmers and forest loss prevention in the Maya Golden Landscape, Belize. AMBIO 2025; 54:882-898. [PMID: 39729259 PMCID: PMC11965070 DOI: 10.1007/s13280-024-02106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024]
Abstract
Unsustainable land use practices have led to increased forest loss rates. Implementing cacao agroforestry can reduce forest loss by preventing the clear-cutting of forests for monoculture plantations. However, research is needed on its effectiveness in preventing forest loss and the factors influencing its adoption between full-time and part-time farmers. Here, we address these gaps in the Maya Golden Landscape, Belize, by using Mahalanobis distance matching to compare forest loss in cacao agroforestry concession, forest reserve, and de-reserve areas and analyzing social data of 187 households. The results suggest that the odds of forest loss in the cacao agroforestry concession area are approximately 16% higher than in the Maya Mountain North Forest Reserve. In comparison, they are 85% lower than in the de-reserved areas. We also report differences in the factors influencing agroforestry adoption between part-time and full-time farmers. Successful cacao agroforestry adoption requires considering the differences that exist between farmers' categories.
Collapse
Affiliation(s)
- Santos Daniel Chicas
- Department of Agro-Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan.
| | - Nobuya Mizoue
- Department of Agro-Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Tetsuji Ota
- Department of Agro-Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Khin Thu Wint Kyaw
- Department of Agro-Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Miguel Conrado Valdez
- Center for Space and Remote Sensing Research, Zhongli District, National Central University, Taoyuan City, 32001, Taiwan
| | - Jonas Østergaard Nielsen
- IRI-THESys and Geography Department, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
| | - Chi-Farn Chen
- Center for Space and Remote Sensing Research, Zhongli District, National Central University, Taoyuan City, 32001, Taiwan
| |
Collapse
|
2
|
Gupta J, Bai X, Liverman DM, Rockström J, Qin D, Stewart-Koster B, Rocha JC, Jacobson L, Abrams JF, Andersen LS, Armstrong McKay DI, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi KL, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett E, Bjørn A, Bringezu S, Broadgate WJ, Bulkeley H, Crona B, Green PA, Hoff H, Huang L, Hurlbert M, Inoue CYA, Kılkış Ş, Lade SJ, Liu J, Nadeem I, Ndehedehe C, Okereke C, Otto IM, Pedde S, Pereira L, Schulte-Uebbing L, Tàbara JD, de Vries W, Whiteman G, Xiao C, Xu X, Zafra-Calvo N, Zhang X, Fezzigna P, Gentile G. A just world on a safe planet: a Lancet Planetary Health-Earth Commission report on Earth-system boundaries, translations, and transformations. Lancet Planet Health 2024; 8:e813-e873. [PMID: 39276783 DOI: 10.1016/s2542-5196(24)00042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/09/2023] [Accepted: 03/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Joyeeta Gupta
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands; IHE-Delft Institute for Water Education, Delft, Netherlands
| | - Xuemei Bai
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Diana M Liverman
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ben Stewart-Koster
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Juan C Rocha
- Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | | | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Lauren S Andersen
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - David I Armstrong McKay
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Systems Institute, University of Exeter, Exeter, UK; Georesilience Analytics, Leatherhead, UK
| | - Govindasamy Bala
- Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Daniel Ciobanu
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice DeClerck
- EAT, Oslo, Norway; Alliance of Bioversity and CIAT, CGIAR, Montpellier, France
| | - Kristie L Ebi
- Center for Health & the Global Environment, University of Washington, Seattle, WA, USA
| | - Lauren Gifford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Christopher Gordon
- Institute for Environment and Sanitation Studies, University of Ghana, Legon, Ghana
| | - Syezlin Hasan
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Norichika Kanie
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | - Sina Loriani
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Awaz Mohamed
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | | | - David Obura
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | | | - Klaudia Prodani
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Crelis Rammelt
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Joeri Scholtens
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Thejna Tharammal
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, India
| | - Detlef van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands
| | - Peter H Verburg
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricarda Winkelmann
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Caroline Zimm
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Elena Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Anders Bjørn
- Centre for Absolute Sustainability and Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bringezu
- Center for Environmental Systems Research, University of Kassel, Kassel, Germany
| | | | - Harriet Bulkeley
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; Department of Geography, Durham University, Durham, UK
| | - Beatrice Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Economic Dynamics and the Biosphere Programme, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Pamela A Green
- Advanced Science Research Center at the Graduate Center, City University of New York, NY, USA
| | - Holger Hoff
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Lei Huang
- National Climate Center, Beijing, China
| | - Margot Hurlbert
- Johnson-Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Cristina Y A Inoue
- Center for Global Studies, Institute of International Relations, University of Brasília, Brasília, Brazil; Institute for Management Research, Radboud University, Nijmegen, Netherlands
| | - Şiir Kılkış
- Scientific and Technological Research Council of Turkey, Ankara, Türkiye
| | - Steven J Lade
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia; Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Imran Nadeem
- Institute of Meteorology and Climatology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Christopher Ndehedehe
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia; School of Environment & Science, Griffith University, Nathan, QLD, Australia
| | | | - Ilona M Otto
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Simona Pedde
- Future Earth Secretariat, Stockholm, Sweden; Soil raphy and Landscape Group, Wageningen University & Research, Wageningen, Netherlands
| | - Laura Pereira
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Lena Schulte-Uebbing
- PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands; Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | - J David Tàbara
- Autonomous University of Barcelona, Barcelona, Spain; Global Climate Forum, Berlin, Germany
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Cunde Xiao
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Xinwu Xu
- China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Noelia Zafra-Calvo
- Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Biscay, Spain
| | - Xin Zhang
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Paola Fezzigna
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Giuliana Gentile
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Chen X, Tian T, Pan H, Jin Y, Zhang X, Yang B, Zhang L. Establishing a protected area network in Xinlong with other effective area-based conservation measures. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14297. [PMID: 38752477 DOI: 10.1111/cobi.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024]
Abstract
Protected areas (PAs) are pivotal to biodiversity conservation, yet their efficacy is compromised by insufficient funding and management. So-called other effective area-based conservation measures (OECMs) present a paradigm shift and address PA limitations. Such measures can expand conservation areas, enhance connectivity, and improve the existing system. To assess the conservation status of biodiversity in Tibetan cultural areas in China, we investigated the spatial distribution of wildlife vulnerable to human disturbance (large- and medium-sized mammals and terrestrial birds) in Xinlong, a traditional Tibetan cultural area. In particular, we compared a PA (Xionglongxi Nature Reserve) and OECMs targeting species conservation. We also investigated the relationship of wildlife with human temporal and spatial activities. The OECMs complemented areas not covered by PA, especially in rich understory biodiversity regions. More species in OECMs tolerated human presence than species in the PA. Existing biodiversity reserves failed to cover areas of high conservation value in Tibet and offered limited protection capacity. Expanding PAs and identifying OECMs improved Xinlong's system by covering most biodiversity hotspots. Building on the tradition of wildlife conservation in Tibet, harnessing OECMs may be an effective means of augmenting biodiversity conservation capacity. We recommend further evaluation of OECMs effectiveness and coverage in Tibetan area as a way to enhance the current PA system.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Tengteng Tian
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Han Pan
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, China
| | - Yuyi Jin
- Chengdu Aisiyi Ecology Conservation Center, Chengdu, China
| | - Xiaodian Zhang
- Chengdu Aisiyi Ecology Conservation Center, Chengdu, China
| | - Biao Yang
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, China
- College of Life Science, China West Normal University, Nanchong, China
| | - Li Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Yuan R, Zhang N, Zhang Q. The impact of habitat loss and fragmentation on biodiversity in global protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173004. [PMID: 38710390 DOI: 10.1016/j.scitotenv.2024.173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Protected areas (PAs) serve as effective means for biodiversity conservation but face threats from habitat loss and fragmentation. Current research on the impact of habitat loss or habitat fragmentation on biodiversity in PAs mostly focuses on individual PA or regional scales. At the global scale, the extent of habitat loss and fragmentation in PAs and their effects on biodiversity remains unclear. Therefore, we investigated the degree of habitat loss and fragmentation in global PAs from 2000 to 2020, analyzed the impact of habitat loss and fragmentation on biodiversity in PAs, identified hotspot PAs of severe habitat loss or fragmentation, and highlighted critically endangered species within these PAs. Our study reveals that, between 2000 and 2020, 19 % of global PAs experienced habitat loss, and 34 % experienced habitat fragmentation, with large PAs and South American tropical PAs exhibiting the most severe levels of habitat loss and fragmentation. The impact of habitat loss and fragmentation on biodiversity was most significant in small PAs and African tropical PAs. There are 10 global hotspot PAs of habitat loss or fragmentation, posing a serious threat to the survival of endangered species within PAs. Biodiversity conservation remains a prominent research focus globally, and the issues of habitat loss and fragmentation in PAs may impact the achievement of the COP15 biodiversity conservation goals. Therefore, this study aims to provide data support and scientific guidance for the management and development of global PAs.
Collapse
Affiliation(s)
- Rongyan Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ning Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China.
| |
Collapse
|
5
|
Simkins AT, Donald PF, Beresford AE, Butchart SHM, Fa JE, Fernández-Llamazares AO, Garnett ST, Buchanan GM. Rates of tree cover loss in key biodiversity areas on Indigenous Peoples' lands. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14195. [PMID: 37811727 DOI: 10.1111/cobi.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Indigenous Peoples' lands (IPL) cover at least 38 million km2 (28.1%) of Earth's terrestrial surface. These lands can be important for biodiversity conservation. Around 20.7% of IPL intersect areas protected by government (PAs). Many sites of importance for biodiversity within IPL could make a substantial but hitherto unquantified contribution to global site-based conservation targets. Key Biodiversity Areas (KBAs) represent the largest global network of systematically identified sites of high importance for biodiversity. We assessed the effectiveness of IPL in slowing biodiversity loss inside and outside PAs by quantifying tree cover loss from 2000 to 2019 in KBAs at international and national levels and comparing it with losses at equivalent sites outside mapped IPL. Based on a matched sample of 1-km2 cells in KBAs inside and outside mapped IPL, tree cover loss in KBAs outside PAs was lower inside IPL than outside IPL. By contrast, tree cover loss in KBAs inside PAs was lower outside IPL than inside IPL (although the difference was far smaller). National rates of tree cover loss in KBAs varied greatly in relation to their IPL and PA status. In one half of the 44 countries we examined individually, there was no significant difference in the rate of tree cover loss in KBAs inside and outside mapped IPL. The reasons for this intercountry variation could illuminate the importance of IPL in meeting the Convention on Biological Diversity's ambition of conserving 30% of land by 2030. Critical to this will be coordinated action by governments to strengthen and enforce Indigenous Peoples' rights, secure their collective systems of tenure and governance, and recognize their aspirations for their lands and futures.
Collapse
Affiliation(s)
- Ashley Thomas Simkins
- BirdLife International, Cambridge, UK
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul F Donald
- BirdLife International, Cambridge, UK
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Stuart H M Butchart
- BirdLife International, Cambridge, UK
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Julia E Fa
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor, Indonesia
| | | | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | | |
Collapse
|
6
|
Fletcher C, Ripple WJ, Newsome T, Barnard P, Beamer K, Behl A, Bowen J, Cooney M, Crist E, Field C, Hiser K, Karl DM, King DA, Mann ME, McGregor DP, Mora C, Oreskes N, Wilson M. Earth at risk: An urgent call to end the age of destruction and forge a just and sustainable future. PNAS NEXUS 2024; 3:pgae106. [PMID: 38566756 PMCID: PMC10986754 DOI: 10.1093/pnasnexus/pgae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human development has ushered in an era of converging crises: climate change, ecological destruction, disease, pollution, and socioeconomic inequality. This review synthesizes the breadth of these interwoven emergencies and underscores the urgent need for comprehensive, integrated action. Propelled by imperialism, extractive capitalism, and a surging population, we are speeding past Earth's material limits, destroying critical ecosystems, and triggering irreversible changes in biophysical systems that underpin the Holocene climatic stability which fostered human civilization. The consequences of these actions are disproportionately borne by vulnerable populations, further entrenching global inequities. Marine and terrestrial biomes face critical tipping points, while escalating challenges to food and water access foreshadow a bleak outlook for global security. Against this backdrop of Earth at risk, we call for a global response centered on urgent decarbonization, fostering reciprocity with nature, and implementing regenerative practices in natural resource management. We call for the elimination of detrimental subsidies, promotion of equitable human development, and transformative financial support for lower income nations. A critical paradigm shift must occur that replaces exploitative, wealth-oriented capitalism with an economic model that prioritizes sustainability, resilience, and justice. We advocate a global cultural shift that elevates kinship with nature and communal well-being, underpinned by the recognition of Earth's finite resources and the interconnectedness of its inhabitants. The imperative is clear: to navigate away from this precipice, we must collectively harness political will, economic resources, and societal values to steer toward a future where human progress does not come at the cost of ecological integrity and social equity.
Collapse
Affiliation(s)
- Charles Fletcher
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Thomas Newsome
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Phoebe Barnard
- Center for Environmental Politics and School of Interdisciplinary Arts and Sciences, University of Washington, Seattle, WA 98195, USA
- African Climate and Development Initiative and FitzPatrick Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Kamanamaikalani Beamer
- Hui ‘Āina Momona Program, Richardson School of Law, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
- Hawai‘inuiākea School of Hawaiian Knowledge, Kamakakūokalani Center for Hawaiian Studies, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Aishwarya Behl
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Jay Bowen
- Institute of American Indian Arts, Santa Fe, NM 87508, USA
- Upper Skagit Tribe, Sedro Woolley, WA 98284, USA
| | - Michael Cooney
- School of Ocean and Earth Science and Technology, Hawai‘i Natural Energy Institute, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Eileen Crist
- Department of Science Technology and Society, Virginia Tech, Blacksburg, VA 24060, USA
| | - Christopher Field
- Doerr School for Sustainability, Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Krista Hiser
- Department of Languages, Linguistics, and Literature, Kapi‘olani Community College, Honolulu, HI 96816, USA
- Global Council for Science and the Environment, Washington, DC 20006, USA
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, Honolulu, HI 96822, USA
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - David A King
- Department of Chemistry, University of Cambridge, Cambridge CB2 1DQ, UK
| | - Michael E Mann
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davianna P McGregor
- Department of Ethnic Studies, Center for Oral History, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Camilo Mora
- Department of Geography and Environment, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Naomi Oreskes
- Department of the History of Science, Harvard University, Cambridge, MA 02138, USA
| | - Michael Wilson
- Associate Justice, Hawaii Supreme Court (retired), Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Garber PA, Estrada A, Klain V, Bicca-Marques JC. An urgent call-to-action to protect the nonhuman primates and Indigenous Peoples of the Brazilian Amazon. Am J Primatol 2024; 86:e23523. [PMID: 37221905 DOI: 10.1002/ajp.23523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Primates are facing an impending extinction crisis. Here, we examine the set of conservation challenges faced by the 100 primate species that inhabit the Brazilian Amazon, the largest remaining area of primary tropical rainforest in the world. The vast majority (86%) of Brazil's Amazonian primate species have declining populations. Primate population decline in Amazonia has been driven principally by deforestation related to the production of forest-risk commodities including soy and cattle ranching, the illegal logging and setting of fires, dam building, road and rail construction, hunting, mining, and the confiscation and conversion of Indigenous Peoples' traditional lands. In a spatial analysis of the Brazilian Amazon, we found that 75% of Indigenous Peoples' lands (IPLs) remained forested compared with 64% of Conservation Units (CUs) and 56% of other lands (OLs). In addition, primate species richness was significantly higher on IPLs than on CUs and OLs. Thus, safeguarding Indigenous Peoples' land rights, systems of knowledge, and human rights is one of the most effective ways to protect Amazonian primates and the conservation value of the ecosystems they inhabit. Intense public and political pressure is required and a global call-to-action is needed to encourage all Amazonian countries, especially Brazil, as well as citizens of consumer nations, to actively commit to changing business as usual, living more sustainably, and doing all they can to protect the Amazon. We end with a set of actions one can take to promote primate conservation in the Brazilian Amazon.
Collapse
Affiliation(s)
- Paul A Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vinícius Klain
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio César Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Sze JS, Childs DZ, Carrasco LR, Fernández-Llamazares Á, Garnett ST, Edwards DP. Indigenous Peoples' Lands are critical for safeguarding vertebrate diversity across the tropics. GLOBAL CHANGE BIOLOGY 2024; 30:e16981. [PMID: 37888836 DOI: 10.1111/gcb.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Indigenous Peoples are long-term custodians of their lands, but only recently are their contributions to conservation starting to be recognized in biodiversity policy and practice. Tropical forest loss and degradation are lower in Indigenous lands than unprotected areas, yet the role of Indigenous Peoples' Lands (IPL) in biodiversity conservation has not been properly assessed from regional to global scales. Using species distribution ranges of 11,872 tropical forest-dependent vertebrates to create area of habitat maps, we identified the overlap of these species ranges with IPL and then compared values inside and outside of IPL for species richness, extinction vulnerability, and range-size rarity. Of assessed vertebrates, at least 76.8% had range overlaps with IPL, on average overlapping ~25% of their ranges; at least 120 species were found only within IPL. Species richness within IPL was highest in South America, while IPL in Southeast Asia had highest extinction vulnerability, and IPL in Dominica and New Caledonia were important for range-size rarity. Most countries in the Americas had higher species richness within IPL than outside, whereas most countries in Asia had lower extinction vulnerability scores inside IPL and more countries in Africa and Asia had slightly higher range-size rarity in IPL. Our findings suggest that IPL provide critical support for tropical forest-dependent vertebrates, highlighting the need for greater inclusion of Indigenous Peoples in conservation target-setting and program implementation, and stronger upholding of Indigenous Peoples' rights in conservation policy.
Collapse
Affiliation(s)
- Jocelyne S Sze
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dylan Z Childs
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - L Roman Carrasco
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Álvaro Fernández-Llamazares
- Department of Animal Biology, Plant Biology and Ecology (BABVE-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - David P Edwards
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Buřivalová Z, Yoh N, Butler RA, Chandra Sagar HSS, Game ET. Broadening the focus of forest conservation beyond carbon. Curr Biol 2023; 33:R621-R635. [PMID: 37279693 DOI: 10.1016/j.cub.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two concurrent trends are contributing towards a much broader view of forest conservation. First, the appreciation of the role of forests as a nature-based climate solution has grown rapidly, particularly among governments and the private sector. Second, the spatiotemporal resolution of forest mapping and the ease of tracking forest changes have dramatically improved. As a result, who does and who pays for forest conservation is changing: sectors and people previously considered separate from forest conservation now play an important role and need to be held accountable and motivated or forced to conserve forests. This change requires, and has stimulated, a broader range of forest conservation solutions. The need to assess the outcomes of conservation interventions has motivated the development and application of sophisticated econometric analyses, enabled by high resolution satellite data. At the same time, the focus on climate, together with the nature of available data and evaluation methods, has worked against a more comprehensive view of forest conservation. Instead, it has encouraged a focus on trees as carbon stores, often leaving out other important goals of forest conservation, such as biodiversity and human wellbeing. Even though both are intrinsically connected to climate outcomes, these areas have not kept pace with the scale and diversification of forest conservation. Finding synergies between these 'co-benefits', which play out on a local scale, with the carbon objective, related to the global amount of forests, is a major challenge and area for future advances in forest conservation.
Collapse
Affiliation(s)
- Zuzana Buřivalová
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Natalie Yoh
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - H S Sathya Chandra Sagar
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward T Game
- The Nature Conservancy, South Brisbane, QLD 4101, Australia; School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Zeng Y, Senior RA, Crawford CL, Wilcove DS. Gaps and weaknesses in the global protected area network for safeguarding at-risk species. SCIENCE ADVANCES 2023; 9:eadg0288. [PMID: 37267362 PMCID: PMC10413669 DOI: 10.1126/sciadv.adg0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
Protected areas are essential to biodiversity conservation. Creating new parks can protect larger populations and more species, yet strengthening existing parks, particularly those vulnerable to harmful human activities, is a critical but underappreciated step for safeguarding at-risk species. Here, we model the area of habitat that terrestrial mammals, amphibians, and birds have within park networks and their vulnerability to current downgrading, downsizing, or degazettement events and future land-use change. We find that roughly 70% of species analyzed have scant representation in parks, or occur within parks that are affected by shifts in formal legal protections or are vulnerable to increased human pressures. Our results also show that expanding and strengthening park networks across just 1% of the world's land area could preserve irreplaceable habitats of 1191 species that are particularly vulnerable to extinction.
Collapse
Affiliation(s)
- Yiwen Zeng
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Rebecca A. Senior
- Conservation Ecology Group, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Christopher L. Crawford
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - David S. Wilcove
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Forest conservation: Importance of Indigenous lands. Curr Biol 2022; 32:R1274-R1276. [PMID: 36413971 DOI: 10.1016/j.cub.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Forested Indigenous lands typically maintain high levels of forest integrity. A new study found that this is particularly true for Indigenous lands within tropical protected areas. Better recognising the importance of Indigenous lands is key to new global conservation goals.
Collapse
|